Der Schrottplatz wird anlagentypisch betrieben und dient dazu Eisen- und Nichteisenschrotte anzunehmen, zu lagern, zu behandeln und anschließend zu vermarkten, üblicherweise für den Einsatz in industriellen Prozessen (z.B. in Stahlwerken). Die Gesamtlagerkapazität für Eisen- und Nichteisenschrotte soll nach Realisierung des Vorhabens insgesamt bis zu 400 Tonnen umfassen können. Die Behandlung stellt die Aufbereitung von Schrott, im Wesentlichen durch Sortieren und der Entnahme von Stör- bzw. Fremdstoffen dar, damit die Qualitätsanforderungen der Abnehmer gewährleistet werden.
Neu gegründetes Fachgebiet untersucht Wege zu einer CO₂-neutralen Industrie Das Umweltbundesamt (UBA) eröffnet am 25. April 2024 einen neuen Standort in Cottbus. Künftig forschen hier zehn UBA-Mitarbeitende zum Thema Dekarbonisierung der Industrie und des Verkehrs. Das neu gegründete Fachgebiet soll sich mit lokalen Akteuren austauschen und vernetzen. Die Bundesregierung unterstützt die Einrichtung des neuen UBA-Standortes in Cottbus auf Grundlage des Strukturstärkungsgesetzes Kohleregionen. Acht der zehn Mitarbeitenden am neuen UBA -Standort in Cottbus gehören dem Fachgebiet „Dekarbonisierung in der Industrie“ an und untersuchen künftig, wie sich energieintensive Industrieprozesse unter Berücksichtigung weiterer Umweltbelange klimaneutral umgestalten lassen. Auf dieser Grundlage unterstützen sie unter anderem eine entsprechende Fördermaßnahme der Bundesregierung – die Bundesförderung für Industrie und Klimaschutz – mit der Branchenexpertise des UBA. So soll insbesondere die Elektrifizierung von Industrieprozessen sowie die Reduzierung prozessbedingter CO 2 -Emissionen vorangetrieben werden. Zwei weitere Mitarbeitende, die sich mit dem Thema Verkehr befassen, untersuchen sowohl Dekarbonisierungsoptionen als auch die Umwelt- und Klimawirkungen von schweren Nutzfahrzeugen im Straßenverkehr sowie von alternativen Kraftstoffen im Seeverkehr. UBA-Präsident Dirk Messner zur Eröffnung des neuen UBA-Standorts in Cottbus: „Die Dekarbonisierung unserer Industrie ist eine zentrale Weichenstellung auf dem Weg zur Klimaneutralität. Die gesellschaftlichen Anstrengungen zum Schutz unseres Klimas können nur mit einer starken und leistungsfähigen Industrie erfolgreich sein – nicht gegen sie. Ich bin überzeugt, dass es uns gelingen wird, diesen Prozess zum Erfolg zu führen, und freue mich, dass wir als UBA unseren Teil dazu beitragen können. Die Lausitz ist eine der Regionen, die von dieser Transformation künftig profitieren wird, deswegen ist Cottbus genau der richtige Standort für das neue Fachgebiet des UBA.“ Durch den neuen UBA-Standort im Cottbuser Stadtzentrum sollen darüber hinaus langfristige Netzwerke zu Akteuren der lokalen Wirtschaft und zu Forschungseinrichtungen in der Region entstehen und bereits existierende Kontakte ausgebaut werden. Der Austausch mit regionalen Partnern wie dem Kompetenzzentrum für Klimaschutz in energieintensiven Industrien (KEI), der Brandenburgischen Technischen Universität (BTU) Cottbus-Senftenberg sowie dem Praxislabor für Kraft- und Grundstoffe aus grünem Wasserstoff in der Lausitz (PtX Lab) ist dabei wesentlicher Bestandteil der Arbeit der UBA-Fachleute vor Ort. Der Lausitz-Beauftragte des brandenburgischen Ministerpräsidenten, Dr.-Ing. Klaus Freytag, begrüßt die Eröffnung des neuen UBA-Standortes in Cottbus: „Die neuen Bundesbehörden in der Lausitz, insbesondere im Oberzentrum Cottbus, sind wichtige Partner und Unterstützer im Strukturwandel. Das UBA begleitet mit seiner Expertise die vielfältigen Herausforderungen der Transformation in den Braunkohlerevieren. Die Expertise ist jetzt vor Ort in Cottbus, ein guter Tag für das Revier und seine Menschen!” Prof. Dr.-Ing. Michael Hübner, Vizepräsident für Forschung und Transfer der BTU Cottbus-Senftenberg, sagt: „Wir freuen uns sehr, dass sich das UBA für einen Standort in Cottbus entschieden hat. Das Thema Dekarbonisierung, das in Cottbus in den Bereichen Industrie und Verkehr mit weiteren Partnern, wie beispielsweise dem KEI, als Schwerpunkt gesetzt ist, passt sehr gut zur Forschung an der BTU. Unsere Profillinien „Dekarbonisierung und Energiewende“ sowie „Globaler Wandel und Transformation“ sind dabei hervorragende Schnittstellen zu den neuen Fachgebieten und ermöglichen zahlreiche Kooperationen, zum Beispiel in den Themen Energie und Umweltschutz. Diese bieten viel Potential und Synergien zu weiteren Forschungsbereichen, die wir für die Gestaltung einer nachhaltigen, lebenswerten Zukunft nutzen können.“
Die Firma Pergan Hilfsstoffe für industrielle Prozesse GmbH, Schlavenhorst 71 in 46395 Bocholt hat die Genehmigung zur wesentlichen Änderung einer Anlage zur Herstellung von organischen Peroxiden auf dem Grundstück Schlavenhorst 71 in 46395 Bocholt (Gemarkung Mussum, Flur 1, Flurstück 221, 228, 247) beantragt. Gegenstand des Antrages ist die Modifikation des Lagermanagements durch: - Neubau eines Lagergebäudes - Umwidmung einer „Versandbox“ zur Lagerung und Bereitstellung von organischen Peroxiden - Errichtung eines Containerlagers für Gefahrstoffe
Umweltwärme und Wärmepumpen Abwärme Solarthermie Photovoltaisch-Thermische (PVT) Module Oberflächennahe Geothermie Eisspeicher Biomasse Biogas / Bio-Methan Die neuen Generationen von Wärmenetzen ermöglichen es, Wärme aus der Umgebung für die Versorgung von Gebäuden nutzbar zu machen, die für konventionelle Wärmenetze der älteren Generationen nicht erschlossen werden konnte. Schlüsseltechnologie, um diese Wärmequellen zu nutzen, ist die Wärmepumpe. Das grundlegende Funktionsprinzip einer Wärmepumpe ähnelt einem Kühlschrank, nur, dass der thermodynamische Kreisprozess in die umgekehrte Richtung läuft. Während im Kühlschrank die Wärme aus dem Inneren abgeführt und an die Umgebung übertragen wird, entzieht die Wärmepumpe einer Wärmequelle Energie und hebt diese, angetrieben meist durch Elektrizität, auf ein höheres Temperaturniveau, sodass sie zum Heizen genutzt werden kann. Die Wärmepumpe besteht aus einem geschlossenen Kreislauf, in dem ein Kältemittel zirkuliert und einen thermodynamischen Kreisprozess durchläuft. Die wesentlichen Komponenten einer Wärmepumpe sind Verdampfer, Verdichter, Kondensator und Drosselventil. Der Verdampfer ist ein Wärmeübertrager, in dem die Wärme der externen Wärmequelle an das Kältemittel in der Wärmepumpe übergeht, wodurch dieses verdampft. Durch den Verdichter wird der Druck des nun gasförmigen Kältemittels erhöht. Dadurch kommt es auch zu einer Erhöhung der Temperatur des Kältemittels. Diese muss oberhalb der zu erreichenden Heiztemperatur liegen, damit es im Kondensator, einem weiteren Wärmeübertrager, zur Abgabe der Wärme an das Heizwasser kommt. Durch die Wärmeabgabe kondensiert das Kältemittel im Kondensator und liegt wieder flüssig vor. Der Kondensator wird daher auch oft als Verflüssiger bezeichnet. Das Drosselventil reduziert den Druck des Kältemittels, wodurch die Temperatur weiter abfällt und der Kreisprozess mit Wiedereintritt in den Verdampfer von vorn beginnen kann. Zu den möglichen Wärmequellen zählen unter anderem Außenluft, Oberflächengewässer und Grundwasser sowie die oberen Schichten des Erdreichs (oberflächennahe Geothermie). Entsprechend kommen folgende Wärmepumpen-Typen zum Einsatz: Luft-Wasser-WP; Außenluft oder Abluft einer technischen Anlage Sole-Wasser-WP; Erdkollektoren und -sonden, PVT, Eisspeicher, etc Wasser-Wasser-WP; Grundwasser, Flusswasser, Abwasser, Kühlwasser Weiterführende Informationen Umweltbundesamt Bundesverband Wärmepumpe zur grundlegenden Funktionsweise von Wärmepumpen Bundesverband Wärmepumpe zur Rolle von Wärmepumpen in Nah- und Fernwärmenetzen Abwärme ist Wärme, die als Nebenprodukt in einem Prozess entsteht, dessen Hauptziel die Erzeugung eines Produktes, die Erbringung einer Dienstleistung oder eine Energieumwandlung ist, und ungenutzt an die Umwelt abgeführt werden müsste . Kann die Abwärme nicht durch eine Optimierung der Prozesse, bei denen sie entsteht, vermieden werden, wird sie als unvermeidbare Abwärme bezeichnet. Aus Effizienzgründen sollte eine hierarchisierte Verwendung mit Abwärme angestrebt werden: 1. Verfahrensoptimierung/ Vermeidung, 2. prozess- bzw. anlageninterne Nutzung, 3. betriebsinterne Nutzung, 4. außerbetriebliche Nutzung. Je nach Temperaturniveau der Abwärme lässt sie sich für unterschiedliche Zwecke nutzen. Abwärme kann bei ausreichend hohen Temperaturen direkt in Fern- und Nahwärmenetze eingespeist werden oder über Wärmepumpen auf das benötigte Temperaturniveau angehoben werden. Bei niedrigen Temperaturen ist die Nutzung in LowEx- oder teilweise auch kalten Nahwärmenetzen möglich. Unvermeidbare und damit extern nutzbare Abwärme fällt typischerweise in Industrieprozessen an. Aber auch die Abwärme von Kälteanlagen, die beispielsweise zur Kühlung von Rechenzentren oder großer Büro- und anderer Nichtwohngebäude genutzt werden, lässt sich sinnvoll in Wärmenetzen nutzen. Abwasserwärme ist eine weitere übliche Abwärmequelle in urbanen Gebieten, die ganzjährig eine Temperatur zwischen etwa 12 °C und 20 °C aufweist. Sie eignet sich daher besonders für die Nutzung als Wärmequelle für Wärmepumpen oder in kalten Netzen. Eine Herausforderung bei der Nutzung von unvermeidbarer Abwärme können Schwankungen im Wärmeangebot sein. So fällt Abwärme von Kälteanlagen zur Büroklimatisierung hauptsächlich im Sommer an und auch Abwärme aus Industrieprozessen kann z.B. bedingt durch Produktionszyklen volatil sein. Hier ist in der Detailplanung des Nahwärmenetzes darauf zu achten, dass ein unregelmäßiges Abwärmeangebot durch entsprechende Speicher oder andere, regenerative Quellen ausgeglichen werden kann. Weiterführende Informationen Informationen rund um Abwasserwärme der Berliner Wasserbetriebe Analyse zum Abwärmepotenzial der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt Die Einstrahlung der Sonne kann zur direkten Erwärmung eines Wärmeträgermediums genutzt werden. Diese Umwandlung von Sonnenenergie in thermische Energie über Kollektoren wird Solarthermie genannt. Dabei kommen hauptsächlich Flachkollektoren oder Vakuumröhrenkollektoren zum Einsatz. Bei Flachkollektoren sind Kupferrohre in eine verglaste Absorberebene eingelassen. Vakuumröhrenkollektoren zeichnen sich durch einzelne, parallele und vakuumierte Glasröhren aus, in denen das Heizrohr mit Absorber verläuft. In den Kollektoren strömt in der Regel ein Wasser-Glykol-Gemisch, auch Sole, Solarflüssigkeit oder Wärmeträgerflüssigkeit genannt. Das beigemischte Glykol dient als Frostschutz, um bei geringer Einstrahlung und Außentemperatur ein Einfrieren im Winter zu verhindern. Mit Vakuumröhrenkollektoren können höhere Temperaturen und damit höhere Erträge pro Kollektorfläche erzielt werden. Besondere Bauformen besitzen auch Parabolspiegel, die das Sonnenlicht stärker auf die Absorber konzentrieren. Auch Systeme, die Wasser statt Sole führen, werden eingesetzt. Der Vorteil besteht in der höheren Wärmekapazität von Wasser gegenüber Sole, wodurch höhere Erträge und Temperaturen erzielt werden können. In wasserführenden Systemen findet im Winter bei fehlender Einstrahlung in regelmäßigen Abständen eine Zwangsumwälzung des Wassers statt, wodurch ein Einfrieren des Wärmeträgermediums in den Rohren vermieden wird. Mit einem Jahresertrag pro benötigte Grundfläche von 150 kWhth/(m²*a), ist die durchschnittliche Flächeneffizienz von ST-Anlagen beispielsweise um den Faktor 30 höher als die von Biomasseheizwerken bei der Verwendung von Holz aus Kurzumtriebsplantagen. In den letzten Jahren werden Solarthermie-Projekte zur Einspeisung in großstädtische Wärmenetze verstärkt umgesetzt. Bei der Einbindung von Solarthermischen Anlagen in Wärmenetze bietet sich sowohl die zentrale als auch die dezentrale Variante an. Zentrale Systeme speisen am Standort des Hauptwärmeerzeugers oft in einen vorhandenen Wärmespeicher ein. Dazu wird die Wärme von der Anlage über ein separates Rohrsystem zu der Heizzentrale geführt. Zu beachten: Im Sommer kann eine solarthermische Anlage die Deckung der gesamten Wärmelast übernehmen und je nach Auslegung auch einen Wärmespeicher füllen. Im Winter wird in der Regel ein weiterer Wärmeerzeuger eingesetzt, da Leistung und Wärmemenge aus der Solaranlage oft nicht ausreichen. Die Solarthermie kann in Wärmenetzen in Konkurrenz zu Grundlastquellen oder -Erzeugern stehen, z.B. Abwärme, Biomasse oder Blockheizkraftwerk (BHKW) und so den Bedarf an nötigem Wärmespeichervolumen erhöhen Eine Nutzung als Wärmequelle in kalten Netzen gestaltet sich schwierig, da die Sommertemperaturen zu hoch sind Weiterführende Informationen Solarthermie Wärmenetze PVT-Kollektoren sind ein Spezialfall der Sonnenenergienutzung. Sie kombinieren Photovoltaikzellen und solarthermische Kollektoren, um so Wärme und Strom in einem Modul zu erzeugen. Die verfügbare Dachfläche wird so optimal ausgenutzt. Die Kollektoren bestehen aus einem PV-Modul und einem rückseitig montiertem Wärmeübertrager. Dadurch, dass zeitgleich zur Stromerzeugung Wärme abgeführt wird, entsteht ein Kühleffekt, der zu einem höheren Stromertrag führt, da die Effizienz von PV-Modulen temperaturabhängig ist. PVT-Module gibt es in mehreren Varianten, die sich vor allem durch das Temperaturniveau der erzeugten Wärme unterscheiden. Für die Erzeugung hoher Temperaturen wird der Wärmeübertrager vollständig mit Wärmedämmung eingehaust. Dadurch geht jedoch der stromertragssteigernde Kühleffekt an den PV-Zellen verloren, sodass diese Module vor allem zur Erzeugung von Prozesswärme eingesetzt werden. Als Wärmequelle für Wärmepumpen in Nahwärmenetzen eignen sich daher vor allem ungedämmte sogenannte unabgedeckte PVT-Kollektoren, bei denen die Rohre des Wärmeübertragers mit zusätzlichen Leitblechen für einen Wärmeübergang aus der Luft optimiert sind. Diese liefern ganzjährig Energie, die beispielsweise direkt in ein kaltes Nahwärmenetz eingespeist werden kann. Weiterführende Informationen Informationen zu PVT-Modulen und Wärmepumpen im Rahmen des Forschungsprojektes integraTE Verwendung von PVT-Modulen im degewo Zukunftshaus In den oberen Erdschichten folgt die Bodentemperatur der Außenlufttemperatur. Mit zunehmender Tiefe steigt die Temperatur an und ist ab ca. 15 m unter Gelände Oberkante nahezu konstant. Die Wärme aus dem Erdreich kann über verschiedene horizontale und vertikale Erdwärmeübertrager oder auch Grundwasserbrunnen gewonnen und als Wärmequelle für Wärmepumpen genutzt werden. Horizontale Erdwärmeübertrager werden Erdkollektoren genannt. Es handelt sich hierbei um Rohrregister, üblicherweise aus Kunststoff, die horizontal oder schräg, spiral-, schrauben- oder schneckenförmig in den oberen fünf Metern des Untergrundes verlegt werden. Bei der häufigsten Nutzung der Erdwärme werden Erdsonden – meist Doppel-U-Rohrleitungen in vertikalen Tiefenbohrungen bis 100 m verwendet. Ab Tiefen über 100 m gilt Bergbaurecht, womit komplexere Genehmigungsverfahren verbunden sind, die eine Nutzung in kleinen, dezentralen Netzen in der Regel ausschließen. Perspektivisch wird durch das 4. Bürokratieentlastungsgesetz voraussichtlich die oberflächennahe Geothermie bis 400 m nicht mehr unter das Bergrecht fallen. Es können mehrere Sonden zu einer Anlage vereint werden. Hierbei ist durch einen ausreichenden Abstand der Sonden untereinander eine gegenseitige Beeinflussung auszuschließen. Auch zu benachbarten Grundstücken muss ein entsprechender Abstand gewahrt bleiben. In Erdwärmeübertragern wird ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, verwendet, da die Temperatur der Sole auch unter 0 °C fallen kann. Aufgrund des Einsatz Wassergefährdender Stoffe und weil der Eingriff in den Wärmehaushalt nach geltendem Recht eine Gewässernutzung darstellt, ist für Erdwärmesonden im Allgemeinen und Erdwärmekollektoren, die weniger als 1 m über dem höchsten Grundwasserstand verlegt werden, in Berlin eine wasserbehördliche Erlaubnis erforderlich. Als Alternative zu Erdsondenanlagen kommen bei größeren Anlagen auch Grundwasserbrunnen in Frage, bei denen über zwei Bohrungen die im Grundwasser enthaltene Wärme genutzt wird. Dabei dient eine Bohrung der Entnahme und eine weitere der Rückspeisung des entnommenen Wassers. Die Eignung des örtlichen Grundwasserleiters für eine Wärmeanwendung muss im konkreten Einzelfall geprüft werden. Für eng bebaute Gebiete eignet sich auch ein Koaxialsystem in Form eines Grundwasserzirkulationsbrunnens, welcher aus nur einer Bohrung besteht. Weiterführende Informationen Informationen und Anforderungen zur Erdwärmenutzung in Berlin Energieatlas mit geothermischen Potenzialen Informationen zur oberflächennahen Geothermie Beim Phasenübergang von flüssig zu fest gibt Wasser bei konstantem Temperaturniveau Energie in Form von Wärme ab. Diese Wärme, die allein bei der Aggregatzustandsänderung transportiert wird, wird als latente Wärme bezeichnet. Bezogen auf die Masse von 1 kg handelt es sich um die Erstarrungsenthalpie eines Stoffes, die bei Wasser in etwa der Energiemenge entspricht, die auch benötigt wird, um dasselbe 1 kg Wasser von 0 °C auf 80 °C zu erwärmen. Zu- oder abgeführte Wärme, die eine Temperaturveränderung bewirkt, wird als sensible Wärme bezeichnet. In Eisspeichern wird eine Wassermenge, z.B. in einer unterirdischen Betonzisterne durch Wärmeentzug vereist. Dazu strömt ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, mit geringerer Temperatur als dem Gefrierpunkt von Wasser durch Rohrspiralen im Speicher. Durch den Temperaturgradienten kommt es zum Wärmetransport zwischen dem erstarrenden Wasser in der Betonzisterne und der Sole in den Rohrspiralen. Die latente Wärme aus dem Phasenübergang des Wassers wird an die Sole übertragen, welche sich dadurch erwärmt. Die erwärmte Sole dient wiederum einer Wärmepumpe als Wärmequelle. Am Verdampfer der Wärmepumpe gibt die Sole die Wärme wieder ab und kann anschließend erneut Wärme aus dem Eisspeicher aufnehmen. Durch Kombination mit Solarkollektoren kann die Effizienz der Anlage erhöht werden, wenn die damit gewonnene thermische Energie zur Regeneration des Eisspeichers genutzt wird. Weiterführende Informationen Informationen zu Eisspeichern Funktion und Kosten von Eisspeichern im Überblick Bei der Wärmebereitstellung durch Biomasse kommen in der Regel Anlagen zum Einsatz, in denen holzartige Biomasse verfeuert wird. Hierfür gibt es verschiedene Brennstoffe, die sich in Qualität und Kosten z.T. deutlich unterscheiden. Holzpellets sind kleine hochstandardisierte Presslinge mit einer Länge von 2-5 cm, die in unter anderem aus Resten der Holzverarbeitung gepresst werden. Ihr Einsatz in Pelletkessel ist hoch automatisiert und damit nur wenig störanfällig. Dennoch sind jährlich kleinere Arbeiten durch z.B. Ascheaustragung o.ä. erforderlich. Zudem ist eine entsprechende Lagerhaltung in einem sogenannten Bunker inkl. Fördersystem erforderlich. Der Einsatz von Holzhackschnitzeln ist etwas arbeitsaufwändiger, da sowohl Brennstoff als auch das Gesamtsystem zur Wärmeversorgung weniger automatisierbar ist. Die Beschaffung des etwa bis zu 10 cm großen, mechanisch zerkleinerten Holzpartikel ist deutlich günstiger und sie können zudem auch in außenliegenden, überdachten Lagerbereichen oder Wirtschaftsgebäuden gelagert werden. Jedoch bestehen größere Anforderungen an die Einbringtechnik und den Betrieb einer Feuerungsanlage. Durch den gröberen Brennstoff, unterschiedliche Brennstoffqualitäten und Ascheaustrag, kann es gegenüber einem Pelletkessel zu häufigerem Arbeitsaufwand kommen, sodass regelmäßige Präsenzzeiten zur Betreuung erforderlich sind. Des Weiteren kann zur Verteilung des Brennstoffes auch schweres Arbeitsgerät vor Ort erforderlich werden. Neben einer reinen Verbrennung der Holzbrennstoffe kann in einem Vergaser auch Holzgas aus der Biomasse gewonnen werden, um diese anschließend in einem speziellen BHKW in Wärme und Strom umzuwandeln. Holz als Brennstoff ist ein vergleichsweise günstiger und preisstabiler Brennstoff, der jedoch einen gewissen Arbeitsaufwand mit sich bringt. Hierbei sind auch die gegenüber der Verbrennung von gasförmigen Energieträgern erhöhten Staubanteile im Abgas zu beachten, welche im urbanen Bereich stärkere Anforderungen an die Abgasreinigung und Ascheentsorgung mit sich bringen. Auch ist bei der Verwendung von nicht lokal verfügbarer Biomasse ein umfangreicher Logistikaufwand zu betreiben, was zu mehr Verkehr auf den Straßen und einer zusätzlichen Belastung durch Emissionen führt. Ebenso ist bei der Abwägung, ob die Wärme für ein Nahwärmenetz mit Holz erzeugt werden soll, zu berücksichtigen, dass Holz nur bedingt als „klimaneutral“ bezeichnet werden kann. Die Verbrennung setzt neben Feinstaub auch Treibhausgase wie CO 2 und Methan frei. Die Annahme, dass die Wärmeerzeugung mit Holz klimaneutral ist, setzt eine nachhaltige Waldbewirtschaftung voraus, bei der mindestens genauso viel Kohlenstoff durch das Wachstum neuer Bäume gebunden wird, wie durch die Verbrennung von Holz freigesetzt wird. Wird Holz aus nicht nachhaltiger Waldbewirtschaftung (beispielsweise der Abholzung von Urwäldern) für die Wärmeerzeugung verwendet, dann fällt die Bilanz der Umweltauswirkungen negativ aus. Eine stärkere Reduktion von Treibhausgasen kann zudem erreicht werden, wenn das Holz für langlebige Produkte (beispielsweise als Bauholz) verwendet wird, da der Kohlenstoff dann dem natürlichen Kreislauf auf längere Zeit entzogen wird und nicht als CO 2 in die Atmosphäre gelangt. Empfehlenswert für die Wärmeerzeugung ist daher vor allem Restholz aus Produktionsprozessen, das nicht für andere Nutzungen geeignet ist, sowie Altholz, das am Ende der Nutzungskaskade angekommen ist. Die Qualität von Holzbrennstoffen lässt sich verschiedenen Normen in Güteklassen einteilen. Hierfür dient bspw. die DIN EN ISO 17225 oder das DINplus-Zertifizierungsprogramm, um Vergleichbarkeiten zu ermöglichen und eine entsprechende Brennstoffqualität sicherzustellen. Des Weiteren sollten Nachweise über die Herkunft der Biomasse bei den Lieferanten angefragt werden, um möglichst regionale Produkte zu nutzen. Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt hat zu den Potenzialen von Biomasse in Berlin eine Untersuchung durchführen lassen, deren Ergebnisse hier einzusehen sind: Biomasse . Weitere Informationen zu diesem Thema finden Sie beim Bundesumweltministerium: BMUV: Klimaauswirkungen von Heizen mit Holz sowie beim Umweltbundesamt: Heizen mit Holz . Weiterführende Informationen Hackschnitzel: Qualität und Normen FNR – Fachagentur Nachwachsende Rohstoffe Für die Wärmeerzeugung aus Biogas existieren regionale unterschiedliche Möglichkeiten. Im ländlichen Raum kann häufig direkt Biogas aus Gärprozessen aus der Landwirtschaft verwendet werden. Abfallstoffe wie z.B. Gülle können dafür genutzt werden, wie auch eigens dafür angebaute Energiepflanzen. Die Verwendung von Anbaubiomasse zur Produktion von Biogas steht jedoch in starker Kritik und kann ebenso wie die Produktion von flüssigen Energieträgern auf die Formel ‚Tank oder Teller‘ reduziert werden. Daher wurde mit den letzten Novellen des Erneuerbare-Energien-Gesetzes (EEG) die Nutzung von Anbaubiomasse zu Biogasproduktion immer weiter eingeschränkt (Stichwort ‚Maisdeckel‘). Biogas kann vor Ort genutzt und in Wärme und Strom umgewandelt und verbraucht bzw. über ein kleines Nahwärmenetz verteilt werden. Für eine Einspeisung in das Erdgasnetz ist eine Methan-Aufbereitung des Gases erforderlich. In Berlin besteht die Möglichkeit, ein Biogas- bzw. Biomethanprodukt eines beliebigen Lieferanten aus dem öffentlichen Gasnetz zu beziehen. Dieses Biomethan ist in der Regel aufbereitetes Biogas, z.B. aus Reststoffen oder Kläranlagen, welches in das Netz an einem anderen Verknüpfungspunkt eingespeist wird. Vor Ort zur (Strom- und) Wärmeerzeugung wird dann bilanzielles Biomethan eingesetzt – ähnlich dem Bezug von Ökostrom aus dem öffentlichen Versorgungsnetz. Der tatsächliche Anteil von Biomethan im Erdgasnetz entsprach im Jahr 2022 lediglich etwa 1 %. Bei dem Kauf gibt es entsprechende Nachweiszertifikate (z.B. “Grünes Gas Label” – Label der Umweltverbände oder TÜV) der Anbieter. Die Umsetzung in Wärme (und Strom) erfolgt dann klassisch über Verbrennungstechnologien wie Gaskessel oder BHKW.
Der Bruch der Berliner Regierungskoalition hat am Freitag die Energieministerkonferenz der Länder im schleswig-holsteinischen Brunsbüttel geprägt. Angesichts der aktuellen politischen Entwicklungen verabschiedeten die Energieministerinnen und -minister einstimmig die „Brunsbütteler Erklärung“. Darin fordern sie die Bundesregierung und den Bundestag auf, wichtige energiepolitische Vorhaben wie die spürbare Senkung der Energiepreise und die klimaneutrale Transformation der Wirtschaft trotz bevorstehender Neuwahlen nicht aufzuschieben. „Von Brunsbüttel geht heute das klare Signal an die Bundespolitik aus, dass wir uns angesichts der aktuellen wirtschaftlichen Herausforderungen keine Taktierei leisten können. Es muss Neuwahlen geben und Bundeskanzler Olaf Scholz hat einen realistischen Zeitplan dafür skizziert“, betonte Sachsen-Anhalts Energieminister Prof. Dr. Armin Willingmann. „Bis dahin gilt es, wichtige energiepolitische Vorhaben nicht aufzuschieben. Wir brauchen spürbare Entlastungen bei den Energiepreisen, insbesondere den Stromnetzentgelten. Das kann gemeinsam – auch mit der Opposition – erreicht werden. Es geht vor allem darum, Arbeitsplätze und Wettbewerbsfähigkeit von Unternehmen in Deutschland langfristig zu sichern.“ Angesichts der anhaltenden Konjunkturflaute dürften nicht auch noch Wachstumschancen vertan werden, so Willingmann. „Weite Teile der Wirtschaft haben sich auf den Weg der klimaneutralen Transformation gemacht; dies darf nicht ins Stocken geraten. Der Ausbau erneuerbarer Energien, der Hochlauf der Wasserstoffwirtschaft muss zügig vorangetrieben werden. Hier gibt es auch eine klare Erwartungshaltung in der deutschen Industrie an die Politik.“ Einstimmig verabschiedeten die Energieministerinnen und -minister der Länder auch zwei Anträge aus Sachsen-Anhalt. So sprechen sich die Minister für eine nachhaltigere Finanzierung der notwendigen Investitionen in Energie- und Wärmenetze aus und schlagen unter anderem die Einführung eines Energiewendefonds vor. Mit Hilfe des Fonds soll die Eigenkapitalquote kommunaler und privater Energieunternehmen gestärkt werden, damit sie Zugriff auf privates Fremdkapital erhalten und entsprechende Investitionen finanziell stemmen können. Experten gehen von einem bundesweiten Investitionsbedarf von 1,4 Billionen Euro bis 2045 aus. Auch der Beschlussvorschlag Sachsen-Anhalts zum Hochlauf der Wasserstoffwirtschaft traf auf Zustimmung. Unternehmensinvestitionen für die Produktion und Nutzung von Wasserstoff sollen danach weiter angereizt werden, unter anderem durch eine konsequentere Förderung für die Umstellung industrieller Prozesse auf Wasserstoff durch den Bund. Darüber hinaus fordert die Energieministerkonferenz, Entwicklungshindernisse wie fehlende Zertifizierungssysteme für grünen Wasserstoff und Treibhausgas-Quotensysteme zeitnah aus dem Weg zu räumen. Ferner sollen Elektrolyseure über das Jahr 2029 hinaus von Stromnetzentgelten befreit bleiben. Ein wichtiges Thema im Austausch mit dem aus Berlin zugeschalteten Bundeswirtschaftsminister Robert Habeck war die Zukunft der Bioenergie in Deutschland. Willingmann hatte bereits am Montag mehr Unterstützung für die Branche gefordert. „Ich freue mich, dass sich der Bundeswirtschaftsminister hierfür heute offen gezeigt hat", erklärte Willingmann. In Sachsen-Anhalt drohen in den kommenden Jahren viele Biogasanlagen aus der EEG-Förderung zu fallen, weil der Bund nach bisherigen Plänen die installierte Leistung im Bereich Bioenergie von aktuell rund 10.500 Megawatt auf 8.400 Megawatt im Jahr 2030 abschmelzen will. Willingmann hält das für falsch. „Bioenergie mag nicht in jedem Fall klimaneutral sein, ist aber dennoch umweltfreundlich und stellt eine sichere, regulierbare Energiequelle dar. Wir können mit Biogas Strom und Wärme erzeugen, wenn der Wind nicht weht und die Sonne nicht scheint. Statt schleichend aus der Bioenergie auszusteigen, sollten wir sie wie moderne wasserstofffähige Gaskraftwerke zumindest als Brückentechnologie nutzen und weiter fördern.“ Sachsen-Anhalt zählt nicht nur bei Wind- und Solarenergie zu den Vorreitern in Deutschland. Mit landesweit 483 Anlagen und einer installierten Leistung von 518,5 Megawatt liegt Sachsen-Anhalt auch bei Bioenergie im bundesweiten Ranking mit Platz sechs sehr weit vorne. Allein in den kommenden fünf Jahren werden im Land jedoch 170 Anlagen nach zwanzigjähriger Betriebszeit aus der EEG-Förderung herausfallen. Ob die Anlagen einen erneuten Förderzuschlag über zehn Jahre erhalten, ist jedoch ungewiss. „Bleibt es bei der Bundesförderung mit angezogener Bremse, stehen bei uns im Land viele Anlagen bald still“, warnt Willingmann. „So etwas halte ich gerade im ländlichen Raum für kaum vermittelbar und auch nicht für zumutbar.“ Und auch das von Sachsen-Anhalt vorangetriebene Thema angemessener wirtschaftlicher Beteiligung der Kommunen beim Ausbau der Erneuerbaren Energien konnte im Rahmen der Konferenz geklärt werden. Die vom Bundeswirtschaftsministerium geplante Deckelung der Pflichtabgabe der Betreiber von Windparks wird nicht weiterverfolgt; das teilte Bundesminister Habeck den Energieministern im Vorfeld der Sitzung per Brief mit. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Threads, Bluesky, Mastodon und X (ehemals Twitter). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Feinstaub-Belastung Gegenüber den 1990er Jahren konnte die Feinstaubbelastung erheblich reduziert werden. Zukünftig ist zu erwarten, dass die Belastung eher langsam abnehmen wird. Großräumig treten heute PM10-Jahresmittelwerte unter 20 Mikrogramm pro Kubikmeter (µg/m³) auf. Feinstaubkonzentrationen in Deutschland Die Ländermessnetze führen seit dem Jahr 2000 flächendeckende Messungen von Feinstaub der Partikelgröße PM10 (Partikel mit einem aerodynamischen Durchmesser von 10 Mikrometer oder kleiner) und seit 2008 auch der Partikelgröße PM2,5 durch. Besonders hoch ist die Messnetzdichte in Ballungsräumen. Die hohe Zahl und Dichte an Emittenten – beispielsweise Hausfeuerungsanlagen, Gewerbebetriebe, industrielle Anlagen und der Straßenverkehr – führen zu einer erhöhten Feinstaubkonzentration in Ballungsräumen gegenüber dem Umland. Besonders hohe Feinstaubkonzentrationen werden unter anderem wegen der starken verkehrsbedingten Emissionen wie (Diesel-)Ruß, Reifenabrieb sowie aufgewirbeltem Staub an verkehrsnahen Messstationen registriert. Während zu Beginn der 1990er Jahre im Jahresmittel großräumig Werte um 50 Mikrogramm pro Kubikmeter (µg/m³) gemessen wurden, treten heute PM10-Jahresmittelwerte zwischen 15 und 20 µg/m³ auf. Die im ländlichen Raum gelegenen Stationen des UBA -Messnetzes verzeichnen geringere Werte. Die Feinstaub-Immissionsbelastung wird nicht nur durch direkte Emissionen von Feinstaub verursacht, sondern zu erheblichen Teilen auch durch die Emission von gasförmigen Schadstoffen wie Ammoniak, Schwefeldioxid und Stickstoffoxiden. Diese reagieren in der Luft miteinander und bilden sogenannten „sekundären“ Feinstaub. Einhergehend mit einer starken Abnahme der Schwefeldioxid (SO 2 )-Emissionen und dem Rückgang der primären PM10-Emissionen im Zeitraum von 1995 bis 2000 sanken im gleichen Zeitraum auch die PM10-Konzentrationen deutlich (siehe Abb. „Trend der PM10-Jahresmittelwerte“). Der Trend der Konzentrationsabnahme setzt sich seitdem fort. Die zeitliche Entwicklung der PM10-Konzentrationen wird von witterungsbedingten Schwankungen zwischen den einzelnen Jahren – besonders deutlich in den Jahren 2003 und 2006 erkennbar – überlagert. Erhöhte Jahresmittelwerte wurden auch 2018 gemessen, die auf die besonders langanhaltende, zehnmonatige Trockenheit von Februar bis November zurückzuführen sind. Überschreitungssituation Lokal und ausschließlich an vom Verkehr beeinflussten Stationen in Ballungsräumen traten in der Vergangenheit gelegentlich Überschreitungen des für das Kalenderjahr festgelegten Grenzwerts von 40 µg/m³ auf. Seit 2012 wurden keine Überschreitungen dieses Grenzwertes mehr festgestellt. Seit 2005 darf auch eine PM10 -Konzentration von 50 Mikrogramm pro Kubikmeter (µg/m³) im Tagesmittel nur an höchstens 35 Tagen im Kalenderjahr überschritten werden. Überschreitungen des Tageswertes von 50 µg/m³ werden vor allem in Ballungsräumen an verkehrsnahen Stationen festgestellt. Die zulässige Zahl von 35 Überschreitungstagen im Kalenderjahr wurde hier in der Vergangenheit zum Teil deutlich überschritten (siehe Karten „Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 mg/m³“ und Abb. „Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes“). Vor allem das Jahr 2006 fiel durch erhebliche Überschreitungen der zulässigen Überschreitungstage auf, was auf lang anhaltende und intensive „Feinstaubepisoden“ zurückzuführen war. In den unmittelbar zurückliegenden Jahren traten nicht zuletzt durch umfangreiche Maßnahmen der mit Luftreinhaltung befassten Behörden keine Überschreitungen des Grenzwerts mehr auf. Auch 2023 wurde der Grenzwert somit an allen Messstationen in Deutschland eingehalten. Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2000-2008 Quelle: Umweltbundesamt Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2009-2017 Quelle: Umweltbundesamt Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2018-2023 Quelle: Umweltbundesamt Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Witterungsabhängigkeit Vor allem in trockenen Wintern, teils auch in heißen Sommern, können wiederholt hohe PM10 -Konzentrationen in ganz Deutschland auftreten. Dann kann der Wert von 50 µg/m³ großflächig erheblich überschritten werden. Ein Beispiel für eine solche Belastungssituation zeigt die Karte „Tagesmittelwerte der Partikelkonzentration PM10“. Zum Belastungsschwerpunkt am 23. Januar 2017 wurden an etwa 56 % der in Deutschland vorhandenen PM10-Messstellen Tagesmittelwerte von über 50 µg/m³ gemessen. Die höchste festgestellte Konzentration betrug an diesem Tag 176 µg/m³ im Tagesmittel. Wie stark die PM10-Belastung während solcher Witterungsverhältnisse ansteigt, hängt entscheidend davon ab, wie schnell ein Austausch mit der Umgebungsluft erfolgen kann. Winterliche Hochdruckwetterlagen mit geringen Windgeschwindigkeiten führen – wie früher auch beim Wintersmog – dazu, dass die Schadstoffe nicht abtransportiert werden können. Sie sammeln sich in den unteren Luftschichten (bis etwa 1.000 Meter) wie unter einer Glocke. Der Wechsel zu einer Wettersituation mit stärkerem Wind führt zu einer raschen Abnahme der PM10-Belastung. Auch wenn die letzten Jahre eher gering belastet waren, können auch zukünftig meteorologische Bedingungen auftreten, die zu einer deutlich erhöhten Feinstaubbelastung führen können. Bürgerinnen und Bürger können laufend aktualisierte Feinstaubmessdaten und Informationen zu Überschreitungen der Feinstaubgrenzwerte in Deutschland im Internet und mobil über die UBA-App "Luftqualität" erhalten. Bestandteile des Feinstaubs Die Feinstaubbestandteile PM10 und PM2,5 sind Mitte der 1990er Jahre wegen neuer Erkenntnisse über ihre Wirkungen auf die menschliche Gesundheit in den Vordergrund der Luftreinhaltepolitik getreten. Mit der EU-Richtlinie 2008/50/EG (in deutsches Recht umgesetzt mit der 39. Bundes-Immissionsschutz-Verordnung (39. BImSchV )), welche die bereits seit 2005 geltenden Grenzwerte für PM10 bestätigt und neue Luftqualitätsstandards für PM2,5 festlegt (siehe Tab. „Grenzwerte für den Schadstoff Feinstaub“), wurde dem Rechnung getragen. Als PM10 beziehungsweise PM2,5 (PM = particulate matter) wird dabei die Massenkonzentration aller Schwebstaubpartikel mit aerodynamischen Durchmessern unter 10 Mikrometer (µm) beziehungsweise 2,5 µm bezeichnet. Herkunft Feinstaub kann natürlichen Ursprungs sein oder durch menschliches Handeln erzeugt werden. Stammen die Staubpartikel direkt aus der Quelle - zum Beispiel durch einen Verbrennungsprozess - nennt man sie primäre Feinstäube. Als sekundäre Feinstäube bezeichnet man hingegen Partikel, die durch komplexe chemische Reaktionen in der Atmosphäre erst aus gasförmigen Substanzen, wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen, entstehen. Wichtige vom Menschen verursachte Feinstaubquellen sind Kraftfahrzeuge, Kraft- und Fernheizwerke, Abfallverbrennungsanlagen, Öfen und Heizungen in Wohnhäusern, der Schüttgutumschlag, die Tierhaltung sowie bestimmte Industrieprozesse. In Ballungsgebieten ist vor allem der Straßenverkehr eine bedeutende Feinstaubquelle. Dabei gelangt Feinstaub nicht nur aus Motoren in die Luft, sondern auch durch Bremsen- und Reifenabrieb sowie durch die Aufwirbelung des Staubes auf der Straßenoberfläche. Eine weitere wichtige Quelle ist die Landwirtschaft: Vor allem die Emissionen gasförmiger Vorläuferstoffe aus der Tierhaltung tragen zur Sekundärstaubbelastung bei. Als natürliche Quellen für Feinstaub sind Emissionen aus Vulkanen und Meeren, die Bodenerosion, Wald- und Buschfeuer sowie bestimmte biogene Aerosole , zum Beispiel Viren, Sporen von Bakterien und Pilzen zu nennen. Während im letzten Jahrzehnt des 20. Jahrhunderts die Gesamt- und Feinstaubemissionen in Deutschland drastisch reduziert werden konnten, verlangsamte sich seither die Abnahme (siehe „Emission von Feinstaub der Partikelgröße PM10“ und „Emission von Feinstaub der Partikelgröße PM2,5“ ). Für die nächsten Jahre ist zu erwarten, dass die Staubkonzentrationen in der Luft weiterhin nur noch langsam abnehmen werden. Zur Senkung der PM-Belastung sind deshalb weitere Maßnahmen erforderlich. Gesundheitliche Wirkungen Feinstaub der Partikelgröße PM10 kann beim Menschen durch die Nasenhöhle in tiefere Bereiche der Bronchien eindringen. Die kleineren Partikel PM2,5 können bis in die Bronchiolen und Lungenbläschen vordringen und die ultrafeinen Partikel mit einem Durchmesser von weniger als 0,1 µm sogar bis in das Lungengewebe und den Blutkreislauf. Je nach Größe und Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen im Rachen, der Luftröhre und den Bronchien oder Schädigungen des Epithels der Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (zum Beispiel mit Auswirkungen auf die Herzfrequenzvariabilität). Eine langfristige Feinstaubbelastung kann zu Herz-Kreislauferkrankungen und Lungenkrebs führen, eine bestehende COPD (Chronisch Obstruktive Lungenerkrankung) verschlimmern, sowie das Sterblichkeitsrisiko erhöhen. Messdaten Mitte der 1990er Jahre wurde zunächst in einzelnen Ländermessnetzen mit der Messung von PM10 begonnen. Seit dem Jahr 2000 wird PM10 deutschlandweit gemessen. Für die Jahre, in denen noch nicht ausreichend Messergebnisse für die Darstellung der bundesweiten PM10-Belastung vorlagen, wurden PM10-Konzentrationen näherungsweise aus den Daten der Gesamtschwebstaubkonzentration (TSP) berechnet. Seit dem Jahr 2001 basieren alle Auswertungen ausschließlich auf gemessenen PM10-Daten. PM2,5 wird seit dem Jahr 2008 deutschlandweit an rund 200 Messstationen überwacht.
Wenn sich am kommenden Donnerstag und Freitag im schleswig-holsteinischen Brunsbüttel die Energieministerinnen und -minister der Länder zu ihrer Herbstkonferenz treffen, wird es einmal mehr um die Frage gehen, wie der Energiebedarf der Bundesrepublik in den kommenden Jahren verlässlich, günstig und möglichst klimaneutral gedeckt werden kann. Sachsen-Anhalts Energieminister Prof. Dr. Armin Willingmann fordert den Bund auf, bessere Zukunftsperspektiven auch für Bioenergie zu schaffen. „Mit der Deckelung der Vergütung von Bioenergie im Erneuerbare-Energien-Gesetz hat das Bundeswirtschaftsministerium eine energiepolitische Sackgasse geschaffen“, kritisierte Willingmann. „Bioenergie mag nicht in jedem Fall klimaneutral sein, ist aber dennoch umweltfreundlich und stellt eine sichere, regulierbare Energiequelle dar. Wir können mit Biogas Strom und Wärme erzeugen, wenn der Wind nicht weht und die Sonne nicht scheint. Statt schleichend aus der Bioenergie auszusteigen, sollten wir sie wie moderne wasserstofffähige Gaskraftwerke zumindest als Brückentechnologie nutzen und weiter fördern.“ Sachsen-Anhalt zählt nicht nur bei Wind- und Solarenergie zu den Vorreitern in Deutschland. Mit landesweit 483 Anlagen und einer installierten Leistung von 518,5 Megawatt liegt Sachsen-Anhalt auch bei Bioenergie im bundesweiten Ranking mit Platz sechs sehr weit vorne. Allein in den kommenden fünf Jahren werden im Land jedoch 170 Anlagen nach zwanzigjähriger Betriebszeit aus der EEG-Förderung herausfallen. Ob die Anlagen einen erneuten Förderzuschlag über zehn Jahre erhalten, ist jedoch ungewiss. „Bleibt es bei der Bundesförderung mit angezogener Bremse, stehen bei uns im Land viele Anlagen bald still“, warnt Willingmann. „So etwas halte ich gerade im ländlichen Raum für kaum vermittelbar und auch nicht für zumutbar.“ Dem Bund zufolge soll die installierte Leistung im Bereich Bioenergie in Deutschland von aktuell rund 10.500 Megawatt auf 8.400 Megawatt im Jahr 2030 sinken. Dementsprechend schreibt der Bund im Rahmen der EEG-Förderung weniger Leistung aus. Das zeigt etwa die erste Biomasse-Ausschreibung in diesem Jahr: 788 Gebote im Umfang von 742 Megawatt gingen ein. Davon waren nur 263 Gebote erfolgreich, das Ausschreibungsvolumen war bei 240 Megawatt gedeckelt. Ein Grund für die Förder-Zurückhaltung des Bundes besteht darin, dass Strom aus Biomasse mit etwa 18 Cent pro Kilowattstunde teurer war als Windstrom mit acht Cent und Solarstrom mit etwa vier Cent pro Kilowattstunde. Für Energieminister Willingmann wiegen die Vorteile von Biomasse jedoch schwerer. „Wir benötigen mehr regulierbare Energieträger. Die Bundesnetzagentur hat in ihrem Bericht zur Versorgungssicherheit schon im vergangenen Jahr erklärt, dass wir in Deutschland bis zum Jahr 2031 zusätzliche Kraftwerksleistung von bis zu 21 Gigawattstunden benötigen“ so Willingmann. „Der Bundeswirtschaftsminister agiert hier mit seiner Kraftwerksstrategie jedoch recht zögerlich. Erst 2025 wird überhaupt Kraftwerksleistung ausgeschrieben. Und bis 2028 sollen es lediglich 12 Gigawatt sein. Hier müssen wir entschlossener vorgehen und sollten die Biomasse als ergänzenden, sicheren und regelbaren Energieträger nicht außer Acht lassen.“ Willingmann bekräftigt Forderung nach Energiewendefonds Bei der Energieministerkonferenz wird Willingmann deshalb einen entsprechenden Antrag der Länder Sachsen und Schleswig-Holstein unterstützen. Dieser sieht Biogas als Baustein für das klimaneutrale Energiesystem der Zukunft. Der Energieminister wird in Brunsbüttel zudem eigene Anträge vorlegen. So bekräftig Willingmann seine Forderung nach einer auskömmlichen Finanzierung notwendigen Investitionen in Energie- und Wärmenetze und schlägt die Einführung eines Energiewendefonds vor. Mit Hilfe des Fonds soll die Eigenkapitalquote kommunaler und privater Energieunternehmen gestärkt werden, damit sie Zugriff auf privates Fremdkapital erhalten und entsprechende Investitionen finanziell stemmen können. Experten gehen von einem bundesweiten Investitionsbedarf von 1,4 Billionen Euro bis 2045 aus. Mit einem zweiten Antrag will der Energieminister den Hochlauf der klimaneutralen Wasserstoffwirtschaft weiter unterstützen. „Mit Blick auf den Ausbau der Infrastruktur haben wir die notwendigen Weichenstellungen bereits vorgenommen. Das Wasserstoffkernnetz wird jetzt nach und nach entstehen und Sachsen-Anhalt wird bestens erschlossen“, erklärte Willingmann. „Im Weiteren wird es aber nun darauf ankommen, Unternehmensinvestitionen für die Produktion und Nutzung von Wasserstoff weiter anzureizen.“ Der Energieminister hält eine konsequentere Förderung für die Umstellung industrieller Prozesse auf Wasserstoff durch den Bund für notwendig. Entwicklungshindernisse wie fehlende Zertifizierungssysteme für grünen Wasserstoff und Treibhausgas-Quotensysteme müssten zeitnah aus dem Weg geräumt werden, so Willingmann. Der Minister fordert darüber hinaus, dass Elektrolyseure über das Jahr 2029 hinaus von Stromnetzentgelten befreit bleiben sollten. „Gerade beim Hochlauf der Wasserstoffwirtschaft geht es jetzt um Planungs- und Finanzierungssicherheit für Investoren, Anbieter und Abnehmer. Dies gilt auch für Investitionen in die Errichtung leistungsfähiger Elektrolyseure bei uns im Lande“, so Willingmann. Länder beharren auf Handlungsspielräumen bei Akzeptanz- und Beteiligungsgesetzen Thema der Energieministerkonferenz wird zudem die finanzielle Beteiligung von Kommunen am Ausbau erneuerbarer Energien. Im Sommer hatte das Bundeswirtschaftsministerium den Ländern signalisiert, mit einer Änderung des Erneuerbare-Energien-Gesetzes (EEG) Vorgaben bei der finanziellen Beteiligung zu machen. Energieminister Willingmann hatte daraufhin im September zusammen mit mehreren Amtskolleginnen und -kollegen ein Schreiben an den Bundeswirtschaftsminister gerichtet, in dem die Länderminister eine Deckelung der Beteiligungen bei 0,3 Cent pro Kilowattstunde des erzeugten Stroms ablehnen. Die Forderung findet sich nunmehr auch in einer Beschlussvorlage wieder. „Die finanzielle Beteiligung von Kommunen am Ausbau der Erneuerbaren ist entscheidend, um langfristig hierfür die Akzeptanz zu sichern“, betonte Willingmann. „Der Bund ist hier gut beraten, Ländern und Kommunen entsprechende Handlungsspielräume zu lassen.“ Der Energieminister hatte im April dieses Jahres ein Akzeptanz- und Beteiligungsgesetz für Sachsenn-Anhalt vorgelegt. Dies befindet sich nunmehr im parlamentarischen Verfahren. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Threads, Bluesky, Mastodon und X (ehemals Twitter). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Treibhausgas-Emissionen in der Europäischen Union Die Europäische Union berichtet jährlich die Treibhausgas-Emissionen für die EU-27. Dazu werden die Emissionsdaten der Mitgliedstaaten konsolidiert und zusammengeführt, so dass ein konsistentes Gesamtinventar entsteht. Der Emissionstrend und die Verteilung auf die Kategorien folgen dabei weitestgehend denen der großen Industrieländer. Hauptverursacher 2022 verursachte die EU-27 insgesamt rund 3.375 Millionen Tonnen (Mio. t) Treibhausgase in Kohlendioxid (CO₂)-Äquivalenten (siehe Tab. „Treibhausgas-Emissionen der Europäischen Union“). Deutschland, Frankreich, Italien und Polen verursachten zusammen etwa 57 % davon. Deutschland allein steuerte bereits über 22 % bei. Pro-Kopf-Emissionen Bezieht man die Treibhausgas -Emissionen 2022 auf die jeweiligen Bevölkerungen, so liegen die verursachten Mengen zwischen Malta mit nur 4,3 Tonnen (t) CO 2 -Äquivalenten pro Kopf und Luxemburg mit 12,5 t Kohlendioxid-Äquivalenten pro Kopf. Frankreich und Italien liegen mit ca. 5,8 bzw. 7,0 t eher am unteren Ende, Polen mit 10,2 t und Deutschland mit 8,9 t Kohlendioxid-Äquivalenten pro Kopf hingegen im oberen Mittelfeld (siehe Abb. „Treibhausgas-Emissionen der Europäischen Union im Vergleich 2022 - Pro-Kopf-Emissionen“). Die Pro-Kopf Menge für die EU-27 insgesamt liegt bei 7,5 t. Emissionen in Relation zum Bruttoinlandsprodukt (BIP) Ein völlig anderes Bild ergibt sich, wenn man die Treibhausgas -Emissionen 2022 mit der Wirtschaftsleistung in Form des BIP ins Verhältnis setzt: dann liegen Bulgarien und Polen mit 1.051 t bzw. 670 t CO 2 -Äquivalenten pro Mio. EUR am oberen Ende und Deutschland (etwa 229 t CO 2 -Äquivalenten pro Mio. EUR), Italien (232 t CO 2 -Äquivalenten pro Mio. EUR) im guten Mittelfeld und Frankreich (166 t CO 2 -Äquivalenten pro Mio. EUR) etwas darunter. Die EU-27 als Ganzes liegt bei 245 t CO 2 -Äquivalenten pro Mio. EUR etwas höher, Spitzenreiter ist Schweden mit 85 t CO 2 -Äquivalenten pro Mio. EUR (siehe Abb. „Treibhausgas-Emissionen der Europäischen Union im Vergleich 2022 – Emissionen pro Einheit des Bruttoinlandsprodukts (BIP)“). Trends Zwischen 1990 und 2022 sanken die Emissionen der EU-27 um 1.492 Mio. t in CO₂-Äquivalenten (-31 %). An den Emissionen des Jahres 2022 hatte die Kategorie „Energie“ einen Anteil von 77 %. Seit 1990 sind die Emissionen in dieser Kategorie um 30 % zurückgegangen. Die Landwirtschaft machte knapp 11 % der Treibhausgas -Emissionen aus. Ihr Ausstoß verringerte sich von 1990 - 2022 um 24 %. Die Emissionen der Industrieprozesse hatten 2022 einen Anteil von knapp 9 % an den Treibhausgas-Emissionen. Diese sind seit 1990 um mehr als 35 % gesunken. Die Emissionen aus der Abfallwirtschaft, welche 3,3 % der Gesamtemissionen ausmachen, nahmen im gleichen Zeitraum um rund 41 % ab (siehe Tab. „Treibhausgas-Emissionen der EU-27 nach Kategorien“). Gase Die CO₂-Emissionen dominieren mit einem Anteil von 80,6 % die Treibhausgas -Emissionen der EU-27. Die Emissionen von Methan (CH 4 ) und Lachgas (N₂O) liegen mit einem Anteil von 12,1 % bzw. 5,3 % deutlich niedriger. Die Emissionen der Gruppe der „F-Gase“ machten als Summe zwar nur etwa 2,0 % der Gesamtemissionen des Jahres 2022 aus, nahmen aber seit 1990 um 36 % zu, was am starken Anstieg der Emissionen von Fluorkohlenwasserstoffen (H-FKW) liegt.
Stickstoffdioxid (NO 2 ) Partikel (PM 10 ) Partikel (PM 2,5 ) Ozon (O 3 ) Meteorologie Die vorliegende Übersicht informiert über die Belastung durch die wichtigsten Luftschadstoffe und dient zur ersten Einordnung der Luftschadstoffbelastung in Berlin im Jahr 2023. Eine vollständige Auswertung für alle Luftschadstoffe erfolgt in den Jahresberichten des Berliner Luftgütemessnetzes: Luftdaten-Archiv: Berichte und ergänzende Daten Im Jahr 2023 wurde die Luftqualität gemäß 39. Bundes-Immissionsschutzverordnung (39. BImSchV) an 47 Standorten gemessen, darunter 17 Messcontainer. Sieben dieser 17 Messcontainer sind verkehrsnah und jeweils fünf in innerstädtischen Wohngebieten und am Stadtrand platziert. An den übrigen Standorten werden vereinfachte Verfahren wie Kleinstsammler oder Passivsammler eingesetzt. Links Alle Informationen zu den Messstationen und die Messwerte Stündliche aktualisierte Messergebnisse der automatischen Stationen des BLUME und ein aktueller Luftqualitätsindex Weitere Informationen zu den Grenz- und Zielwerten für die Beurteilung der Luftqualität Mehr Informationen zu den relevanten Schadstoffquellen Der lokale Dieselverkehr ist der Hauptverursacher für die Stickstoffdioxidbelastung in Berlin. Die im Jahr 2023 vom Berliner Luftgütemessnetz ermittelten NO 2 -Jahresmittelwerte sind in der Abbildung 1 dargestellt. Unterschieden wird hier zwischen automatischen Messgeräten in Messcontainern und Passivsammlern. Die Jahresmittelwerte werden für eine bessere Übersicht in Abbildung 2 als Balkendiagramm nach aufsteigender NO 2 -Belastung sortiert dargestellt. Die Passivsammler, die für die Beurteilung der Luftqualität an die EU gemeldet werden, sind in der Abbildung mit einem Stern (*) gekennzeichnet. Für das Jahr 2023 lassen sich die NO 2 -Jahresmittelwerte in Berlin wie folgt zusammenfassen: am Stadtrand: 7 bis 9 µg/m³ im städtischen Hintergrund: 12 bis 18 µg/m³ an den kontinuierlich messenden verkehrsnahen Stationen: 20 bis 32 µg/m³ beurteilungsrelevante Passivsammler an Straßen: 23 bis 38 µg/m³ Damit traten die höchsten Konzentrationen an den Straßenmessstellen auf. In den Wohngebieten der Innenstadt fällt die Konzentration etwa auf die Hälfte ab. Am Stadtrand beträgt sie nur noch circa ein Viertel der Belastung, die an den innerstädtischen Hauptverkehrsstraßen gemessen wird. Der Grenzwert für NO 2 von 40 µg/m³ (für den Jahresmittelwert) wurde 2023 an allen Messpunkten, die beurteilungsrelevant sind, eingehalten. Zusätzlich zur langfristigen Belastung mit NO 2 wird auch die kurzfristige Spitzenbelastung beurteilt. Hierfür gilt ein Immissionsgrenzwert für das 1-Stundenmittel von 200 µg/m³, wobei 18 Überschreitungen pro Kalenderjahr zulässig sind. In 2023 wurde dieser Wert an keiner Stunde und an keiner Messstation ermittelt. Im Vergleich zum Vorjahr 2022 gab es stadtweit einen leichten Rückgang der Stickstoffdioxidkonzentration. Der flächendeckende Konzentrationsrückgang weist darauf hin, dass dieser durch eine meteorologisch günstige Situation zustande gekommen ist. Auch die Flotte der Dieselfahrzeuge wird von Jahr zu Jahr sauberer, da immer mehr Fahrzeuge den strengsten Abgasstandard Euro 6d erfüllen. Zudem wurden zunehmend Doppeldeckerbusse der BVG außer Betrieb genommen, die erhöhte Stickoxidemissionen verursachen. Zwei Messstandorte gilt es 2023 differenziert zu betrachten: Der Standort Friedrichstraße 172 (MS 562) befand sich bis Juli 2023 innerhalb eines verkehrsberuhigten Bereichs, der anschließend wieder für den Verkehr geöffnet wurde. Dies erklärt den geringen Jahresmittelwert von 18 µg/m³, der somit nicht repräsentativ für eine Straßenmessstelle ist. Der Standort Schildhornstraße 76 (MC117) erfasst unter anderem die Verkehrsemissionen am Ausläufer der A100. Durch die Sperrung des Schlangenbader Tunnels seit April 2023 verteilte sich der Nord-Süd-Verkehr über die angrenzenden Wohngebiete um den Breitenbachplatz. Die Verkehrsbelastung und damit auch der Schadstoffausstoß waren somit am Standort des Messcontainers in der zweiten Jahreshälfte deutlich geringer. Dadurch sank der Jahresmittelwert gegenüber dem Vorjahr um 8 µg/m³. Im August 2022 konnten die letzten vier Streckenabschnitte mit Dieselfahrverboten aufgehoben werden. An allen Streckenabschnitten konnte 2023 kein Anstieg der Stickstoffdioxidkonzentration beobachtet werden: Bei der Beurteilung der PM 10 -Belastung wird europaweit die Konzentration der gesundheitlich besonders bedenklichen Partikel mit einem aerodynamischen Durchmesser kleiner als 10 Mikrometer (PM 10 ) betrachtet. Diese Partikel haben sowohl vom Menschen beeinflusste als auch natürliche Quellen. Zu letzteren gehören Bodenerosion, Meeresgischt, Waldbrände und Saharastaub sowie biogene Partikel wie Pollen, Viren, Bakterien- und Pilzsporen sowie Pflanzenreste. Primäre Partikel, die direkt aus Quellen wie Verbrennungsprozessen, z.B. Dieselruß, stammen, werden von sekundären Partikeln unterschieden, die sich in der Atmosphäre aus Schadgasen wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen bilden. Die Bildung sekundärer Partikel muss besonders bei großräumigen Transporten von Luftschadstoffen in der Atmosphäre berücksichtigt werden. Bedeutende PM 10 -Quellen sind Verkehr, Kraft- und Fernheizwerke, Kaminöfen, Heizungen in Wohnhäusern, Baustellen, Schüttgutumschlag und verschiedene industrielle Prozesse. An verkehrsnahen Stationen treten in der Regel höhere Werte auf als im städtischen Hintergrund, insbesondere an Tagen bei Wetterlagen mit schlechten Austauschbedingungen. Hier tragen die noch nicht geminderten Emissionen aus dem Abrieb von Reifen und Bremsen sowie aus der Aufwirbelung von Partikeln von der Straßenoberfläche zu erhöhten Tagesmittelwerten bei. Zu lokalen Konzentrationsspitzen tragen zudem auch Baustellen bei. Hingegen verursacht Dieselruß nur noch etwa 4 % der PM 10 -Belastung an einer Straße. Partikel PM 10 können je nach Wetterlage über hunderte bis tausende Kilometer transportiert werden. Etwa 62 % der PM 10 -Belastung an verkehrsnahen Messpunkten in der Berliner Innenstadt stammt aus Quellen außerhalb Berlins. Seit 2005 liegt der Grenzwert für das PM 10 -Jahresmittel zum Schutz der menschlichen Gesundheit bei 40 µg/m³ und der Tagesgrenzwert bei 50 µg/m³. Letzterer darf pro Kalenderjahr maximal an 35 Tagen überschritten werden. Die Jahresmittel für die einzelnen Stationen sind in Abbildung 3 abgebildet. Für das Jahr 2023 lassen sich die PM 10 -Jahresmittelwerte in Berlin wie folgt zusammenfassen: am Stadtrand: 12 bis 15 µg/m³ im städtischen Hintergrund: 15 bis 17 µg/m³ verkehrsnah an Hauptverkehrsstraßen: 17 bis 19 µg/m³ Problematischer als der Jahresgrenzwert war stets die Einhaltung des Grenzwertes für das Tagesmittel. Tabelle 2 fasst die Zahl der Überschreitungen des Kurzzeitgrenzwertes im Jahr 2023 zusammen. Der Tagesgrenzwert für PM 10 von 50 µg/m³ als Tagesmittel wurde im Jahr 2023 an verkehrsnahen Messstationen lediglich an ein bis vier Tagen überschritten. Der höchste Tagesmittelwert von 69 µg/m³ trat wie im Vorjahr an der Silbersteinstraße auf – am Neujahrstag durch das Silvesterfeuerwerk. In Wohngebieten im städtischen Hintergrund wurde eine Überschreitung gezählt. Hier war die Ursache eine nahegelegene Baustelle. Am Stadtrand lagen wie schon 2022 alle Tagesmittelwerte unter 50 µg/m³. Somit ist weiterhin ein rückläufiger Trend erkennbar. Die jährlichen Schwankungen sind jedoch bei den Überschreitungstagen sehr viel ausgeprägter als beim Jahresmittelwert. Die Anzahl der Überschreitungen des Grenzwertes für das Tagesmittel sind noch viel stärker von meteorologischen Bedingungen und der Häufigkeit von austauscharmen Hochdruckwetterlagen mit südlichen bis östlichen Winden abhängig, als die Mittelwerte für die einzelnen Kalenderjahre. 2023 war ein meteorologisches günstiges Jahr mit wenigen Hochdruckwetterlagen und vermehrt westlichen bis südwestlichen Winden. Damit kann die geringe Anzahl an Überschreitungen erklärt werden. Eine Teilmenge des PM 10 sind die feineren Partikel PM 2,5 , deren aerodynamischer Durchmesser kleiner als 2,5 Mikrometer ist. In Berlin bestehen im Mittel ca. 60 bis 70 % der PM 10 -Fraktion aus den kleineren PM 2,5 -Partikeln. Die wichtigsten Quellen dieser kleinen Partikel sind Verbrennungsprozesse und die Bildung von Sekundärpartikeln aus Gasen. Die Jahresmittel für die einzelnen Stationen sind in Abbildung 4 abgebildet. Für das Jahr 2023 lassen sich die PM 2,5 -Jahresmittelwerte in Berlin wie folgt zusammenfassen: am Stadtrand: 8 bis 9 µg/m³ im städtischen Hintergrund: 10 µg/m³ verkehrsnah an Hauptverkehrsstraßen: 11 bis 12 µg/m³ Der seit 2015 gültige Grenzwert für den Schutz der menschlichen Gesundheit von 25 µg/m³ im Jahresmittel wurde an allen Messstationen eingehalten. Gegenüber 2022 konnte berlinweit ein leichter Rückgang der PM 2,5 -Konzentration festgestellt werden. Grund dafür ist womöglich die günstigere meteorologische Situation im Jahr 2023. Bodennahes Ozon ist ein Schadstoff, der nicht direkt freigesetzt, sondern in der Atmosphäre bei intensiver Sonneneinstrahlung über photochemische Prozesse aus Stickstoffdioxid gebildet wird. Dabei entsteht ein Gleichgewicht zwischen Auf- und Abbau, da das dabei entstehende Stickstoffmonoxid wiederum Ozon abbaut. Der Kreislauf wird jedoch durch einige Stoffe gestört und das vorherrschende Gleichgewicht verschiebt sich zur verstärkten Ozonbildung. Zu den wichtigen Störstoffen gehören flüchtige organische Verbindungen (VOC), Kohlenstoffmonoxid (CO) und Kohlenwasserstoffe wie Methan. Diese sogenannten Ozonvorläufersubstanzen stammen sowohl aus menschengemachten, als auch aus natürlichen Quellen. In Berlin wird bodennahes Ozon seit Jahren an zwei städtischen und fünf regionalen Hintergrundstationen am Stadtrand gemessen. Am Stadtrand treten tendenziell die höchsten Konzentrationen auf, da dort der Abbau von Ozon durch geringe Stickstoffmonoxid-Konzentrationen eingeschränkt ist. Im Jahr 2019 wurde das Ozon-Monitoring um die Messstelle in der Frankfurter Alle (MC174) erweitert, da sich ein steigender Trend in der mittleren Belastung angedeutet hat. JM: Jahresmittel MAX_8h: Maximaler 8-Stunden-Mittelwert N120_8h: Anzahl an Tagen, an denen Max_8h den Zielwert von 120 µg/m³ überschritten hat N120_3J: Anzahl an Tagen, an denen N120_8h über die letzten 3 Kalenderjahre den Zielwert von 120 µg/m³ überschritten hat. N180: Anzahl der 1-Stunden-Mittel in denen die Informationsschwelle von 180 µg/m³ überschritten wurde Zum Schutz der menschlichen Gesundheit gibt es eine Reihe von Kennwerten. Diese sind in Tabelle 3 für das Jahr 2023 aufgeführt. Zunächst aufgeführt ist das Jahresmittel (JM). Einen Grenzwert gibt es hierfür nicht. Auffällig ist, dass alle Werte nahe bei einander liegen, was auf eine gleichmäßige Verteilung der Ozonbelastung hindeutet. Der europaweite Zielwert zum Gesundheitsschutz ist der Mittelwert über 8 Stunden bei einer Konzentrationsschwelle von 120 µg/m³ (N120_8h) mit einer zulässigen Anzahl von Überschreitungen an 25 Tagen im 3-Jahresmittel (N120_3J). Der Wert wird über 3 Jahre gemittelt, um den starken Einfluss der Witterung auf die Ozon-Konzentration zu berücksichtigen. Der höchste 8-Stunden-Mittelwert wurde 2023 in Friedrichshagen mit 142 mg/m³ gemessen. Hier wurden auch die meisten Überschreitungen verzeichnet. Der europaweite Zielwert wurde im Jahr 2023 dennoch an allen Messstationen eingehalten. Zusätzlich zum Zielwert gibt es eine Alarmschwelle, bei dessen Überschreitung bereits bei kurzzeitiger Exposition eine Gefahr für die menschliche Gesundheit besteht. Für Ozon wird ab einer Konzentration von 180 µg/m³ die Öffentlichkeit informiert und ozonempfindlichen Personen wird empfohlen, lang andauernde und körperlich anstrengende Tätigkeiten im Freien zu vermeiden. Zu einer Überschreitung der Informationsschwelle von 180 µg/m³ kam es im Kalenderjahr 2023 nicht. AOT40: Summe der Ozon-Werte, die über 80 µg/m³ (40 ppb) liegen, addiert über die Monate Mai bis Juli zwischen 8:00 Uhr und 20:00 Uhr (Langfristiges Ziel zum Schutz der Vegetation: 6.000 µg/m³ h) AOT40_5: AOT40 gemittelt über die letzten 5 Kalenderjahre (Zielwert zum Schutz der Vegetation ab 2010: 18.000 µg/m³ h) *: nicht genug Messwerte Ähnlich wie für den Schutz der menschlichen Gesundheit wird ein Indikator für die Schädigung der allgemeinen Vegetation in Form des Summenparameters AOT40 (Accumulated Ozone Exposure over a threshold of 40 ppb) verwendet. Dieser ist in Tabelle 4 aufgelistet. Der AOT40 wird aus der kumulierten Differenz zwischen einem Stundenwerten über 40 ppb und dem Schwellenwert von 40 ppb (das entspricht ca. 80 µg/m³) in Bodennähe ermittelt. Dabei wird nur der Zeitraum innerhalb der Vegetationsperiode, d.h. von Mai bis Juli, zwischen 8 und 20 Uhr (MEZ) berücksichtigt. Zu dieser Zeit gelten Pflanzen als besonders ozonempfindlich. Seit 2010 ist ein Zielwert (AOT40_5) von 18.000 µg/m³ h, gemittelt über 5 Jahre, soweit wie möglich einzuhalten. Als langfristiges Ziel ist ein Jahreswert von 6.000 µg/m³ h festgelegt, allerdings ohne Angabe, bis wann dieser Wert eingehalten werden soll. Der AOT40, die Summe über Mai bis Juli, lag im Kalenderjahr 2023 bei einem Maximalwert von 16.543 µg/m³ h. Der AOT40_5-Wert, also der ATO40-Wert gemittelt über 5 Jahre, lag zwischen 7.836 und 15.502 µg/m³ h und blieb damit auch an der höchst belasteten Messstation in Friedrichshagen (MC085) unter dem seit 2010 geltenden Zielwert zum Schutz der Vegetation von 18.000 µg/m³ h. Dahingegen wird das langfristige Ziel von 6.000 µg/m³h deutlich überschritten. Das Wetter hat einen erheblichen Einfluss auf die Luftqualität und trägt zu Schwankungen der Jahresmittelwerte und der Kurzzeitwerte von Jahr zu Jahr bei. Dabei werden sowohl der Ausstoß von Schadstoffen als auch deren Transport, Umwandlung und Ausscheidung aus der Atmosphäre beeinflusst.
Radon in Baumaterialien In jedem Baumaterial aus natürlichem Gestein ist – abhängig von seiner geologischen Herkunft - ein natürlicher Anteil an Uran und Radium enthalten. Zerfallen Uran und Radium, entstehen Radon und seine Folgeprodukte und werden aus dem Baumaterial ins Gebäude freigesetzt. Messungen des BfS belegen, dass Baustoffe wenig zur Radon -Konzentration von Aufenthaltsräumen beitragen - üblicherweise wenige Becquerel pro Kubikmeter, meist deutlich unterhalb von 20 Becquerel pro Kubikmeter. Baumaterial In jedem Baumaterial aus mineralischen Rohstoffen oder natürlichem Gestein ist – abhängig von seiner geologischen Herkunft - ein natürlicher Anteil an Uran und Radium enthalten. Zerfallen Uran und Radium, entstehen Radon und seine Folgeprodukte und werden aus dem Baumaterial ins Gebäude freigesetzt. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs . Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Baumaterialien setzen eher wenig Radon frei Das BfS hat marktübliche Baumaterialien wie Beton, Ziegel, Porenbeton und Kalksandstein untersucht und auch die Freisetzung (Exhalation) von Radon daraus gemessen. Der baustoffbedingte Anteil liegt üblicherweise bei wenigen Becquerel pro Kubikmeter, meist deutlich unterhalb von 20 Becquerel pro Kubikmeter. Damit sind Baumaterialien im Allgemeinen nicht die Ursache für erhöhte Radon-Konzentrationen in Innenräumen von Gebäuden. Wieviel Radon aus Baumaterial austritt, hängt auch von der Beschaffenheit des Materials ab: Werden zum Beispiel Ziegel bei hohen Temperaturen gebrannt, verschließen sich die Poren im Baumaterial. So kann anschließend nur wenig Radon austreten. Bei ungebranntem Material wie zum Beispiel Lehmputz ist damit zu rechnen, dass mehr Radon austritt. Gesetzliche Regelungen Gesetzliche Regelungen zur expliziten Begrenzung der Radonfreisetzung aus Baumaterialien existieren nicht. Der Beitrag des Radons aus Baumaterialien soll jedoch nicht wesentlich zur Überschreitung der für Radon geltenden Referenzwerte beitragen. Radioaktivitätsgehalt von Baumaterial wird seit 1. Januar 2019 begrenzt Baumaterialien wie zum Beispiel Betonziegel bestehen üblicherweise aus Zuschlagsstoffen wie Sand, Kies, Ton, Kalk, Zement oder ähnlichem. Werden als Zuschlagstoffe Rückstände aus industriellen Prozessen wie zum Beispiel Schlacken aus der Metallverhüttung oder Schlämme aus der Wasseraufbereitung verwendet, die mehr Uran und Radium enthalten, kann sich die Menge des Radons, die aus dem Baumaterial ins Gebäude gelangt, erhöhen. Das Strahlenschutzgesetz sieht in den Paragraphen 133-135 vor, dass seit 1. Januar 2019 der Radioaktivitätsgehalt aller Baustoffe begrenzt wird, die beim Bau von Aufenthaltsräumen verwendet werden. Seit 2001 hatte die Strahlenschutzverordnung bereits einen maximalen prozentualen Anteil von Rückständen aus industriellen Prozessen in Baumaterialien vorgegeben. Seit 2019 umfasst die Prüfung des Radioaktivitätsgehalts auch natürliche mineralische Rohstoffe, die erhöhte Uran- und Radiumgehalte aufweisen können. Dadurch wird auch radioaktives Radon, das beim Zerfall von Uran und Radium aus Baumaterial freigesetzt werden kann, beschränkt. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen
Origin | Count |
---|---|
Bund | 1394 |
Land | 38 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 1306 |
Gesetzestext | 1 |
Text | 83 |
Umweltprüfung | 2 |
unbekannt | 37 |
License | Count |
---|---|
geschlossen | 118 |
offen | 1309 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 1360 |
Englisch | 158 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 2 |
Datei | 14 |
Dokument | 52 |
Keine | 722 |
Webdienst | 1 |
Webseite | 681 |
Topic | Count |
---|---|
Boden | 959 |
Lebewesen & Lebensräume | 762 |
Luft | 719 |
Mensch & Umwelt | 1430 |
Wasser | 561 |
Weitere | 1403 |