API src

Found 6 results.

Teilvorhaben: Erforschung der Stoffströme und Freisetzungspotentiale beim Recycling der Materialien GaAs und InP

Das Projekt "Teilvorhaben: Erforschung der Stoffströme und Freisetzungspotentiale beim Recycling der Materialien GaAs und InP" wird vom Umweltbundesamt gefördert und von Dr. Jörg Schwar - III/V-Reclaim durchgeführt. Deutsche Unternehmen der Opto- und Elektronikindustrie sind auf den Einsatz von Spezialwerkstoffen der Hochtechnologie angewiesen. Deutschland hat sich im Bereich der Opto- und Elektronikindustrie aufgrund aufwendiger, langjähriger Forschungsarbeit eine herausragende internationale Position erarbeitet. Es folgt darin auch den Ansprüchen der europäischen und deutschen Chemikaliengesetzgebung an Gesundheits- und Umweltschutz sowie Innovations- und Wettbewerbsfähigkeit. In den letzten Jahren wurden Verfahren zur Bewertung, Einstufung und Kennzeichnung solcher nach Tonnage eher kleiner, technologisch aber hoch bedeutender Materialien (z.B. Galliumarsenid, Indiumphosphid) durch die Fachbehörden der Europäischen Union nach REACh/CLP1 durchgeführt. Diese Materialien sind die Funktionswerkstoffe in Leuchtdioden, Lasern in Medizin und Materialbearbeitung, Datennetzen, Mobilfunktechnik, Auto- und Flugzeugradar und konzentrierter Photovoltaik. Die Einstufungsverfahren bilden die Grundlage für mögliche nachfolgende Regulierungs- und Beschränkungsprozesse unter REACH und die Ausstrahlung in ca.20 weitere Rechtsgebiete. Forschung und Industrie stimmen darin überein, dass die von den EU-Fachbehörden zur Umsetzung der CLP-Verordnung verwendete Informationsbasis für die Bewertung und Einstufung der Materialien in vielen Fällen unzureichend ist. So stehen beispielsweise Bewertungs- und Einstufungsergebnisse zum Schlüsselwerkstoff Galliumarsenid im Widerspruch zu übereinstimmenden Empfehlungen beteiligter Toxikologen wie auch aktuellen wissenschaftlichen Veröffentlichungen. Die europäischen Ansprüche an nachhaltige Chemikaliennutzung, Gesundheits- und Umweltschutz als auch industrielle Wettbewerbsfähigkeit in Balance zu bringen, erfordert deshalb zwingend, weitere wissenschaftliche Grundlagen zu erarbeiten, die eine fachlich korrekte Bewertung und Einstufung der Materialien und Ihrer industriellen und gesellschaftlichen Anwendungspraxis ermöglichen. Das Ziel des vom Bundesforschungsministerium geförderten Verbundprojekts TEMPO (Toxikologische, physikalisch-chemische und gesellschaftliche Erforschung innovativer Materialien und Prozesse der Optoelektronik) besteht darin, diese wissenschaftliche Grundlage für die Stoffe Galliumnitrid, Galliumarsenid, Siliziumcarbid, Indiumphosphid, Indiumarsenid und Galliumantimonid substanziell mit einem ganzheitlichen Ansatz zu vertiefen. Dazu wird vorhandenes (Material-)Wissen konzentriert, es werden Wissensdefizite identifiziert und durch experimentelle Untersuchungen, u.a. zu toxikologischen Schlüsselfragen wie Lungenwechselwirkungen und Bioverfügbarkeit, geschlossen. Der Projektschwerpunkt liegt darüber hinaus auch auf der Analyse der Expositionsrisiken und der vorhandenen Risikomanagementpraxis während des ganzen Lebenszyklus der betreffenden Stoffe von den Arbeitsplätzen bei der Herstellung bis hin zum Produktrecycling.

Teilvorhaben: Toxikologische Stoffdatenbank und Auswertung

Das Projekt "Teilvorhaben: Toxikologische Stoffdatenbank und Auswertung" wird vom Umweltbundesamt gefördert und von REACh ChemConsult GmbH durchgeführt. Ziel von Schwerpunkt 1 (insbesondere AP 1.2) ist die Erreichung der nötigen Datenkompetenz, Bewertungskompetenz und Verfahrenskompetenz zu ausgewählten innovativen Materialien und Grundwerkstoffen der OEI (Verbindungshalbleiter) hinsichtlich ihrer humantoxikologischen Eigenschaften, der für die Toxikologie relevanten physikalisch- chemischen Materialdaten (insbesondere AP 1.1) und der daraus resultierenden Einstufung und Kennzeichnung gern. den Kriterien der Verordnung (EG) 1272/2008 (CLP). Ausgewählt wurden folgende sechs Stoffe: GaAs, GaN, GaSb, InAs, InP und SiC. Hierzu soll eine umfangreiche Literaturrecherche erfolgen. die Qualität vorhandener Studien und Bewertungen geprüft werden, eine toxikologische Stoffdatenbank angelegt werden und ggf. auftretende Datenlücken identifiziert werden. Diese Recherchen sollen (insbesondere in den Teilvorhaben zu AP 1.3 und 1.4) durch Erkenntnisse aus zwei weiteren Themen ergänzt werden, wo zum Stand des Projektantrags schon absehbare Wissensdefizite bekannt waren: zum einen, eine Fallstudie zur Aufklärung der Materialabhängigkeit pulmonaler, toxikologischer Primäreffekte (z.B. Alveolarproteinose (PAP) und nachfolgende Hypoxämie, die den Stand des Wissens und die offenen Fragen aus der Literatur so vollständig wie möglich reflektieren soll, und zum anderen, die zugehörigen gezielten experimentellen Untersuchungen zum Ausmaß von Hypoxämie in Ratten durch PAP. Arbeitsplanung: Recherche von Studien und Bewertungen, Qualitätsbewertung und Relevanzbewertung der Studien und vorhandener Schlussfolgerungen, Zusammenfassung und fachliche Bewertung, Anlegen einer Stoffdatenbank zu humantoxikologischen Daten, Gesamtbewertung und Schlussfolgerungen zur Gefahren-Einstufung der ausgewählten Stoffe.

Teilvorhaben: Erforschung des human- und ökotoxikologisch relevanten Löslichkeits- und Reaktionsverhaltens von GaAs sowie verwandter Arsenide und Phosphide

Das Projekt "Teilvorhaben: Erforschung des human- und ökotoxikologisch relevanten Löslichkeits- und Reaktionsverhaltens von GaAs sowie verwandter Arsenide und Phosphide" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin e.V., Leibniz-Institut für Kristallzüchtung durchgeführt. Deutsche Unternehmen der Opto- und Elektronikindustrie sind auf den Einsatz von Spezialwerkstoffen der Hochtechnologie angewiesen, um ihre aufgrund langjähriger und aufwendiger Forschungsarbeiten herausragende, internationale Position auch in Zukunft halten und innovativ ausbauen zu können. Dabei ist es selbstverständlich, dass die Vorgaben der europäischen und nationalen Chemikaliengesetzgebung hinsichtlich des Gesundheits- und Umweltschutzes wirksam umgesetzt werden. In den letzten Jahren wurden Verfahren zur Bewertung, Einstufung und Kennzeichnung solcher nach Tonnage eher kleiner, technologisch aber hoch bedeutender Materialien (z.B. Galliumarsenid, Indiumphosphid) durch die Fachbehörden der Europäischen Union nach CLP (Verordnung (EG) Nr. 1272/2008 - Classification, Labelling and Packaging of Substances) durchgeführt. Diese Materialien sind die Funktionswerkstoffe in Leuchtdioden, Lasern in Medizin und Materialbearbeitung, Datennetzen, Mobilfunktechnik, Auto- und Flugzeugradar und konzentrierter Photovoltaik. Die harmonisierte Einstufung bildet die Grundlage für mögliche nachfolgende Regulierungsprozesse unter REACh (Verordnung (EG) Nr. 1907/2006 - Registration, Evaluation, Authorization and Restriction of Chemicals) und strahlt in ca. 20 weitere Rechtsgebiete aus. Forschung und Industrie stimmen darin überein, dass die von den EU-Fachbehörden zur Umsetzung der CLP-Verordnung verwendete Informationsbasis für die Bewertung und Einstufung der Materialien in vielen Fällen unzureichend ist. So stehen beispielsweise Bewertungs- und Einstufungsergebnisse zum Schlüsselwerkstoff Galliumarsenid im Widerspruch zu übereinstimmenden Empfehlungen beteiligter Toxikologen wie auch aktuellen wissenschaftlichen Veröffentlichungen. Die europäischen Ansprüche an nachhaltige Chemikaliennutzung, Gesundheits- und Umweltschutz mit industrieller Innovations- und Wettbewerbsfähigkeit in Balance zu bringen, erfordert deshalb zwingend, die wissenschaftliche Informationsbasis und angewandte Bewertungsmethoden zu verbessern. Das Ziel des vom Bundesforschungsministerium geförderten Verbundprojekts TEMPO (Toxikologische, physikalisch-chemische und gesellschaftliche Erforschung innovativer Materialien und Prozesse der Optoelektronik) besteht darin, diese wissenschaftliche Grundlage für die Stoffe Galliumnitrid, Galliumarsenid, Siliziumcarbid, Indiumphosphid, Indiumarsenid und Galliumantimonid substanziell mit einem ganzheitlichen Ansatz zu vertiefen. Dazu wird vorhandenes (Material-)Wissen konzentriert, es werden Wissensdefizite identifiziert und durch experimentelle Untersuchungen, u.a. zu toxikologischen Schlüsselfragen wie Lungenwechselwirkungen und Bioverfügbarkeit, geschlossen. Der Projektschwerpunkt liegt darüber hinaus auch auf der Analyse der Expositionsrisiken und der vorhandenen Risikomanagementpraxis während des ganzen Lebenszyklus der betreffenden Stoffe von den Arbeitsplätzen bei der Herstellung bis hin zum Produktrecycling.

Teilvorhaben: Herstellung und Charakterisierung neuartiger Infrarot-Photodetektoren für die Laserspektroskopie

Das Projekt "Teilvorhaben: Herstellung und Charakterisierung neuartiger Infrarot-Photodetektoren für die Laserspektroskopie" wird vom Umweltbundesamt gefördert und von nanoplus Nanosystems and Technologies GmbH durchgeführt. Im HIRT Projekt sollen erstmals innovative Infrarotdetektoren auf Basis von Resonanztunneldioden (RTD) mit Halbleitern schmaler Bandlücke in dem für die optische Sensorik wichtigen Wellenlängenbereich zwischen 1.8 Mikro m - 3.5 Mikro m erforscht und untersucht werden. Dieser spektrale Bereich ist für die hochempfindliche Gassensorik von besonderem Interesse. Beispiele im Bereich Umweltanalytik und Umweltschutz betreffen bspw. das Treibhausgas Methan oder den Luftschadstoff Formaldehyd. Aber auch eine Vielzahl weiterer Anwendungen zur effizienten Prozessteuerung und zur Reduzierung von Schadstoffen profitiert von den Ergebnissen des HIRT Vorhabens. Die optische Gassensorik basierend auf Laserspektroskopie (Tunable Laser Spectroscopy - TLS) erlaubt das Detektieren selbst niedrigster Konzentrationen in Echtzeit und stellt einen rasant wachsenden Markt da. Im Rahmen dieses Projekts wird die Erforschung eines neuartigen Infrarotdetektors verfolgt: HIRT nutzt dazu das RTD-Prinzip und überträgt dieses Prinzip erstmals auf einen für TLS Anwendungen extrem wichtigen Spektralbereich. Dazu sollen RTD Strukturen auf Basis von III-V Halbleitern mit kleiner Bandlücke (Antimonide, InAs und deren Verbindungshalbleiter) untersucht werden. Die Arbeiten umfassen insbesondere Design, Herstellung und Charakterisierung neuartiger Resonanztunnelstrukturen und zugehöriger Schichtstrukturen, Untersuchung geeigneter Wachstumsverfahren zu gitterangepasstem GaInAsSb mit schmaler Bandlücke, technologische Untersuchungen zur Kombination von optisch aktiver Absorptionsschicht und als Verstärker wirkender Resonanztunnelstruktur, Erforschung geeigneter Strukturierungs- und Passivierungsverfahren, sowie die Untersuchung der neuartigen Bauelemente in TLS Anwendungsumgebung.

Teilvorhaben: Stoffflussanalyse und Freisetzungen von Halbleiterstoffen über den gesamten Lebenszyklus

Das Projekt "Teilvorhaben: Stoffflussanalyse und Freisetzungen von Halbleiterstoffen über den gesamten Lebenszyklus" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Hochfrequenz- und Halbleiter-Systemtechnologien, Forschungsschwerpunkt Technologien der Mikroperipherik durchgeführt. Deutsche Unternehmen der Opto- und Elektronikindustrie sind auf den Einsatz von Spezialwerkstoffen der Hochtechnologie angewiesen. Deutschland hat sich im Bereich der Opto- und Elektronikindustrie aufgrund aufwendiger, langjähriger Forschungsarbeit eine herausragende internationale Position erarbeitet. Es folgt darin auch den Ansprüchen der europäischen und deutschen Chemikaliengesetzgebung an Gesundheits- und Umweltschutz sowie Innovations- und Wettbewerbsfähigkeit. In den letzten Jahren wurden Verfahren zur Bewertung, Einstufung und Kennzeichnung solcher nach Tonnage eher kleiner, technologisch aber hoch bedeutender Materialien (z.B. Galliumarsenid, Indiumphosphid) durch die Fachbehörden der Europäischen Union nach REACh/CLP durchgeführt. Diese Materialien sind die Funktionswerkstoffe in Leuchtdioden, Lasern in Medizin und Materialbearbeitung, Datennetzen, Mobilfunktechnik, Auto- und Flugzeugradar und konzentrierter Photovoltaik. Die Einstufungsverfahren bilden die Grundlage für mögliche nachfolgende Regulierungs- und Beschränkungsprozesse unter REACH und die Ausstrahlung in ca. 20 weitere Rechtsgebiete. Forschung und Industrie stimmen darin überein, dass die von den EU-Fachbehörden zur Umsetzung der CLP-Verordnung verwendete Informationsbasis für die Bewertung und Einstufung der Materialien in vielen Fällen unzureichend ist. So stehen beispielsweise Bewertungs- und Einstufungsergebnisse zum Schlüsselwerkstoff Galliumarsenid im Widerspruch zu übereinstimmenden Empfehlungen beteiligter Toxikologen wie auch aktuellen wissenschaftlichen Veröffentlichungen. Die europäischen Ansprüche an nachhaltige Chemikaliennutzung, Gesundheits- und Umweltschutz als auch industrielle Wettbewerbsfähigkeit in Balance zu bringen, erfordert deshalb zwingend, weitere wissenschaftliche Grundlagen zu erarbeiten, die eine fachlich korrekte Bewertung und Einstufung der Materialien und Ihrer industriellen und gesellschaftlichen Anwendungspraxis ermöglichen. Das Ziel des vom Bundesforschungsministerium geförderten Verbundprojekts TEMPO (Toxikologische, physikalisch-chemische und gesellschaftliche Erforschung innovativer Materialien und Prozesse der Optoelektronik) besteht darin, diese wissenschaftliche Grundlage für die Stoffe Galliumnitrid, Galliumarsenid, Siliziumcarbid, Indiumphosphid, Indiumarsenid und Galliumantimonid substanziell mit einem ganzheitlichen Ansatz zu vertiefen. Dazu wird vorhandenes (Material-)Wissen konzentriert, es werden Wissensdefizite identifiziert und durch experimentelle Untersuchungen, u.a. zu toxikologischen Schlüsselfragen wie Lungenwechselwirkungen und Bioverfügbarkeit, geschlossen. Der Projektschwerpunkt liegt darüber hinaus auch auf der Analyse der Expositionsrisiken und der vorhandenen Risikomanagementpraxis während des ganzen Lebenszyklus der betreffenden Stoffe von den Arbeitsplätzen bei der Herstellung bis hin zum Produktrecycling.

Teilvorhaben: Erforschung des human- und ökotoxikologisch relevanten Löslichkeits- und Reaktionsverhaltens von GaAs sowie verwandter Arsenide und Antimonide

Das Projekt "Teilvorhaben: Erforschung des human- und ökotoxikologisch relevanten Löslichkeits- und Reaktionsverhaltens von GaAs sowie verwandter Arsenide und Antimonide" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Anorganische Chemie durchgeführt. Das Ziel des vom Bundesforschungsministerium geförderten Verbundprojekts TEMPO (Toxikologische, physikalisch-chemische und gesellschaftliche Erforschung innovativer Materialien und Prozesse der Optoelektronik) besteht darin, diese wissenschaftliche Grundlage für die Stoffe Galliumarsenid, Galliumnitrid, Siliziumcarbid, Indiumphosphid, Indiumarsenid und Galliumantimonid substanziell mit einem ganzheitlichen Ansatz zu vertiefen. Dazu wird vorhandenes (Material-)Wissen konzentriert, es werden Wissensdefizite identifiziert und durch experimentelle Untersuchungen, u.a. zu toxikologischen Schlüsselfragen wie Lungenwechselwirkungen und Bioverfügbarkeit, geschlossen. Der Projektschwerpunkt liegt darüber hinaus auch auf der Analyse der Expositionsrisiken und der vorhandenen Risikomanagementpraxis während des ganzen Lebenszyklus der betreffenden Stoffe von den Arbeitsplätzen bei der Herstellung bis hin zum Produktrecycling. Das Hauptziel des vorliegenden TEMPO-Teilprojektes ist es, die Kenntnisse zum Stand des chemisch-physikalischen Löslichkeitsverhaltens von Galliumarsenid und anderen strategischen Halbleitermaterialien der Opto- und Elektronikindustrie über den Stand der Literatur hinaus zu erweitern. Dabei stehen unterschiedliche in den Prozessen auftretende Materialarten und umwelttypische Löslichkeitsbedingungen hinsichtlich toxikologischer Relevanz im Fokus. Die existierenden Datenlücken sollen identifiziert und so weit wie möglich im Projekt geschlossen werden. Zum Erreichen dieser Ziele gibt es einen engen Austausch mit den Projektpartnern.

1