Ziel des Forschungsvorhabens war es, zunächst einen Überblick zum aktuellen Stand der Forschung der durch Nutzung und Bewirtschaftung veränderbaren Einflussfaktoren auf die Wasserinfiltration in den Boden zu erarbeiten. Dabei standen besonders die landwirtschaftlichen Anbauverfahren, Bodenbearbeitungssysteme und pflanzenbaulichen Maßnahmen im Fokus der Untersuchungen. Darauf aufbauend wurde geprüft, inwieweit die aktuellen landwirtschaftlichen Fördermaßnahmen geeignet sind, die Infiltrationsfähigkeit landwirtschaftlich genutzter Flächen zu verbessern, um damit auch im Falle von extremen Niederschlagsereignissen Wassererosion und Überflutungen entgegenzuwirken. Ein weiteres Ziel war die Zusammenstellung und Auswertung der bestehenden rechtlichen Vorgaben (Gesetze, Verordnungen, Richtlinien etc.) und ihre Umsetzung in der sog. "guten fachlichen Praxis" (gfP) im Hinblick auf die Verbesserung der Wasserinfiltration landwirtschaftlicher Böden. Sowohl für die aktuellen Förderprogramme als auch die bestehenden gesetzlichen Rahmenbedingungen wurden nach einer Defizitanalyse gezielte Verbesserungsvorschläge und Maßnahmenempfehlungen zur Weiterentwicklung der Fördermaßnahmen und gesetzlichen Vorgaben abgeleitet. Für vier ausgewählte Stark- oder Dauerregenereignisse, die zu markanten Schäden geführt haben, wurde anhand regionaler Analysen herausgearbeitet, warum es zu den erheblichen Auswirkungen gekommen ist und welche Zusammenhänge zwischen der landwirtschaftlichen Flächennutzung und den Überflutungen bestehen. Aufbauend auf diesen Fallbeispielen wurden in Verbindung mit den Ergebnissen der Literaturrecherche und der Analyse der gesetzlichen Rahmenbedingungen und der Förderprogramme Vorschläge für zukünftige Risikoabschätzungen und möglicher Gegenmaßnahmen erarbeitet sowie Handlungs- und Forschungsbedarf abgeleitet. Quelle: Forschungsbericht
Das Projekt "Limnologische Untersuchungen von Seen für die Förderung von Quarzsanden" wird vom Umweltbundesamt gefördert und von Institut für Wasserforschung GmbH durchgeführt. Veranlassung: Die Förderung von Kiesen und Sanden in Kiesgruben oder Baggerseen hat eine drastische Veränderung des Landschaftsbildes zur Folge. Die Ausbildung neuer Seen- und Freizeitgebiete wird hierbei im Allgemeinen eher als positiver Effekt gewertet. Aufgrund des Förderbetriebs kann es jedoch zu Veränderungen der Wassergüte der betroffenen Oberflächengewässer und zu einer Beeinträchtigung des abstromigen Grundwassers kommen. Um mögliche zeitliche Veränderungen der Gewässergüte - etwa durch Freisetzung von Pflanzennährstoffen (Eutrophierung) - erfassen zu können, findet eine regelmäßige limnologische Überwachung zweier Baggerseen statt, die von der Quarzwerke Haltern GmbH für die Förderung von Sand genutzt werden. Parallel werden das zu- und abfließende Grundwasser an den beiden Seen untersucht, um eine Beeinflussung des unterirdischen Wassers durch die bis zu 30 m tiefen Seen erkennen und bewerten zu können. Diese Untersuchungen finden seit 1982 im zweijährigen Abstand statt. Vorgehen: Die Probennahmen erfolgen jeweils am Ende der Sommerperiode, wenn die Herbstzirkulation, die eine Vermischung des Wassers bis in tiefe Schichten bedingt, noch nicht eingesetzt hat. Zu diesem Zeitpunkt muss die Belastung der Seen saisonal bedingt als am höchsten eingeschätzt werden. Für die Beurteilung des limnologischen Zustandes der beiden Baggerseen und der Grundwasserbeschaffenheit in dem jeweils zu- und abfließenden Grundwasserstrom werden die in einer Tabelle aufgeführten Parameter bestimmt. Ergebnisse: Beide Baggerseen können aufgrund ihrer Nitrat- und Phosphatgehalte sowie der Planktondichte und -zusammensetzung als mesotrophe, wenig belastete Gewässer klassifiziert werden. Die Sprungschicht liegt etwa in 6-10 m Tiefe. Auch die tieferen Schichten im Hypolimnion der Seen weisen noch eine gute Versorgung mit Sauerstoff auf. Im See West ist es seit 1982 durch den Förderbetrieb sogar eher zu einer Erhöhung des Sauerstoffgehaltes im Hypolimnion gekommen. Qualitative Planktonanalysen weisen beide Gewässer als oligo- bis mesotoph (Gewässergüte II) aus. Das zulaufende Grundwasser für diesen See zeichnet sich durch einen niedrigen pH-Wert, hohe Nitratwerte und einen hohen Gehalt biologisch schwer abbaubarer Kohlenstoffverbindungen aus. Nach dem Durchtritt durch den See West liegen im ablaufenden Grundwasser dagegen verbesserte Bedingungen mit niedrigen DOC- und Nitratwerten vor. Hier treten jedoch zum Teil sehr niedrige Sauerstoffgehalte auf, was auf biologische Abbauprozesse während der Passage durch den See schließen lässt. Die Situation sowohl in den Baggerseen als auch im Grundwasserbereich kann trotz leichter Schwankungen im Nährstoff- und Sauerstoffgehalt seit Beginn der Messungen in den letzten Jahren als stabil angesehen werden. Teilweise hat sogar eine Verbesserung, insbesondere der Sauerstoffsituation in den Seen stattgefunden.
Das Projekt "Untersuchungen zur Ausbreitung von Haldenlösungen der Kalirückstandshalden am Beispiel der Halde Sollstedt, Thüringen" wird vom Umweltbundesamt gefördert und von Fachhochschule Erfurt, Fachbereich Versorgungstechnik durchgeführt. Durch die Verarbeitung und Förderung von Kalisalzen sind in Thüringen große Abraum- und Rückstandshalden entstanden. Die aufgehaldeten Salze werden niederschlagsinduziert aufgelöst und gelangen in Grund- und Oberflächengewässer. Das hoch mineralisierte Infiltrationswasser breitet sich im Grundwasser als Salzfahne aus und kann in Quellen wieder zutage treten. Am Beispiel der Kalirückstandshalde Sollstedt wird die Ausbreitung der in den Untergrund eingebrachten Salzlösung untersucht. Ziel des Vorhabens ist der Erwerb von Kenntnissen über die regionalen geologischen und hydrogeologischen Verhältnisse einerseits. Andererseits im Sinne der Wasserwirtschaft, Untersuchungen der Wasserverhältnisse im Hinblick auf ihre Salinität und Wasserwegsamkeit. Im Abstromgebiet der Halde Sollstedt liegen mehrere Quellen, die stark mineralisiert sind. Die Halde Sollstedt sowie der von ihr ausgehende Salzeintrag in Oberflächen- und Grundwässer ist aufgrund der topographischen Situation und der geologischen Verhältnisse als möglicher Teilverursacher der hohen Mineralisation der Quellen einzustufen. Als weiterer möglicher Teilverursacher der Quellwasserbelastung wird eine ehemalige Hausmülldeponie, die sich im vermuteten Einzugsbereich der Quellen befindet untersucht. Geogene Ursachen, wie bisher nicht bekannte, natürliche Salzvorkommen im Untergrund sind als Weitere Ursachen der hohen Quellwassermineralisation nicht auszuschließen.
Das Projekt "Dynamik der Phosphor- und Wasserflüsse im Abfluss und bei der Pflanzenaufnahme in bewaldeten Kopfeinzugsgebieten" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Hydrologie durchgeführt. Hydrologische Fließwege bilden die kritische Verbindung zwischen der Quelle der P Mobilisierung und des P Exports zu den Flüssen. Die Prozesse der P Mobilisierung auf der Standortskale ist vergleichsweise gut verstanden, jedoch ist die Kenntnis des P Transportes in Hängen und Einzugsgebieten durch die Komplexität der Transport-Skalen und Fließprozesse begrenzt. In Hängen können große P Flüsse zum dynamischen P Export beitragen, da P oft in schnellen Fließwegen transportiert wird, insbesondere in bewaldeten Systemen wo präferentielle Fließwege häufig auftreten. Ein adäquates Prozesswissen der Hanghydrologischen Dynamik ist daher wichtig um die P Transport Dynamik zu beurteilen und vorherzusagen. Jedoch wurden bisher solche Studien fast ausschließlich in Einzugsgebieten mit landwirtschaftlicher Nutzung durchgeführt. In dieser experimentellen und modellierungs-basierten Studie über hanghydrologische Prozesse und Phosphortransport werden wir die Auswirkungen der Abflussprozesse auf den P-Transport in bewaldeten Hängen entlang des grundlegenden Hypothesen des SPP untersuchen. Wir werden die Auswirkungen unterschiedlicher Fließwege und Verweilzeiten auf den P Transport und den damit verbundenen hydrologischen Bedingungen untersuchen. Die Hypothese wird getestet, dass die P-Signaturen im Abfluss im Zusammenhang stehen mit den bodenökologischen P-Gradienten und dass die P-Signaturen durch die Verweilzeiten des Wassers im Hang bestimmt werden, die insbesondere durch präferentielle Fließwege bei Niederschlagsereignissen dominiert werden. Diese Hypothesen werden an den vier SPP Standorte im Gebirge mit einem innovativen, kontinuierliche Monitoring-System für unterirdische Hangabflüsse und P-Transport bei hoher zeitlicher Auflösung untersucht. Event-basierte und kontinuierliche Probenahmen für die verschiedenen P Spezies, stabile Wasserisotope und andere geogene Tracer in Niederschlag, Abfluss und Grundwasser werden es uns ermöglichen, Verweilzeiten von Wasser mit den P Flüsse und P Transportprozessen zu verknüpften. Schließlich werden wir ein prozessorientierten hydrologischen Hang-Modell weiterentwickeln um die verschiedenen Fließ-und Transportwege zu simulieren, um die Dynamik von Abfluss und P Transport zwischen der Hang- und Einzugsgebietsskala zu verknüpfen. Die Modellierung wird sich darauf fokussieren die Altersverteilung von Wasser und die bevorzugte Fließwege die durch 'hot spots' bei der Infiltration und P Mobilisierung entstehen in bewaldeten Hängen adäquat darzustellen.
Das Projekt "DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die meisten Ökosysteme der Erde kommen in der 'tiefen Biosphäre' in permanenter Dunkelheit vor. Die Verwitterungszone - der unterirdische Teil der 'Critical Zone' - bildet einen aktiven Teil dieses Lebensraums. Wir werden die Formung dieser Zone mittels innovativer Isotopen- und geochemischer Methoden erforschen. Dieses Vorhaben ist Teil der 'DeepEarthshape' Projektgruppe, die Geochemie, Mikrobiologie, Geophysik, Geologie und Biogeochemie verbindet. 'DeepEarthshape' beruht auf den Erkenntnissen der ersten EarthShape Phase. An allen vier untersuchten Standorten ist die Verwitterungszone so tief, dass deren Basis in keinem der Bodenprofile angetroffen wurde. Jedoch wurden im gesamten Saprolith beträchtliche Mengen an mikrobieller Biomasse gefunden.Die Frage ist nun: wie trägt Niederschlag und Pflanzenbedeckung entlang des Earthshape-Transekts zur Formung der tiefen Verwitterungszone bei? Folgende Hypothesen werden geprüft: 1) die Verwitterungsfronten an den EarthShape-Standorten sind heute aktiv; 2) die Massenverluste durch Erosion und chemische Verwitterung werden durch die Abtiefung der Verwitterungsfront ausgeglichen; und 3) die Verwitterungszone umfasst eine Reihe von unterscheidbaren, komplexen Fronten, die unterschiedliche biogeochemische Prozesse widerspiegeln (z. B. Wasserinfiltration, Eisenoxidation, mikrobielle Aktivität und organischem Kohlenstoffkreislauf).Im Mittelpunkt aller DeepEarthshape Projekte steht eine Bohrkampagne, die durch geophysikalische Bildgebung der tiefen 'Critical Zone' ergänzt wird. An allen vier Standorten werden wir Bohrkerne entnehmen, die durch Boden und Saprolith hindurch bis in das unverwitterte Ausgangsgestein führen. Durch die innovative Kombination von Methoden der Uran-Zerfallsreihen (Bestimmung der Abtiefunggeschwindigkeit der Verwitterungsfront) mit in situ kosmogenem Beryllium-10 (Bestimmung der Abtragungsrate) werden wir das Gleichgewicht zwischen der Produktion von verwittertem Material in der Tiefe und dessen Verlust an der Oberfläche ermitteln. Zusätzlich werden wir die Tiefenverteilung von meteorischem kosmogenen 10Be als Proxy für die Wasserinfiltration und die des stabilen 9Be als Proxy für die silikatische Verwitterung in der Tiefe verwenden. Wir werden die mineralogische und chemische Zusammensetzung der Kerne beschreiben und Elementabreicherung, Dichte, Porosität, Öberfläche und den Redoxzustand von Eisen messen, um die Verwitterungsfronten zu lokalisieren. Mit den Ergebnissen können wir den Einfluss von Klima und Vegetation auf die Bildungsmechanismen der einzelnen Verwitterungsfronten bestimmen. Der relative Einfluss dieser zwei Faktoren wird anhand eines Massenbilanzmodells ermittelt, welches Verwitterungskinetik und Nährstoffbedarf der nachwachsenden Pflanzenmasse verknüpft. Dieses Vorhaben leitet somit einen Beitrag, mit dem der Einfluss der tiefen Biosphäre und der tiefen 'Critical Zone' auf den CO2-Entzug aus der Atmosphäre und damit das Klima der Erde bilanziert werden kann.
Das Projekt "Teilprojekt A03: Reaktion der mikrobiellen Gemeinschaft auf den Eintrag von Oberflächensignalen in Grundwässer des Hainich CZE" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Biodiversität, Lehrstuhl Aquatische Geomikrobiologie durchgeführt. Dieses Projekt erforscht die Bedeutung von Chemolithoautotrophie und Oberflächeneintrag als Quellen von reduziertem Kohlenstoff für die mikrobielle Gemeinschaft in den Hainich-Aquiferen mittels Mikrokosmen-Experimenten. Basierend auf Raman-Mikrospektroskopie in Kombination mit Isotopenmarkierungs-Experimenten wird eine neue Methode zur Hochdurchsatzsortierung von Zellen etabliert um metabolisch aktive mikrobielle Subpopulationen zu isolieren. Mittels Metagenomanalyse kann dann gezielt deren Rolle in den biogeochemischen Kreisläufen im Grundwasser untersucht werden.
Das Projekt "Erosionsprozesse in degradierten Arganbeständen in Südmarokko" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Physische Geographie, Abteilung Fernerkundung und Geoinformation durchgeführt. Boden und Vegetation endemischer Arganbestände in Marokko werden durch Expansion und Intensivierung der Agrarwirtschaft sowie Überweidung zunehmend degradiert. Überschirmte Flächen nehmen ab, unbedeckte Flächenanteile zwischen den Arganien nehmen zu. Infolge verminderter Infiltration steigen Oberflächenabfluss- und Bodenabtragsraten stark an. Auf den degradierten Böden kann sich nur lückenhafter Unterwuchs (Krautige und Gras) und kein Jungwuchs mehr ausbilden. Durch Untersuchungen verschieden stark degradierter Arganbestände werden in diesem Vorhaben Grenzwerte herausgearbeitet, ab denen bodenerodierende Prozesse initiiert werden, sowie solche, ab denen von einer Dynamisierung der Prozesse, insbesondere Rinnen- und Gully-Erosion, auszugehen ist. Dazu werden in drei Testgebieten im Hohen und Anti-Atlas eingezäunte Aufforstungsflächen mit ungeschützten Flächen auf verschiedenen Hangneigungen verglichen. Die Entwicklung der Bestandsdichten wird mit hochauflösenden CORONA-Satellitenbildern aus dem Jahr 1968 und großmaßstäbigen Luftbildern von 2017/18 quantifiziert, welche mit unbemannten Fluggeräten (UAVs) aufgenommen werden. Die Wuchsform der Bäume wird mit Structure from Motion (SfM)-Verfahren (3D-Modelle aus Multikopter-Aufnahmen) dokumentiert und klassifiziert. Untersuchungen zur Korngrößenverteilung, Aggregatstabilität, organischen Bodensubstanz und Bodennährstoffen sollen hypothesengeleitet den - mit steigendem Abstand der Bäume - sinkenden Einfluss der baumüberschirmten Fläche auf die erweiterten Zwischenbaumflächen aufzeigen. Mit Beregnungsversuchen und Infiltrationsmessungen werden Erodibilität und Infiltrationsvermögen der Zwischenbaumflächen in verschiedenen Degradationsstadien untersucht. Der Sedimentaustrag aus linearen Erosionsformen wird durch ein SfM-Monitoring mittels 3D-Modellen quantifiziert. Steinbedeckung und Viehwege lassen sich aus den selbst erstellten Luftbildern ermitteln. Viehzählungen und Interviews mit Schlüsselinformanten ergänzen die Kenntnisse über den Beweidungsdruck durch Schafe und Ziegen auf die Arganbestände. Anhand der Untersuchungen zur Degradation von Bestandsdichten, Zwischenbaum- und baumüberschirmten Flächen können die Arganbestände in mit Werten unterfütterte Stabilitätsklassen unterteilt werden. Die durch das Multi-Methoden-Konzept erarbeiteten Grenzwerte zeigen die Dynamisierung der Bodenerosionsprozesse unter Arganbeständen und belegen, dass bestimmte Erosionsprozesse verschiedenen Degradationszuständen der Fläche sowie unterschiedlichen Bestandsdichten zugeordnet werden können. Dies ist eine notwendige Voraussetzung für die nachhaltige Bewirtschaftung der Arganbestandsflächen.
Das Projekt "Teilprojekt BODEN: Wasser und Stofftransport heterogener urbaner Standorte" wird vom Umweltbundesamt gefördert und von Universität Berlin, Institut für Ökologie, Fachgebiet Standortkunde, Bodenschutz durchgeführt. Ziel ist die Erfassung des Wasserhaushalts und der Stoffdynamik heterogener urbaner Standorte. Kernpunkt ist dabei die Kombination mit den geophysikalischen Messungen zur räumlichen Flächenvariabilität und Wasserhaushalt in Zusammenarbeit mit dem Teilprojekt GEO. Feldversuche mit Tracern und Infiltrationsexperimente sind zur inversen Bestimmung von Transportparametern sowie zur Dektierung von hydrophilen und -phoben Bodenbereichen geplant. Laborexperimente dienen zur Bestimmung der räumlichen Verteilung der hydraulischen Funktionen, der Desorptionscharakteristiken sowie der wassergehalts- und temperaturabhängigen CO2-Freisetzung. Die Experimente werden vertieft mit bodenchemischen und biologischen Detailuntersuchungen der anderen Teilprojekte. In der ersten Projektphase steht die bodenphysikalische und -chemische Standortcharakterisierung, der Aufbau und die Betreuung von Meßfeldern. Die Versuche werden auf drei Standorten durchgeführt: Einem Transekt von einer stark befahrenen Straße in eine Parkfläche, einer teilversiegelten Fläche sowie einer ehemaligen Rieselfeldfläche. Zusammen mit den Laboruntersuchungen stehen Grundlagenprozesse zum bodenphysikalischen Verhalten (ungesättigte Wasserleitfähigkeit, Hydrophobizität) und zu den -chemischen Eigenschaften (Sorption-Desorption, CO2-Freisetzung) im Mittelpunkt. Darauf aufbauend sollen in der nächsten Projektphase numerische Modelle weiterentwickelt werden, um in hoher räumlicher und zeitlicher Auflösung das langfristige Verhalten des Wasser- und der Stoffhaushalts für unterschiedliche urbane Standortbedingungen zu berechnen.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von SPEKTER GmbH durchgeführt. Die Speicherung von Wasser in hoher Qualität und Quantität ist der Schlüssel für ein nachhaltiges Wassermanagement. Das beantragte Forschungsprojekt geht mit der konsequenten Speicherung von Abflussspitzen und wilden Abflüssen in vorhandenen Grundwasserleitern und der verzögerten und langfristigen Bereitstellung des gespeicherten Wassers in Trockenzeiten deutlich über den Hochwasserschutz bei Extremereignissen hinaus und verknüpft Hochwasser- und Dürremanagement. Die Zeitskala hydrologischer Extremereignisse ist markant asymmetrisch: Kurzfristigen Starkregen- und Hochwasserereignissen (Tage) stehen langfristige Trockenperioden (Wochen bis Monate) gegenüber. Die gegensätzlichen Anforderungen einer extrem leistungsfähigen Infiltration bei gleichzeitig stark verzögertem Abfluss erzwingen technische Eingriffe in Infiltration, Konditionierung des Wassers zur Sicherung der Grundwasserqualität und die Regulierung des Abstroms in die Vorflut (Speicherung im engeren Sinne). Ziel ist die technische Umsetzung eines dezentralen Speicherkonzepts in bestehenden Grundwasserleitern, das in der Lage ist, ein oder mehrere Hochwasserspitzen aufzunehmen und mit sehr deutlicher zeitlicher Verzögerung an die Vorflut abzugeben oder für eine höherwertige Nutzung vorzuhalten.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Technische Hochschule Deggendorf, Technologie Campus Freyung, Institut für angewandte Informatik durchgeführt. Die Speicherung von Wasser in hoher Qualität und Quantität ist der Schlüssel für ein nachhaltiges Wassermanagement. Das beantragte Forschungsprojekt geht mit der konsequenten Speicherung von Abflussspitzen und wilden Abflüssen in vorhandenen Grundwasserleitern und der verzögerten und langfristigen Bereitstellung des gespeicherten Wassers in Trockenzeiten deutlich über den Hochwasserschutz bei Extremereignissen hinaus und verknüpft Hochwasser- und Dürremanagement. Die Zeitskala hydrologischer Extremereignisse ist markant asymmetrisch: Kurzfristigen Starkregen- und Hochwasserereignissen (Tage) stehen langfristige Trockenperioden (Wochen bis Monate) gegenüber. Die gegensätzlichen Anforderungen einer extrem leistungsfähigen Infiltration bei gleichzeitig stark verzögertem Abfluss erzwingen technische Eingriffe in Infiltration, Konditionierung des Wassers zur Sicherung der Grundwasserqualität und die Regulierung des Abstroms in die Vorflut (Speicherung im engeren Sinne). Ziel ist die technische Umsetzung eines dezentralen Speicherkonzepts in bestehenden Grundwasserleitern, das in der Lage ist, ein oder mehrere Hochwasserspitzen aufzunehmen und mit sehr deutlicher zeitlicher Verzögerung an die Vorflut abzugeben oder für eine höherwertige Nutzung vorzuhalten. Das spezifische Teilvorhabenziel der THD 'Monitoring zur langfristigen Sicherstellung der Ökobilanz im Speichereinzugsgebiet' besteht darin ein Monitoring-Konzept für Speicher zu implementieren, welches auf verschiedene Standorte übertragbar ist. Das Konzept Umfasst die Bewertung von Sensordaten, um eine langfristige Sicherstellung der Ökobilanz in diesem Gebiet zu zeigen.
Origin | Count |
---|---|
Bund | 375 |
Type | Count |
---|---|
Förderprogramm | 374 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 374 |
Language | Count |
---|---|
Deutsch | 331 |
Englisch | 86 |
Resource type | Count |
---|---|
Keine | 281 |
Webseite | 94 |
Topic | Count |
---|---|
Boden | 326 |
Lebewesen & Lebensräume | 294 |
Luft | 244 |
Mensch & Umwelt | 375 |
Wasser | 331 |
Weitere | 375 |