Grundwasser Die größten Süßwasservorkommen weltweit liegen im Untergrund. Diese Grundwasservorkommen sind in vielen Regionen die wichtigste Quelle für die Wasserversorgung. Der Zustand des Grundwassers ist deshalb systematisch zu überwachen und der Eintrag von Schadstoffen so weit wie möglich zu verhindern. Bedeutung und Gefährdung des Grundwassers Grundwasser ist Teil des Wasserkreislaufs. Es stammt ganz überwiegend aus Regenwasser, das durch den Boden und den Untergrund bis in die Grundwasserleiter sickert. Oberflächennahe Grundwasservorkommen versorgen Pflanzen mit Wasser und bilden wertvolle Feuchtbiotope. Das Grundwasser tritt in Quellen zu Tage und speist Bäche und Flüsse. Gerade in den regenarmen Zeiten des Jahres stammt ein großer Teil des Wassers in unseren Flüssen aus dem Grundwasser. Qualität und Menge des Grundwassers beeinflussen damit auch die Oberflächengewässer. Rund 70 Prozent des Trinkwassers stammen aus Grundwasser, das damit die wichtigste Trinkwasserressource Deutschlands ist. Der Klimawandel ist die zentrale Herausforderung für die Wasserwirtschaft heute und in Zukunft. Wasserverfügbarkeit für alle und jeden Zweck ist keine Selbstverständlichkeit mehr. Auch der Grundwasserstand unterliegt Schwankungen - je nach geologischen Verhältnissen, Nutzungsintensität und klimatischer Situation. Während der Trockenjahre 2018-2020 und 2022 ist der Grundwasserstand in vielen Regionen Deutschlands deutlich gesunken. Der Druck auf die Ressource Grundwasser wird in Zukunft weiter steigen, insbesondere wenn die landwirtschaftliche Bewässerung zunimmt und wasserintensive industrielle Nutzungen hinzukommen. Grundwasser galt in der Vergangenheit im Vergleich zu oberirdischen Gewässern als gut geschützt gegenüber anthropogenen Verunreinigungen. Doch Reinigungs- und Rückhaltevermögen der überlagernden Bodenschichten wurden überschätzt. Die systematische Überwachung der Grundwasserbeschaffenheit durch die Bundesländer hat gezeigt, dass der gute Zustand unseres Grundwassers vielerorts gefährdet ist. Es sind vor allem die diffusen Einträge von Stickstoff und Pestiziden aus der Landwirtschaft, die das Grundwasser belasten. Weitere Ursache für Verunreinigungen sind diffuse Einträge aus Industrie und Verkehr sowie aus punktuellen Quellen oder linienförmigen Belastungen wie zum Beispiel Altstandorte, Altablagerungen, Unfällen mit wassergefährdenden Stoffen oder undichten Abwasserkanälen. Eine Sanierung des Grundwassers ist, wenn überhaupt, nur mit großem finanziellen und technischen Aufwand und in langen Zeiträumen möglich. Die konsequente Anwendung des Vorsorgeprinzips ist deshalb von ganz besonderer Bedeutung. Dazu gehört auch eine systematische, regelmäßige Überwachung des Grundwassers, für die in Deutschland die Länder zuständig sind. Dadurch lassen sich Gefährdungen des Grundwassers frühzeitig erkennen und geeignete Maßnahmen können rechtzeitig ergriffen werden. Aufgrund seiner herausragenden Bedeutung für die Trinkwasserversorgung und wichtigen ökologischen Funktionen ist ein flächendeckender Grundwasserschutz, wie im Wasserhaushaltsgesetz verankert, erforderlich. Eine Gesamtübersicht über den Zustand des Grundwassers in Deutschland und seine Belastungen infolge menschlicher Nutzungen sowie Maßnahmen zum Schutz des Grundwassers finden Sie in der Broschüre „ Grundwasser in Deutschland ”. Eine Übersicht über die weltweite Grundwassersituation finden Sie (auf Englisch, Französisch und Italienisch) im Bericht der Vereinten Nationen: „ The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible “.
Definition des Bodens Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte sowie aus mineralischen und organischen Substanzen bestehende Verwitterungsschicht des obersten Teils der Erdkruste, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna. In Abhängigkeit von den jeweiligen Standortverhältnissen und Bodenbildungszeiträumen entwickeln sich unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Böden sind nicht nur Produktionsgrundlage für Nahrungs- und Futtermittel, nachwachsende Rohstoffe und Rohstoffquelle. Sie besitzen auch eine herausragende Bedeutung im Naturhaushalt aufgrund ihrer vielfältigen Funktionen und sind eine bedeutende natürliche Ressource. Böden sind: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft sowie Archiv für Natur- und Kulturgeschichte. Böden werden aber auch durch menschliche Aktivitäten (z.B. in der Landwirtschaft oder bei der Errichtung von Bauwerken) umgelagert, verändert, versiegelt und zerstört. Böden stellen somit ein begrenztes und nicht erneuerbares Schutzgut dar, mit dem verantwortungsvoll umgegangen werden muss. Bodenbildung Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tab. 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit können sich unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausbilden. Der durch bodenbildende Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile: mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile: Bodenwasser mit gelösten Nährstoffen und andere Elemente gasförmige Bestandteile: Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid) Systematik der Böden Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende bodensystematische Abteilungen unterschieden: Terrestrische Böden (Landböden), Semiterrestrische Böden (halbhydromorphe Böden), Hydromorphe Böden (Grundwasserböden), Subhydrische Böden (Unterwasserböden) sowie Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Die Bodenkundliche Kartieranleitung (1982, 1994, 2005 und 2024; = KA3, KA4, KA5, KA6) enthält eine ausführliche Beschreibung der Bodensystematik. Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z. T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch eine Akkumulation organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizonts. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z.B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizonts erfolgt analog dem A-Horizont (z.B. Bv – v steht für verwittert, verbraunt, verlehmt, Bt – t steht für tonangereichert). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere übereinanderliegende A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluss des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen und semiterrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerde-Gley 40 – 80 cm – Gley-Braunerde 80 – 130 cm – vergleyte Braunerde. Anthropogene Veränderung des Bodens Der Grad der anthropogenen Veränderung des Bodens nimmt mit fortschreitender Technisierung sowie wachsender flächenhafter Inanspruchnahme zu. Heutzutage gibt es kaum noch unberührte und in ihrem Horizontaufbau anthropogen unbeeinflusste Böden. Wo die Horizontabfolge der Böden trotz Nutzungsüberprägung durch den Menschen weitgehend erhalten blieb, wie zumeist bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich aufgrund des fließenden Übergangs anthropogener Überprägung als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 bis 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z. T. in kleinräumigem Wechsel mit stark anthropogen veränderten Böden erhalten bleiben. Ohne entsprechende Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflusste Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden in der Jungmoränenlandschaft des Berliner Raumes ist das Holozän, das vor rd. 12.000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildende Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestands des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. Die Intensität der Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche nimmt immer weiter zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden der Stadtrandbereiche wurden durch Bauvorhaben umgelagert, durchmischt, großflächig versiegelt und zerstört. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr schädigen die Böden irreparabel. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern und filtern. Wird seine Speicher- und Filterkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des Flächenverbrauches, u. a. durch Versiegelung (quantitative Gefährdung), sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Bodenschutz Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 1980er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens mit Inkrafttreten des Bundesbodenschutzgesetzes im Jahre 1998. Dieses Gesetz wurde 2004 durch ein Berliner Landesgesetz ergänzt. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für einen wirksamen Bodenschutz sind Kenntnisse über den räumlichen Zustand der Böden sowie seine quantitative und qualitative Beeinträchtigung. In Berlin werden z. T. seit Jahrzehnten Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Bodenbelastungskataster wurde aufgebaut und eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen und die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen.
The Tailings Management Facility (TMF) Safety Methodology is mainly based on the requirements and principles declared in “Safety guidelines and good practices for tailings management facilities” endorsed by the Conference of the Parties to the UNECE Convention on the Transboundary Effects of Industrial Accidents as well as other comparable international TMF standards. The TMF Safety Methodology is a powerful tool for the process of harmonizing technical standards for the entire life cycle of TMFs throughout the UNECE region. The Tailings Management Facility Safety Methodology, which consists of a Checklist for verifying the actual safety situation of tailings management facilities and the Tailings Management Facility Hazard and Risk Indexes (THI or TRI) for assessment of TMFs on regional, national and international basis. Veröffentlicht in Texte | 114/2023.
The Tailings Management Facility Safety Methodology (hereinafter TMF Safety Methodology) is mainly based on the requirements and principles declared in "Safety guidelines and good practices for tailings management facilities" endorsed by the Conference of the Parties to the UNECE Convention on the Transboundary Effects of Industrial Accidents as well as other comparable international TMF standards. The TMF Safety Methodology is a powerful tool for the process of harmonizing technical standards for the entire life cycle of TMFs throughout the UNECE region. The Tailings Management Facility Safety Methodology, which consists of a Checklist for verifying the actual safety situation of tailings management facilities and the Tailings Management Facility Hazard and Risk Indexes (THI or TRI) for assessment of TMFs on regional, national and international basis. Based on a strategy of the German Federal Environment Agency (UBA) the TMF Safety Methodology was developed since 2013 within the following projects - "Improving the safety of industrial tailings management facilities based on the example of Ukrainian facilities" (2013-2015), Report No. (UBA-FB) 002317/ENG, ANH2 - "Raising Knowledge among Students and Teachers on Tailings Safety and its Legislative Review in Ukraine" (2016-2017) on the results of trainings conducted at National Mining University (Dnipro, Ukraine). Report No. (UBA-FB) 002638/E. - "Assistance in safety improvement of tailings management facilities (TMF) in Armenia and Georgia" (Project No. 83392), according a follow up activity at TMFs in Armenia and Georgia the Methodology has been improved in 2018-2019. - "Capacity development to improve safety conditions of tailings management facilities in the Danube River Basin â€Ì Phase I: North-Eastern Danube countries " (Project No. 118221) 2019- 2020. - Improving the safety of tailings management facilities in Kyrgyzstan (Project No. 154973) 2021-2022. Quelle: Forschungsbericht
The Tailings Management Facility Safety Methodology (hereinafter TMF Safety Methodology) is mainly based on the requirements and principles declared in "Safety guidelines and good practices for tailings management facilities" endorsed by the Conference of the Parties to the UNECE Convention on the Transboundary Effects of Industrial Accidents as well as other comparable international TMF standards. The TMF Safety Methodology is a powerful tool for the process of harmonizing technical standards for the entire life cycle of TMFs throughout the UNECE region. The Tailings Management Facility Safety Methodology, which consists of a Checklist for verifying the actual safety situation of tailings management facilities and the Tailings Management Facility Hazard and Risk Indexes (THI or TRI) for assessment of TMFs on regional, national and international basis. Based on a strategy of the German Federal Environment Agency (UBA) the TMF Safety Methodology was developed since 2013 within the following projects - "Improving the safety of industrial tailings management facilities based on the example of Ukrainian facilities" (2013-2015), Report No. (UBA-FB) 002317/ENG, ANH2 - "Raising Knowledge among Students and Teachers on Tailings Safety and its Legislative Review in Ukraine" (2016-2017) on the results of trainings conducted at National Mining University (Dnipro, Ukraine). Report No. (UBA-FB) 002638/E. - "Assistance in safety improvement of tailings management facilities (TMF) in Armenia and Georgia" (Project No. 83392), according a follow up activity at TMFs in Armenia and Georgia the Methodology has been improved in 2018-2019. - "Capacity development to improve safety conditions of tailings management facilities in the Danube River Basin â€Ì Phase I: North-Eastern Danube countries " (Project No. 118221) 2019- 2020. - Improving the safety of tailings management facilities in Kyrgyzstan (Project No. 154973) 2021-2022. Quelle: Forschungsbericht
Bodenentwicklung Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte Verwitterungsschicht aus mineralischen und organischen Substanzen, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna, wobei sich in Abhängigkeit von den jeweiligen Standortverhältnissen unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften entwickeln. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Er wird als Produktionsgrundlage für die Land- und Forstwirtschaft genutzt, aber auch durch menschliche Aktivitäten (z.B. bei der Erstellung von Bauwerken) umgelagert, verändert und zerstört. Er bildet mit folgenden Funktionen eine bedeutende natürliche Ressource: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft und Archiv für Natur- und Kulturgeschichte. Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tabelle 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit wurden unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausgebildet. Der durch bodenbildene Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile Bodenwasser mit gelösten Nährstoffen und anderen Elementen gasförmige Bestandteile Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid). Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende Abteilungen unterschieden: Terrestrische Böden (Landböden) Semiterrestrische Böden (halbhydromorphe Böden) Hydromorphe Böden (Grundwasserböden) Subhydrische Böden (Unterwasserböden) Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Eine ausführliche Beschreibung der Bodensystematik enthält die Bodenkundliche Kartieranleitung (1982 und 1994). Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z.T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch Akkumulation von organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizontes. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z.B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizontes erfolgt analog dem A-Horizont (z.B. Bv – v steht für Verbraunung, Bt – t steht für Toneinwaschung). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluss des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerdegley 40 – 80 cm – Gleybraunerde 80 – 130 cm – vergleyte Braunerde. Der Grad der anthropogenen Veränderung des Bodens nahm mit fortschreitender Technisierung sowie wachsender flächenmäßiger Inanspruchnahme zu. Heute gibt es kaum noch unberührte und in ihrem Horizontaufbau unveränderte Böden. Wo die Horizontabfolge der Böden trotz Nutzung durch den Menschen weitgehend erhalten blieb, wie bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 – 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z.T. in kleinräumigem Wechsel mit anthropogen veränderten Böden erhalten bleiben. Ohne Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflußte Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden im Berliner Raum ist das Holozän, das vor ca. 10 000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildene Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestandes des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. In den letzten Jahren nahm die Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche stark zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden wurden durch Bauvorhaben am Stadtrand umgelagert, durchmischt und großflächig versiegelt. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr beeinträchtigen die Böden. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern. Wird seine Speicherkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des “Flächenverbrauches” und der Versiegelung (quantitative Gefährdung) sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 80er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens erst 1995 im Berliner Bodenschutzgesetz, ein Bundesbodenschutzgesetz liegt im Entwurf vor. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für wirksamen Bodenschutz sind Kenntnisse über den Zustand der Böden sowie ihre quantitative und qualitative Beeinträchtigung. In Berlin werden seit Jahren Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Altlastenkataster und ein Schwermetallkataster wurden aufgebaut sowie eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen sowie die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen. Hierzu gehören z.B. das Puffervermögen für Schadstoffe und die Grundwasserneubildung.
Definition des Bodens Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte sowie aus mineralischen und organischen Substanzen bestehende Verwitterungsschicht des obersten Teils der Erdkruste, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna, wobei sich in Abhängigkeit von den jeweiligen Standortverhältnissen und Bodenbildungszeiträumen unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften entwickeln. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Böden sind nicht nur Produktionsgrundlage für Nahrungs- und Futtermittel, nachwachsende Rohstoffe und selbst Rohstoffquelle, sondern haben bezüglich ihrer vielfältigen Funktionen eine herausragende Bedeutung im Naturhaushalt und sind eine bedeutende natürliche Ressource. Böden sind: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft sowie Archiv für Natur- und Kulturgeschichte. Böden werden aber auch durch menschliche Aktivitäten (z.B. in der Landwirtschaft oder bei der Erstellung von Bauwerken) umgelagert, verändert, versiegelt und zerstört. Böden stellen somit ein begrenztes und nicht erneuerbares Schutzgut dar, mit dem verantwortungsvoll umgegangen werden muss. Bodenbildung Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tab. 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit können sich unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausbilden. Der durch bodenbildende Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile Bodenwasser mit gelösten Nährstoffen und andere Elemente gasförmige Bestandteile Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid). Systematik der Böden Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende bodensystematische Abteilungen unterschieden: Terrestrische Böden (Landböden), Semiterrestrische Böden (halbhydromorphe Böden), Hydromorphe Böden (Grundwasserböden), Subhydrische Böden (Unterwasserböden) sowie Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Eine ausführliche Beschreibung der Bodensystematik enthält die Bodenkundliche Kartieranleitung (1982, 1994 und 2005). Bodentypen – Horizontierung Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z. T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch Akkumulation von organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizontes. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z. B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizontes erfolgt analog dem A-Horizont (z. B. Bv – v steht für verwittert, verbraunt, verlehmt, Bt – t steht für tonangereichert). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere übereinanderliegende A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluß des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen und semiterrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerde-Gley 40 – 80 cm – Gley-Braunerde 80 – 130 cm – vergleyte Braunerde. Anthropogene Veränderung des Bodens Der Grad der anthropogenen Veränderung des Bodens nimmt mit fortschreitender Technisierung sowie wachsender flächenhafter Inanspruchnahme zu. Heutzutage gibt es kaum noch unberührte und in ihrem Horizontaufbau anthropogen unbeeinflusste Böden. Wo die Horizontabfolge der Böden trotz Nutzungsüberprägung durch den Menschen weitgehend erhalten blieb, wie zumeist bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich aufgrund des fließenden Übergangs anthropogener Überprägung als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 bis 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z. T. in kleinräumigem Wechsel mit stark anthropogen veränderten Böden erhalten bleiben. Ohne entsprechende Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflusste Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden in der Jungmoränenlandschaft des Berliner Raumes ist das Holozän, das vor rd. 12.000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildende Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestandes des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. Die Intensität der Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche nimmt immer weiter zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden der Stadtrandbereiche wurden durch Bauvorhaben umgelagert, durchmischt, großflächig versiegelt und zerstört. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr schädigen die Böden irreparabel. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern und filtern. Wird seine Speicher- und Filterkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des Flächenverbrauches, u. a. durch Versiegelung (quantitative Gefährdung), sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Bodenschutz Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 1980er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens mit Inkrafttreten des Bundesbodenschutzgesetzes im Jahre 1998. Dieses Gesetz wurde 2004 durch ein Berliner Landesgesetz ergänzt. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für einen wirksamen Bodenschutz sind Kenntnisse über den räumlichen Zustand der Böden sowie seine quantitative und qualitative Beeinträchtigung. In Berlin werden z. T. seit Jahrzehnten Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Bodenbelastungskataster wurde aufgebaut sowie eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen sowie die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen.
Bodenentwicklung Definition des Bodens Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte Verwitterungsschicht aus mineralischen und organischen Substanzen, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna, wobei sich in Abhängigkeit von den jeweiligen Standortverhältnissen unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften entwickeln. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Böden sind nicht nur Produktionsgrundlage für Nahrungs- und Futtermittel, nachwachsende Rohstoffe und selbst Rohstoffquelle, sondern haben bezüglich ihrer vielfältigen Funktionen eine herausragende Bedeutung im Naturhaushalt und sind eine bedeutende natürliche Ressource. Böden sind: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft und Archiv für Natur- und Kulturgeschichte. Böden werden aber auch durch menschliche Aktivitäten (z.B. in der Landwirtschaft oder bei der Erstellung von Bauwerken) umgelagert, verändert und zerstört. Böden stellen somit ein begrenztes und nicht erneuerbares Gut dar, mit dem verantwortungsvoll umgegangen werden muss. Bodenbildung Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tabelle 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit wurden unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausgebildet. Der durch bodenbildende Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile Bodenwasser mit gelösten Nährstoffen und anderen Elementen gasförmige Bestandteile Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid). Systematik der Böden Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende Abteilungen unterschieden: Terrestrische Böden (Landböden) Semiterrestrische Böden (halbhydromorphe Böden) Hydromorphe Böden (Grundwasserböden) Subhydrische Böden (Unterwasserböden) Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Eine ausführliche Beschreibung der Bodensystematik enthält die Bodenkundliche Kartieranleitung (1982, 1994 und 2005). Bodentypen – Horizontierung Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z.T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch Akkumulation von organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizontes. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z.B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizontes erfolgt analog dem A-Horizont (z.B. Bv – v steht für Verbraunung, Bt – t steht für Toneinwaschung). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluß des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerde-Gley 40 – 80 cm – Gley-Braunerde 80 – 130 cm – vergleyte Braunerde. Anthropogene Veränderung des Bodens Der Grad der anthropogenen Veränderung des Bodens nahm mit fortschreitender Technisierung sowie wachsender flächenmäßiger Inanspruchnahme zu. Heute gibt es kaum noch unberührte und in ihrem Horizontaufbau unveränderte Böden. Wo die Horizontabfolge der Böden trotz Nutzung durch den Menschen weitgehend erhalten blieb, wie bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 bis 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z.T. in kleinräumigem Wechsel mit anthropogen veränderten Böden erhalten bleiben. Ohne Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflusste Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden im Berliner Raum ist das Holozän, das vor ca. 10 000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildende Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestandes des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. In den letzten Jahren nahm die Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche stark zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden wurden durch Bauvorhaben am Stadtrand umgelagert, durchmischt und großflächig versiegelt. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr beeinträchtigen die Böden. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern. Wird seine Speicherkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des “Flächenverbrauches” und der Versiegelung (quantitative Gefährdung) sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Bodenschutz Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 80er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens mit Inkrafttreten des Bundesbodenschutzgesetzes im Jahre 1998. Dieses Gesetz wurde 2004 durch ein Berliner Landesgesetz ergänzt. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für wirksamen Bodenschutz sind Kenntnisse über den Zustand der Böden sowie ihre quantitative und qualitative Beeinträchtigung. In Berlin werden seit Jahren Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Bodenbelastungskataster wurde aufgebaut sowie eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen sowie die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen.
Bodenentwicklung Definition des Bodens Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte Verwitterungsschicht aus mineralischen und organischen Substanzen, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna, wobei sich in Abhängigkeit von den jeweiligen Standortverhältnissen unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften entwickeln. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Er wird als Produktionsgrundlage für die Land- und Forstwirtschaft genutzt, aber auch durch menschliche Aktivitäten (z.B. bei der Erstellung von Bauwerken) umgelagert, verändert und zerstört. Er bildet mit folgenden Funktionen eine bedeutende natürliche Ressource: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft und Archiv für Natur- und Kulturgeschichte. Bodenbildung Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tabelle 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit wurden unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausgebildet. Der durch bodenbildende Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile Bodenwasser mit gelösten Nährstoffen und anderen Elementen gasförmige Bestandteile Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid). Systematik der Böden Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende Abteilungen unterschieden: Terrestrische Böden (Landböden) Semiterrestrische Böden (halbhydromorphe Böden) Hydromorphe Böden (Grundwasserböden) Subhydrische Böden (Unterwasserböden) Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Eine ausführliche Beschreibung der Bodensystematik enthält die Bodenkundliche Kartieranleitung (1982, 1994 und 2005). Bodentypen – Horizontierung Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z.T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch Akkumulation von organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizontes. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z.B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizontes erfolgt analog dem A-Horizont (z.B. Bv – v steht für Verbraunung, Bt – t steht für Toneinwaschung). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluß des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerde-Gley 40 – 80 cm – Gley-Braunerde 80 – 130 cm – vergleyte Braunerde. Anthropogene Veränderung des Bodens Der Grad der anthropogenen Veränderung des Bodens nahm mit fortschreitender Technisierung sowie wachsender flächenmäßiger Inanspruchnahme zu. Heute gibt es kaum noch unberührte und in ihrem Horizontaufbau unveränderte Böden. Wo die Horizontabfolge der Böden trotz Nutzung durch den Menschen weitgehend erhalten blieb, wie bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 bis 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z.T. in kleinräumigem Wechsel mit anthropogen veränderten Böden erhalten bleiben. Ohne Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflusste Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden im Berliner Raum ist das Holozän, das vor ca. 10 000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildende Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestandes des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. In den letzten Jahren nahm die Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche stark zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden wurden durch Bauvorhaben am Stadtrand umgelagert, durchmischt und großflächig versiegelt. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr beeinträchtigen die Böden. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern. Wird seine Speicherkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des “Flächenverbrauches” und der Versiegelung (quantitative Gefährdung) sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Bodenschutz Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 80er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens mit Inkrafttreten des Bundesbodenschutzgesetzes im Jahre 1999. Dieses Gesetz wurde 2004 durch ein Berliner Landesgesetz ergänzt. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für wirksamen Bodenschutz sind Kenntnisse über den Zustand der Böden sowie ihre quantitative und qualitative Beeinträchtigung. In Berlin werden seit Jahren Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Bodenbelastungskataster wurde aufgebaut sowie eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen sowie die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen.
Bodenentwicklung Definition des Bodens Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte Verwitterungsschicht aus mineralischen und organischen Substanzen, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna, wobei sich in Abhängigkeit von den jeweiligen Standortverhältnissen unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften entwickeln. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Er wird als Produktionsgrundlage für die Land- und Forstwirtschaft genutzt, aber auch durch menschliche Aktivitäten (z.B. bei der Erstellung von Bauwerken) umgelagert, verändert und zerstört. Er bildet mit folgenden Funktionen eine bedeutende natürliche Ressource: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft und Archiv für Natur- und Kulturgeschichte. Bodenbildung Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tabelle 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit wurden unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausgebildet. Der durch bodenbildende Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile Bodenwasser mit gelösten Nährstoffen und anderen Elementen gasförmige Bestandteile Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid). Systematik der Böden Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende Abteilungen unterschieden: Terrestrische Böden (Landböden) Semiterrestrische Böden (halbhydromorphe Böden) Hydromorphe Böden (Grundwasserböden) Subhydrische Böden (Unterwasserböden) Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Eine ausführliche Beschreibung der Bodensystematik enthält die Bodenkundliche Kartieranleitung (1982, 1994 und 2005). Bodentypen – Horizontierung Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z.T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch Akkumulation von organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizontes. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z.B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizontes erfolgt analog dem A-Horizont (z.B. Bv – v steht für Verbraunung, Bt – t steht für Toneinwaschung). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluß des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerdegley 40 – 80 cm – Gleybraunerde 80 – 130 cm – vergleyte Braunerde. Anthropogene Veränderung des Bodens Der Grad der anthropogenen Veränderung des Bodens nahm mit fortschreitender Technisierung sowie wachsender flächenmäßiger Inanspruchnahme zu. Heute gibt es kaum noch unberührte und in ihrem Horizontaufbau unveränderte Böden. Wo die Horizontabfolge der Böden trotz Nutzung durch den Menschen weitgehend erhalten blieb, wie bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 bis 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z.T. in kleinräumigem Wechsel mit anthropogen veränderten Böden erhalten bleiben. Ohne Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflusste Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden im Berliner Raum ist das Holozän, das vor ca. 10 000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildende Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestandes des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. In den letzten Jahren nahm die Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche stark zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden wurden durch Bauvorhaben am Stadtrand umgelagert, durchmischt und großflächig versiegelt. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr beeinträchtigen die Böden. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern. Wird seine Speicherkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des “Flächenverbrauches” und der Versiegelung (quantitative Gefährdung) sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Bodenschutz Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 80er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens mit Inkrafttreten des Bundesbodenschutzgesetzes im Jahre 1999. Dieses Gesetz wurde 2004 durch ein Berliner Landesgesetz ergänzt. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für wirksamen Bodenschutz sind Kenntnisse über den Zustand der Böden sowie ihre quantitative und qualitative Beeinträchtigung. In Berlin werden seit Jahren Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Bodenbelastungskataster wurde aufgebaut sowie eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen sowie die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen.
Origin | Count |
---|---|
Bund | 35 |
Land | 10 |
Type | Count |
---|---|
Förderprogramm | 7 |
Gesetzestext | 1 |
Text | 21 |
unbekannt | 16 |
License | Count |
---|---|
geschlossen | 31 |
offen | 14 |
Language | Count |
---|---|
Deutsch | 25 |
Englisch | 16 |
andere | 5 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 10 |
Keine | 28 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 22 |
Lebewesen & Lebensräume | 24 |
Luft | 21 |
Mensch & Umwelt | 45 |
Wasser | 24 |
Weitere | 39 |