Licht ist der für das Auge sichtbare Teil der elektromagnetischen Strahlung und umfasst den Frequenzbereich von etwa 380 Terahertz (THz = 10 12 Hertz) bis 790 THz. Dies entspricht Wellenlängen (λ) ungefähr von 780 Nanometern (nm = 10 -9 Meter) bei rotem bis 380 nm bei violettem Licht. Eine genaue Grenze lässt sich nicht angeben, da die Empfindlichkeit des Auges an den Wahrnehmungsgrenzen nicht abrupt, sondern allmählich abnimmt. Die an das sichtbare Licht jeweils angrenzenden Bereiche der Infrarotstrahlung (λ ≥ 780 nm) und Ultraviolettstrahlung (λ ≤ 380 nm) werden häufig ebenfalls als Licht bezeichnet. Erhebliche Lichtemissionen, die störende Blendwirkungen oder unzulässige Raumaufhellungen erzeugen, sind von Anlagen ausgehende Einwirkungen auf die Umwelt, für die im Landes-Immissionsschutzgesetz Berlin (§ 8 LImSchG Bln) mit Verweis auf das Bundes-Immissionsschutzgesetz allgemeine Vermeidbarkeits- und Minderungskriterien formuliert sind. Da keine vollziehbare konkrete Rechtsnorm des Bundes für Lichtimmissionen existiert, wurden durch die Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz Hinweise zur Beurteilung und Minderung von Lichtimmissionen erarbeitet, die als Anlage 2 in die Ausführungsvorschriften zum Landes-Immissionsschutzgesetz Berlin (AV LImSchG Bln) Eingang gefunden haben und für den behördlichen Vollzug zu beachten sind. Grundsätzlich sind in Berlin die Fachbereiche Umwelt der Bezirksämter von Berlin ansprechbar, um im Rahmen der technischen Möglichkeiten zu versuchen, Abhilfe zu schaffen. Hier finden Sie ein Beschwerdeformular. Beschwerde über Lichtbelästigung Hinweis: Bei der Benutzung von Anlagen zur Bestrahlung der Haut mit künstlicher ultravioletter Strahlung in Sonnenstudios oder ähnlichen Einrichtungen sei auf das Gesetz zum Schutz vor nichtionisierender Strahlung bei der Anwendung am Menschen hingewiesen. Dort ist z. B. ein Nutzungsverbot für Minderjährige formuliert. Bei Problemen ist das Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit Berlin zuständig.
Elektromagnetische Felder und Licht sind Bestandteile des elektromagnetischen Spektrums. Das elektromagnetische Spektrum gliedert sich grob in zwei Bereiche – die nichtionisierenden Strahlung und die ionisierenden Strahlung. Zum Bereich der nichtionisierenden Strahlung gehören die niederfrequenten (elektrischen und magnetischen) Felder, die hochfrequenten (elektromagnetischen) Felder und die optische Strahlung mit der Infrarotstrahlung, dem sichtbaren Licht und der Ultraviolettstrahlung (weitere Informationen: Bundesamt für Strahlenschutz ). Der Bereich der ionisierenden Strahlung umfasst unter anderem die Röntgen- und Gammastrahlung. Technisch erzeugte elektrische, magnetische und elektromagnetische Felder (oder künstliches Licht) können ab einer bestimmten Größe oder Intensität auch schädliche Umwelteinwirkungen im Sinne des Bundes-Immissionsschutzgesetzes (BImSchG) darstellen. Bild: lumendigital/Depositphotos.com Elektromagnetische Felder Elektromagnetische Felder begleiten uns täglich im Arbeits- und Privatbereich. Technisch erzeugte elektrische, magnetische oder elektromagnetische Felder können ab einer bestimmten Größe oder Intensität auch schädliche Umwelteinwirkungen im Sinne des Bundes-Immissionsschutzgesetzes darstellen. Weitere Informationen Bild: SenMVKU Licht Erhebliche Lichtemissionen, die störende Blendwirkungen oder unzulässige Raumaufhellungen erzeugen, sind von Anlagen ausgehende Einwirkungen auf die Umwelt, für die im Landes-Immissionsschutzgesetz Berlin allgemeine Vermeidbarkeits- und Minderungskriterien formuliert sind. Weitere Informationen
Partielle Sonnenfinsternis am 29.03.2025 – Tipps für Sonnengucker Am 29.03.2025 ab etwa 11:20 Uhr ist in Deutschland eine partielle Sonnenfinsternis zu sehen: größte Sonnenbedeckung in Hamburg bei ca. 20 Prozent. Vermeiden Sie unbedingt den direkten Blick in die Sonne mit ungeschützten Augen. Die Netzhaut kann in kürzester Zeit stark geschädigt werden. Beobachten Sie das Naturschauspiel nur mit speziell dafür geeigneten Brillen oder anderem wirkungsvollen Schutz. Quelle: HaiGala/stock.adobe.com Eine Sonnenfinsternis zu beobachten, ist ein besonderes Erlebnis. Am 29. März 2025 ab etwa 11:20 Uhr ist es wieder so weit. Unter anderem in Deutschland ist eine partielle (teilweise) Sonnenfinsternis zu sehen. Der Mond schiebt sich dann vor einen Teil der Sonne. Die Bedeckung der Sonnenfläche liegt zwischen ca. 10 Prozent in München und ca. 20 Prozent in Hamburg. Wie kann ich die Sonnenfinsternis ohne Gefährdung beobachten? Wer das Naturphänomen live verfolgen möchte, sollte unbedingt seine Augen schützen. Als sicherste Methode zur Sonnenbeobachtung gilt die indirekte Betrachtung mittels Projektionsmethode durch eine Lochkamera (Camera obscura) auf einen Schirm. Aber auch spezielle, für die Sonnenbeobachtung geeignete Schutzbrillen kommen in Frage. Geeignete Filter und Folien, zum Beispiel in Form der häufig angebotenen Folienbrillen weisen eine optische Dichte von ≥ 5 auf. Das bedeutet, dass maximal ca. 0,001 Prozent des Sonnenlichts durchgelassen wird. Diese Anforderung geht über die Filtereigenschaften normaler Sonnenbrillen weit hinaus. Quelle: Lost_in_the_Midwest/stock.adobe.com Achten Sie bei einer Sonnenfinsternis-Brille auf diese Eigenschaften Die Schutzbrille ist gemäß den gültigen EU -Normen als sicher für den direkten Blick in die Sonne gekennzeichnet und mit dem CE-Symbol versehen. Die aktuell gültige Norm ist DIN EN ISO 12312-2:2015. Benutzungs- und Warnhinweise sind vorhanden. Die Schutzbrille ist intakt. Bei Folienbrillen darf die Folie keine Kratzer, Löcher und Risse am Übergang zwischen Filterfolie und Pappe oder sonstige Beschädigungen aufweisen. Beschädigte Brillen dürfen keinesfalls verwendet werden. Eine gute Schutzbrille verfügt über extrabreite Bügel und liegt gut am Gesicht an, um den Einfall von Streustrahlung ins Auge zu reduzieren. Warum ist guter Schutz für die Augen so wichtig? Bei einem ungeschützten Blick in die Sonne treffen UV -Strahlung, sichtbares Licht und Infrarotstrahlung mit sehr hoher Intensität auf die empfindlichen Strukturen des Auges. Zwar wird die UV -Strahlung – mit Ausnahme eines geringen Anteils der UV -A-Strahlung – von den vorderen Augenmedien wie Hornhaut und Linse absorbiert. Sichtbares Licht und nahes Infrarot ( IR -A-Strahlung) hingegen erreichen die Netzhaut. Hier sitzen die für den Sehvorgang nötigen Rezeptoren. Ein Blick in die Sonne kann die Netzhaut in kürzester Zeit so schädigen, dass das Sehvermögen bleibend eingeschränkt wird oder sogar ganz verloren geht. Das Tückische dabei: Es gibt kein Warnsignal. Netzhautschäden lösen keinen akuten Schmerz aus. Wenn die Schädigung des Sehvermögens bemerkt wird, ist es schon zu spät. Die Schäden sind vorhanden und heilen nicht mehr. Das ist besonders gefährlich Hochgefährlich ist auch die direkte Beobachtung der Sonne durch Ferngläser, Teleskope oder Kameras. Diese Geräte bündeln die Sonnenstrahlen zusätzlich. Im Fachhandel werden spezielle Filteraufsätze oder Folien angeboten. Die Filter müssen vor der Optik des entsprechenden Geräts angebracht werden. Keine Schutzmittel "Marke Eigenbau" : "Hausmittel" wie rußgeschwärzte Gläser, schwarze Filmstreifen, CDs oder Ähnliches sind zur Sonnenbeobachtung ungeeignet und gefährlich! Vorsicht: Normale Sonnenbrillen sind zur Sonnenbeobachtung nicht geeignet und dürfen nicht verwendet werden. Stand: 12.03.2025
Kann man UV-Strahlung spüren? Nein, der Mensch besitzt kein Sinnesorgan, mit dem er UV -Strahlung unmittelbar wahrnehmen kann. Erst wenn akute Wirkungen der UV -Strahlung auftreten, wie z.B. ein Sonnenbrand , kann man erkennen, dass man sich bereits zu viel UV -Strahlung ausgesetzt hat. Der Mensch kann nur das sichtbare Licht und Infrarotstrahlung (Wärmestrahlung) wahrnehmen. Oft wird fälschlicherweise die wahrgenommene Wärmestrahlung als Maß für einwirkende UV -Strahlung genommen. So kann das bei kaltem, windigem oder diesigem Wetter ausbleibende Wärmegefühl auf der Haut dazu führen, die Gefährlichkeit der UV -Strahlung zu unterschätzen.
Emissionen Für die detaillierte und lückenlose Darstellung der langfristigen Entwicklung der Emissionen in Berlin, werden in einer Karte die Erhebungen der Emissionskataster seit 1989 ausgewertet. Bei der Emissionsberechnung kam es im Jahr 2015 zu einer grundlegend erweiterten Auswertung aller relevanten Verursacher, die den Vergleich der Emissionsmengen zu Vorjahren für die Emissionen aus Heizungsanlagen nur bedingt zulässt. So wurde zur Berechnung der Emissionen 2015 ein neues Emissionsgutachten erstellt, das zusätzlich zu den in den Vorjahren durchgeführten Auswertungen der statistischen Kennzahlen eine Befragung und eine Berücksichtigung einer Vielzahl von Akteuren beinhaltet. Der Abschlussbericht ist auf den Seiten der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt verfügbar. Die einzelnen Kartenebenen der Karte 03.12.2 Langjährige Entwicklung der Luftqualität – Emissionen , getrennt nach Schadstoffen und Verursachergruppen, verdeutlichen, in welchen Bereichen Berlins welche Verursacher den größten Anteil an der Emission der Stoffe haben. Auswertung der Langjährigen Entwicklung der Luftqualität Seit 1989 konnten alle Emissionen stark reduziert werden, mit Rückgängen zwischen 73 % (Stickoxide) und 96 % (Schwefeldioxid). Die PM 10 -Emissionen sind in diesem Zeitraum um 86 % zurückgegangen. Die Gesamtzahl der genehmigungsbedürftigen Industrieanlagen hat in Berlin seit 1989 deutlich abgenommen, da aufgrund der geänderten politischen und wirtschaftlichen Lage viele Anlagen stillgelegt wurden. Außerdem haben sich die rechtlichen Regelungen für die Genehmigungspflicht zahlreicher kleiner Anlagen geändert. Auch hierdurch erklärt sich ein Rückgang. Die Emissionen dieser Anlagen werden seitdem den Quellgruppen Hausbrand oder Kleingewerbe zugeordnet. Die Branchen Wärme- und Energieerzeugung sowie Nahrungs- und Genussmittelindustrie sind die Hauptemittenten von NO x -Emissionen aus erklärungspflichtigen Anlagen (Industrie) im Land Berlin (vgl. AVISO 2016, S.23). Im Bereich Hausbrand / Gebäudeheizung , der nicht nur Wohnungen, sondern auch Kleingewerbe wie Praxen, Anwaltskanzleien etc. enthält, konnten durch großflächige Erweiterungen der Versorgung mit leitungsgebundenen Energieträgern zu Lasten der früher bestimmenden Braunkohle eindrucksvolle Emissionsminderungen erreicht werden. Insbesondere beim früheren Leitparameter für Luftbelastung, dem Schwefeldioxid (SO 2 ), wird dies deutlich. Die vom Land Berlin seit 1990 beispielhaft geförderte energetische Sanierung der Altbaubestände hat dazu wesentlich beigetragen. Bezüglich der räumlichen Verteilungsstruktur der Emissionen aus nicht genehmigungsbedürftigen Feuerungsanlagen (Hausbrand, Kleingewerbe) zeigt sich für die Schadstoffe NO x , PM 10 und PM 2,5 ein ähnliches Bild: Die höchsten Emissionsdichten treten im Zentrum von Berlin auf und zwar in den Bezirken Charlottenburg-Wilmersdorf, Tempelhof-Schöneberg, Friedrichshain-Kreuzberg und Pankow (vgl. AVISO 2016, S.81). Der Verkehr ist mittlerweile der Hauptverursacher der Stickoxide. Der Straßenverkehr hatte 2015 einen Anteil von mehr als 37 % an den Stickoxidemissionen in Berlin, während alle Industrieanlagen zusammen knapp 36 % der Gesamtmenge emittierten. Da die Schadstoffe des Straßenverkehrs bodennah (oder “Nasen-nah”) in die Atmosphäre gelangen, tragen sie in hohem Maße zur Luftbelastung bei. (weitere Informationen: Stickstoffdioxid ). Die gesundheitlich bedenklichen Feinstaubemissionen aus dem Auspuff der Kraftfahrzeuge wurden zwischen 1989 bis 2015 um mehr als 90 % vermindert. Ein Grund dafür war die Einführung der Umweltzone und die darin verankerte Festlegung der Partikelfilter, welche eine Reduzierung der Rußpartikel ergab. Dies stimmt sehr gut mit den Messungen des in den Straßenschluchten erfassten Dieselrußes – dem Hauptbestandteil der Partikelemission aus dem Auspuff – überein: Die gemessene Ruß-Konzentration ist in der Frankfurter Allee im Berliner Bezirk Friedrichshain an der Messstelle MC174 des Berliner Luftgütemessnetzes BLUME innerhalb des Zeitraumes 2000-2015 um mehr als 50 % gesunken (vgl. auch Auswertungen zur Karte 03.12.1, Station MC174 ). Da sich die Feinstaubemissionen durch Abrieb und Aufwirbelung des Straßenverkehrs in diesen 20 Jahren um weit weniger vermindert haben als die Emissionen durch Verbrennungsprozesse, ist der Straßenverkehr nach den “sonstigen Quellen” weiterhin der Hauptverursacher von Feinstaub in Berlin. Der Straßenverkehr einschließlich Abrieb und Aufwirbelung hatte 2015 einen Anteil von 24 % an den PM 10 -Emissionen in Berlin, während die sonstigen Quellen 50 % verursachten (bei PM 2,5 lag das Verhältnis bei 26 % zu 45 %). Vergleichsweise hoch sind die vom Kraftfahrzeugverkehr verursachten Belastungen in der Innenstadt, wo auf etwa 100 km 2 Fläche über 1 Mio. Menschen leben. Vor allem hier werden unter gleichbleibenden Bedingungen Flächenbedarf und Flächenkonkurrenz eines wachsenden Kfz-Verkehrs zunehmen. Gerade der Straßengüterverkehr wird hier (unter gleichbleibenden Bedingungen) auf zunehmende Kapazitätsengpässe im Straßenraum stoßen. Informationen zu den einzelnen Emissionen finden Sie hier An allen Messstationen werden Stickstoffmonoxid und Stickstoffdioxid (mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel der PM 10 - und PM 2,5 -Fraktion (durch Messung der Streuung von Licht an Staubpartikeln), an 8 Stationen Ozon (durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (durch Gaschromatographie) gemessen. Die Messung von SO 2 mittels des Referenzverfahrens wurde zum 01.06.2020 eingestellt, da die SO 2 -Konzentration in den letzte 30 Jahren stark gesunken ist und die Messwerte der letzten Jahre zum Großteil die Nachweisgrenze der Referenzmesstechnik unterschritten haben. Gemäß 39. BImSchV besteht daher keine Messverpflichtung mehr für SO 2 . An zwei bzw. vier Messstellen werden in der PM 10 -Fraktion zusätzlich Schwermetalle und Benzo(a)pyren bestimmt. Die Stationen sind so im Stadtgebiet verteilt, dass verschiedene räumliche Einflussfaktoren ermittelt werden können. Von den 17 Stationen, an denen Luftschadstoffe für die Beurteilung für die Luftqualität gemessen werden, liegen sieben an stark befahrenen Straßen, fünf im innerstädtischen Hintergrund (Wohn- und Gewerbegebieten) und fünf im Stadtrand- und Waldbereich. An der Autobahn A100 werden zudem Sondermessungen durchgeführt, die nicht der Grenzwertüberwachung dienen. Die Proben, welche an den 23 RUBIS-Standorten gesammelt werden, werten die Mitarbeitenden des Berliner Luftgütemessnetzes im Labor aus und ermitteln die Benzol- und Rußkonzentrationen. Zusätzlich werden Passivsammler an insgesamt mehr als 30 Standorten zur Bestimmung von Stickstoffdioxid und teilweise Stickstoffoxiden eingesetzt. Dabei werden Proben über eine Probenahmezeit von 14 Tagen gesammelt, die dann im Labor analysiert werden. Diese manuell erzeugten Labordaten werden wegen des analysebedingten zeitlichen Versatzes zwischen Messung und Erhalt der Ergebnisse und ihrer geringen zeitlichen Auflösung erst nach Abschluss aller qualitätssichernden Maßnahmen als Jahresdatensatz (inkl. 2-Wochen-Werte, abrufbar im Luftdaten-Archiv ) und als Jahresmittelwert in den Jahresberichten veröffentlicht. Die automatisch in den Messcontainern ermittelten Messwerte des Vortages werden werktäglich gegen 11 Uhr an einige Zeitungen, Radio- und Fernsehsender zur Veröffentlichung übermittelt. Parallel dazu werden diese Daten stündlich bzw. täglich ins Internet eingespeist und können dort z.B. als Tageswerte des BLUME-Messnetzes ) abgerufen werden. Bei erhöhten Ozonkonzentrationen im Stadtgebiet wird die Bevölkerung auch durch einige Rundfunksender informiert. Auf den Internetauftritt „Berliner Luftgütemessnetz“ mit seinem umfassenden Angebot an Daten und Bewertungen wurde bereits hingewiesen. Monats- und Jahresberichte , die neben einer Bewertung des vorangegangenen Beobachtungs¬zeitraumes auch Standorttabellen der Messstationen sowie einen Überblick über Grenz- und Zielwerte enthalten, sind ebenfalls online verfügbar. Die Ergebnisse der Messungen der vergangenen Jahre lassen u.a. folgende Schlussfolgerungen zu: Gegenüber den 70er und 80er Jahren konnte die Luftbelastung bei den meisten Luftschadstoffen um ein Vielfaches reduziert werden. So überschreiten die Schwefeldioxidkonzentrationen (Rückgang > 90 %) heute in keinem Fall mehr die festgelegten EU-Immissionswerte. Hinsichtlich PM 10 hat sich die Situation deutlich gegenüber den Jahren am Anfang dieses Jahrhunderts verbessert. Allerdings ist die Belastung mit PM 10 sehr stark von den meteorologischen Ausbreitungsbedingungen abhängig. So führen insbesondere winterliche schwachwindige Hochdruckwetterlagen mit südlichen bis östlichen Winden zu einer hohen Anreicherung der Luft im Berliner Raum mit PM 10 -Partikeln, die teilweise durch Ferntransport nach Berlin gelangen, teilweise auch in innerstädtischen Quellen, vor allem dem Straßenverkehr und im Hausbrand, ihre Herkunft haben. In den Jahren mit schlechteren Austauschbedingungen wie 2009-2011 und auch 2014 lagen die PM 10 -Jahresmittelwerte etwas höher, dagegen in den Jahren mit besseren Austauschbedingungen wie 2007 und 2008 sowie 2012, 2013, 2015, 2016, 2017 und 2019 entsprechend niedriger. Die an den Stationen des automatischen Messnetzes ermittelten PM 10 -Jahresmittelwerte für 2022 lagen am Stadtrand bei 15-16 µg/m³, im innerstädtischen Hintergrund bei 17-19 µg/m³ und an Schwerpunkten des Straßenverkehrs bei 20-24 µg/m³. Damit wurde der Grenzwert für das Jahresmittel auch an der höchst belasteten Messstelle nicht überschritten. Auch der Kurzzeitgrenzwert für PM 10 (das Tagesmittel darf den Wert von 50 µg/m³ im Jahr nur 35 mal pro Messstation überschreiten) wurde im Jahr 2022 an keiner Messstelle überschritten. Auch für NO 2 konnte der seit 2010 einzuhaltende Jahresmittel-Grenzwert der 39. BImSchV (40 µg/m³) wie bereits im Vorjahr berlinweit eingehalten werden. An den automatischen Messstationen lag der Jahresmittelwert im Jahr 2022 an Straßen zwischen 20und 33 µg/m³. Auch an allen Passivsammlerstandorten, die die Standortkriterien nach 39. BImSchV erfüllen, wurde der Grenzwert eingehalten. Zielwertüberschreitungen für das bodennahe Ozon wurden an keiner Station im Jahr 2022 festgestellt. EU-weit gilt ein Zielwert von höchstens 25 Tagen pro Kalenderjahr mit einem maximalen 8-Stundenwert über 120 µg/m³, gemittelt über die letzten 3 Jahre. Seit dem 01.01.2010 ist dieser Zielwert soweit wie möglich einzuhalten. Verbesserungen der Luftwerte hängen mit vielen Komponenten zusammen. Die Deindustrialisierung Berlins und die Modernisierung der Anlagen, der Einsatz von Katalysatoren in Fahrzeugen und die Umstellung der Beheizung auf emissionsärmere Brennstoffe haben ihre Wirkung gezeigt. Eine detaillierte Übersicht und Zusammenstellung über die Qualität der Berliner Luft wird online zur Verfügung gestellt. Da Immissionen aber auch überregional und durch das Wettergeschehen beeinflusst werden, kann die Ursachenanalyse nicht nur lokal stattfinden, sondern muss auch dem Eintrag von Schadstoffen von außen, bis hin zum grenzüberschreitenden Transport nachgehen (vgl. Zweite Fortschreibung des Luftreinhalteplans ). In der vorliegenden Karte 03.12.1 Langjährige Entwicklung der Luftqualität – Immissionen wurden alle mit den genannten Messprogrammen in den letzten mehr als 45 Jahren ermittelten Daten zusammengestellt und statistisch-graphisch über die Messjahre aufbereitet. Über die räumliche Verteilung aktueller und ehemaliger Messstandorte lassen sich die einzelnen Sachdaten Adresse Art der Station Umgebungsbeschreibung (einschl. Fotos) Koordinaten Messparameter Messzeitraum Messwerte (als Graphik und EXCEL-Tabellen) abrufen. Die Einteilung der Stationen erfolgte in Verkehrs-, innerstädtischer Hintergrund-, Industrie-, Stadtrand- und Meteorologiemessstationen. Es sind insgesamt 201 Messstandorte dargestellt. 58 Stationen waren davon 2022 in Betrieb (17 BLUME-Messcontainer, eine Sondermessstation, 23 RUBIS-Messpunkte sowie 17 weitere Passivsammler-Standorte). Bei der graphischen Darstellung der Entwicklung der Parameter Gesamtstaub, Partikel (PM 10 ), Schwefeldioxid (SO 2 ), Stickstoffdioxid (NO 2 ), Stickstoffmonoxid (NO), Kohlenmonoxid (CO), Benzol und Ozon (O 3 ) wurde auf die folgenden Grenzwerte Bezug genommen (sie dienen – wenn nicht anders erläutert – dem Gesundheitsschutz): Für PM 2,5 ist ein Indikator für die durchschnittliche Exposition der Bevölkerung im städtischen Hintergrund (Average Exposure Indicator = AEI) definiert. Dieser wird für jeden EU-Mitgliedsstaat gesondert als gleitender Jahresmittelwert über drei Jahre aus den Werten der entsprechenden PM 2,5 -Messstellen ermittelt. Der AEI für das Referenzjahr 2010 ist als Mittelwert der Jahre 2008 bis 2010 definiert. Er betrug für das gesamte Bundesgebiet 16,4 µg/m³. Anhand des AEI 2010 ist ein nationales Reduktionsziel für PM 2,5 bis zum Jahr 2020 nach der 39. BImSchV von 15 % festgelegt. Deshalb darf der AEI seit 2020 nicht mehr als 13,9 µg/m³ betragen. Der AEI 2021 (Mittelwert der Jahre 2019 bis 2021) beträgt für Berlin 12,5 µg/m³. Weitere gesetzlich festgelegte Grenz- und Zielwerte für die Luftqualität bietet diese Übersicht .
Der Bereich der optischen Strahlung fängt mit der Infrarot-Strahlung (Wärmestrahlung), die bei ca. 10 13 Hz beginnt und bis etwa 3,8 x 10 14 Hz reicht, an. Daran schließt sich das sichtbare Licht zwischen 3,8 x 10 14 und 7,9 x 10 14 Hz (entspricht Wellenlängen von ungefähr 780 bis 380 nm) an. Mit der ultravioletten Strahlung zwischen 7,9 x 10 14 und ca. 1,5 x 10 15 Hz (kurzwellige Ultraviolettstrahlung mit Wellenlängen < 200 nm) endet der Bereich der nichtionisierenden Strahlung. Die Übergänge zwischen den einzelnen Bereichen des elektromagnetischen Spektrums sind fließend. Im Sinne des Bundes-Immissionsschutzgesetz (BImSchG) ist sichtbares Licht, einschließlich der infraroten und ultravioletten Strahlung, das von einer Anlage ausgeht, eine Emission im Sinne dieses Gesetzes. Wenn diese Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für die Allgemeinheit oder die Nachbarschaft herbeiführen können, sind das schädliche Umwelteinwirkungen, denen gemäß dem BImSchG entgegengewirkt werden muss. Künstliche Lichtquellen können zu Blendungen bzw. zu störenden Wohnraumaufhellungen führen. Da es keine allgemeine Verwaltungsvorschrift gemäß § 48 BImSchG gibt, die Licht-Immissionswerte, die nicht überschritten werden dürfen, Licht-Emissionswerte, deren Überschreiten nach dem Stand der Technik vermeidbar ist sowie Verfahren zur Ermittlung der Licht-Emissionen und -Immissionen festlegt, hat die Bund/Länder-Arbeitsgemeinschaft Immissionsschutz (LAI) den zuständigen Immissionsschutzbehörden Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen zur Verfügung gestellt. Wesentliche Inhalte betreffen: Angaben zur Messung und Beurteilung der Lichtimmissionen künstlicher Lichtquellen sowie Hinweisen zur Vermeidung von Belästigungen Anhang 1 Hinweise über die schädliche Einwirkung von Beleuchtungsanlagen auf Tiere - insbesondere auf Vögel und Insekten - und Vorschläge zu deren Minderung Anhang 2 Empfehlungen zur Ermittlung, Beurteilung und Minderung der Blendwirkung von Photovoltaikanlagen Optische Immission von Windkraftanlagen Ein Spezialfall von Lichtimmissionen ist der bewegte periodische Schattenwurf von Windkraftanlagen. Da es auch hierzu keine allgemeine Verwaltungsvorschrift gibt, wird zur Beurteilung und Vermeidung dieser Einwirkung ebenfalls auf Hinweise der LAI, „Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windkraftanlagen“ verwiesen. IR/UV-Strahlung Schädliche Einwirklungen durch Anlagen, die Infrarotstrahlung (IR-Strahlung) bzw. Ultraviolette Strahlung (UV-Strahlung) aussenden, kommen im öffentlichen Bereich in der Regel nicht vor. Im Arbeitsbereich gilt nicht das Immissionsschutzrecht sondern das Arbeitsschutzrecht. Bei der Nutzung von UV-Strahlung zur Hautbräunung in Solarien besteht eine vertragsrechtliche Beziehung, deswegen obliegt die Überwachung hier den Verbraucherschutzbehörden. Wichtige Informationen über mögliche Schädigungen durch natürliche IR- und UV-Strahlung durch Sonneneinwirkung oder Solarienbesuche sind der Internetseite des Bundesamtes für Strahlenschutz (BfS) zu entnehmen. Künstliche Beleuchtung Das Landesamtes für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen hat eine Publikation " Künstliche Außenbeleuchtung " mit Tipps zur Vermeidung und Verminderung störender Lichtimmissionen veröffentlicht.
Was ist Infrarot-Strahlung? Infrarotstrahlung ( IR - Strahlung ) - auch als Wärmestrahlung bezeichnet - ist Teil der optischen Strahlung und damit Teil des elektromagnetischen Spektrums (siehe Abbildung). Sie schließt sich in Richtung größerer Wellenlängen an das sichtbare Licht an. Ihr Wellenlängenbereich reicht von 780 Nanometer bis 1 Millimeter. Unterteilung in IR -A-, IR -B- und IR -C- Strahlung Infrarotstrahlung wird unterteilt in die kurzwellige IR -A- Strahlung mit einem Wellenlängenbereich von 780 bis 1400 Nanometer, die IR -B- Strahlung (1400 bis 3000 Nanometer) und den langwelligen Teilbereich, die IR -C- Strahlung (3000 Nanometer bis 1 Millimeter). Elektromagnetisches Spektrum Sonne als wichtigste Quelle für Infrarot- Strahlung Die wichtigste natürliche Quelle für Infrarot- Strahlung ist die Sonne. Infrarot- Strahlung hat einen Anteil von ca. 50 Prozent an der Sonnenstrahlung, die den Erdboden erreicht. Außerdem gibt die durch die Sonneneinstrahlung erwärmte Erde Infrarot- Strahlung ab. Wärmehaushalt der Erde Durch die in der Atmosphäre enthaltenen natürlichen und künstlichen Gase wie Wasser, Kohlendioxid, Ozon, Methan und Fluorchlorkohlenwasserstoffe (FCKW) wird die von der Erde abgegebene Infrarot- Strahlung absorbiert. Dies führt zu einer zusätzlichen Erwärmung der Erde. Dieser Prozess ist für den Wärmehaushalt der Erde und damit auch für die globale Erwärmung (Klimawandel) von entscheidender Bedeutung. Entdeckung durch William Herschel im Jahr 1800 Die Entdeckung beziehungsweise der Nachweis der Infrarot- Strahlung gelang dem deutschen Astronomen William Herschel erstmalig im Jahre 1800. Er zerlegte das Sonnenlicht mit einem Prisma in seine spektralen Teile und fand dabei jenseits des roten, das heißt langwelligsten Bereichs des sichtbaren Lichts eine nicht sichtbare aber wärmende Strahlung . Die Fähigkeit zur Erwärmung von Stoffen dient auch heute noch zum Nachweis der Infrarotstrahlung. "Warme" Körper geben Infrarot- Strahlung ab Jeder "warme" Körper (Körpertemperatur oberhalb des absoluten Nullpunkts von circa -273 °C ) gibt Infrarotstrahlung ab. Die abgestrahlte Energiemenge und die Wellenlängenverteilung der Strahlung hängen von der Temperatur des Körpers ab. Je wärmer ein Körper ist, umso mehr Energie in Form von IR - Strahlung gibt er ab und umso kürzer ist die Wellenlänge der Strahlung . Stand: 14.03.2024
Wirkung von Infrarot-Strahlung Die Wirkung von Infrarot- Strahlung ( IR ) beruht darauf, dass ihre Energie vom Körper aufgenommen wird. Moleküle werden in Schwingung versetzt, das Ergebnis kennen wir von der natürlichen Infrarotstrahlung der Sonne: Wärme. Die kurzwellige IR -A- Strahlung erreicht die Unterhaut, beziehungsweise im Auge die Netzhaut. IR -B und IR -C Strahlung werden weitestgehend schon in der Oberhaut (Epidermis) absorbiert. Die direkte Wirkung von Infrarot- Strahlung betrifft also vorwiegend die Körperoberfläche. Durch Wärmeleitung erreicht die Temperaturerhöhung jedoch auch tiefer gelegene Körperregionen. Auf der positiven Wärmewirkung beruht die Verwendung von Infrarotstrahlung in der Medizin und im Wellnessbereich , zum Beispiel in Infrarot-Kabinen. Zu hohe Temperatur schadet Hohe Wärmebelastungen durch intensive Infrarot-Bestrahlung können genauso wie direkte Hitzeeinwirkung zu Störungen im Wärmehaushalt des Gesamtorganismus führen. Negative Wirkungen treten vor allem dann auf, wenn die Erhöhung der Körpertemperatur sowie die Einwirkdauer kritische Grenzen überschreiten. Dann können Hitzeschäden wie Hitzekrampf, Hitzekollaps, Hitzeerschöpfung oder Hitzschlag die Folge sein. Hitzekrampf, Hitzekollaps, Hitzschlag Die mildeste Form einer thermischen Überbeanspruchung ist der Hitzekrampf, eine Muskelverkrampfung, die durch einen Verlust von Körpersalzen infolge verstärkten Schwitzens zustande kommt. Durch rechtzeitiges Trinken salzhaltiger Getränke kann ein Hitzekrampf vermieden werden. Steigt die Temperatur im Körperinneren (Kerntemperatur) auf circa 40 Grad Celsius ( °C ), kommt es durch die Erweiterung oberflächennaher Blutgefäße zu einem Blutdruckabfall mit Mangeldurchblutung des Gehirns, der sogar Bewusstlosigkeit zur Folge haben kann (Hitzekollaps). Steigt die Körperkerntemperatur auf über 41 °C , kann es zu einem Kreislaufkollaps und thermischer Schädigung von Organen kommen (Hitzschlag). Sonnenstich Der so genannte Sonnenstich entsteht, wenn besonders Kopf und Nacken längere Zeit ungeschützt der Infrarotstrahlung ausgesetzt werden. Häufigste Ursache im Alltag ist eine zu lange und intensive Sonnenbestrahlung. Beim Sonnenstich werden die Hirnhäute gereizt und können sich sogar entzünden. Besonders anfällig sind Kinder und auf dem Kopf wenig behaarte Menschen. Bei längerem Aufenthalt in der Sonne sollte in jedem Fall leichte, luftige Kleidung, die eine gute Luftzirkulation ermöglicht, und eine Kopfbedeckung getragen werden. Das Risiko für eine Hirnhautentzündung ist bei Kleinkindern größer als bei Erwachsenen. Auf den Schutz von Kindern muss also auch aus diesem Grund besonders geachtet werden. Hitzemelanose Eine seltene, für Einzelfälle bei regelmäßigem, langzeitigem Gebrauch verschiedener Wärmequellen (zum Beispiel Heizdecken und -kissen, beheizte Autositze, Laptops, Infrarotlampen) berichtete Erscheinung ist die Hitzemelanose ("Erythema ab Igne"). Dabei handelt es sich um eine rötlich-bräunliche netzartige Verfärbung der Haut, die eher ein kosmetisches Problem darstellt Allerdings macht sie die Haut möglicherweise anfälliger für die Entstehung von Hautkrebs und sollte daher vermieden werden. Wirkungen auf das Auge Besondere Aufmerksamkeit beim Auge verdient der kurzwellige Infrarot-Anteil ( IR -A). Für diesen Bereich ist der vordere Teil des Auges durchlässig, so dass die Netzhaut erreicht wird und Netzhautschädigungen möglich sind. Bei chronischer Bestrahlung mit starken Infrarot-Quellen kann langfristig die Linse getrübt werden (zum Beispiel entsteht so der so genannte Glasbläserstar). Sonstige Wirkungen Mehrere Untersuchungen schreiben der Infrarotstrahlung eine Beteiligung am Kollagenabbau und an der beschleunigten Hautalterung zu. Ergebnisse aus Untersuchungen zu möglichen Wechselwirkungen von Infrarot mit UV - Strahlung zum Beispiel auf die Schädigung der Erbsubstanz ( DNA ) und auf Reparaturprozesse ergeben bisher kein klares Bild. Stand: 14.03.2024
Die Luftverunreinigung Berlins wird seit 1975 durch das Berliner Luftgüte-Messnetz (BLUME) kontinuierlich gemessen. Dabei lag der Schwerpunkt der Messungen ursprünglich bei Schwefeldioxid. Im Laufe der Zeit wurde die Messung weiterer Schadstoffe aufgenommen. Derzeit besteht das Messnetz aus 17 ortsfesten Messstationen für Luftschadstoffe, einer Sondermessstelle und einer meteorologischen Station. Von den einzelnen Stationen werden die 5-Minuten-Werte jedes Schadstoffes zur Messzentrale in der Brückenstraße (Mitte) übertragen und daraus die Stunden- und Tageswerte als Basis für die weitere Auswertung berechnet. Die ermittelten Daten dienen der Berechnung von Kennwerten der Luftverschmutzung zur Beurteilung der Luftqualität anhand von Grenz- und Zielwerten der 39. BImSchV , der Ermittlung der Schadstoffbelastung für Genehmigungsverfahren (nach TA Luft), der Ursachenermittlung der Luftverunreinigung, der Verfolgung der Wirksamkeit von Maßnahmen zur Luftreinhaltung und der Informationen der Öffentlichkeit. Derzeit betreibt das Berliner Luftgütemessnetz 17 Messcontainer zur Überwachung der Luftqualität gemäß der 39. BImSchV , von denen sieben verkehrsnah und jeweils fünf in innerstädtischen Wohngebieten und am Stadtrand platziert sind. An allen Messcontainern wurden Stickstoffmonoxid und Stickstoffdioxid (NOx als Summe von NO und NO 2 mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel-PM 10 (Partikel mit einem Teilchendurchmesser bis zu 10 Mikrometer durch Streulichtmessung), an acht Stationen Ozon (O 3 durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (CO durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (C6H6 durch Gaschromatographie) gemessen. Neben dem automatischen Messverfahren zur PM 10 -Messung werden in sechs Messcontainern auch Probenahmegeräte zur Bestimmung von PM 10 und/oder PM 2,5 mit dem gravimetrischen Referenzverfahren gemäß EU-Luftqualitätsrichtlinie 2008/50/EG betrieben. In einem Teil dieser Partikelproben werden Benzo(a)pyren, Blei, Arsen, Cadmium und Nickel analysiert und mit den jeweiligen Grenz- bzw. Zielwerten verglichen. Außerdem erfolgen Kohlenstoff- und Ionenanalysen. Das Containermessnetz wird in Berlin bereits seit Mitte der 1990er Jahre durch kleine, an Straßenlaternen befestigte aktive Probenahmegeräte (RUBIS) und Passivsammler ergänzt. Sie sind insbesondere für die Erfassung der Belastung aus dem Straßenverkehr eine wichtige Ergänzung der Datengrundlage, weil Emissionen aus dem Verkehrssektor für die meisten Schadstoffe einen erheblichen Teil zur Immissionsbelastung beitragen, in engeren Straßen der Innenstadt aber schon aus Platzgründen keine großen Messcontainer betrieben werden können. Mit “Ruß- und Benzol-Immissionssammlern”(RUBIS) und Passivsammlern für Stickstoffdioxid und Stickoxide derzeit an 23 zusätzlichen Stellen im Berliner Stadtgebiet die Belastung mit EC und OC und an 42 zusätzlichen Stellen die Belastung mit Stickoxiden in zweiwöchiger Auflösung ermittelt. Insbesondere für Stickstoffdioxid sind die an diesen Stellen ermittelten Jahresmittelwerte eine wichtige zusätzliche Beurteilungsgrundlage. Die Messungen werden durch Modellrechnungen für alle Straßenabschnitte ergänzt, um die Belastung im gesamten Berliner Stadtgebiet einzuschätzen. 13 der 36 Stickstoffdioxid-Passivsammler wurden Ende 2018 in Betrieb genommen und lieferten 2019 erstmals gültige Jahresmittelwerte. Werktäglich werden gegen 12 Uhr die Messwerte des Vortags an einige Zeitungen, Radio- und Fernsehstationen zur Veröffentlichung übermittelt. Parallel dazu werden die Daten auch ins Internet eingespeist und können im Luftdatenportal abgerufen werden. Monats- und Jahresberichte im pdf-Format bieten wir hier zum Download an. Diese können in Papierform auch unter blume@senumvk.berlin.de angefordert werden.
Die in diesem Bericht aufgeführten Ergebnisse für das Jahr 2022 zeigen, dass der Ausbau erneuerbarer Energien wesentlich zur Erreichung der Klimaschutzziele in Deutschland beiträgt. Insgesamt werden in allen Verbrauchssektoren fossile Energieträger zunehmend durch erneuerbare Energien ersetzt und damit dauerhaft Treibhausgas Treibhausgase sind diejenigen gasförmigen Bestandteile in der Atmosphäre, sowohl natürlichen wie anthropogenen Ursprungs, welche thermische Infrarotstrahlung absorbieren und wieder ausstrahlen. Diese Eigenschaft verursacht den Treibhauseffekt. Wasserdampf (H2O), Kohlendioxid (CO2), Lachgas (N2O), Methan (CH4) und Ozon (O3) sind die Haupttreibhausgase in der Erdatmosphäre. Außerdem gibt es eine Vielzahl von ausschließlich vom Menschen produzierten Treibhausgasen in der Atmosphäre, wie die Halogenkohlenwasserstoffe und andere chlor- und bromhaltige Substanzen.Nach: IPCC (2007): Klimaänderung 2007. Synthesebericht- und Luftschadstoffemissionen vermieden. Die Ergebnisse zeigen darüber hinaus, dass eine differenzierte Betrachtung verschiedener Technologien und Sektoren sinnvoll und notwendig ist, wenn es z.B. darum geht, gezielte Maßnahmen zum Klimaschutz und der Luftreinhaltung abzuleiten, da sich die spezifischen Vermeidungsfaktoren für die untersuchten Treibhausgase und Luftschadstoffe teilweise erheblich unterscheiden. Im Ergebnis weist die Netto-Emissionsbilanz der erneuerbaren Energien unter Berücksichtigung der Vorketten eine Vermeidung von Treibhausgasemissionen in Höhe von rund 237 Mio. t CO2-Äquivalente (CO2-Äq.) im Jahr 2022 aus. Auf den Stromsektor entfielen 181 Mio. t CO2-Äq., davon sind 155 Mio. t der Strommenge mit EEG-Vergütungsanspruch zuzuordnen. Im Wärmesektor wurden 46 Mio. t und durch biogene Kraftstoffe 10 Mio. t CO2-Äq. vermieden. Quelle: umweltbundesamt.de
Origin | Count |
---|---|
Bund | 437 |
Land | 10 |
Type | Count |
---|---|
Förderprogramm | 421 |
Text | 12 |
unbekannt | 14 |
License | Count |
---|---|
geschlossen | 25 |
offen | 421 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 403 |
Englisch | 69 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 8 |
Keine | 291 |
Unbekannt | 1 |
Webseite | 151 |
Topic | Count |
---|---|
Boden | 292 |
Lebewesen & Lebensräume | 300 |
Luft | 295 |
Mensch & Umwelt | 443 |
Wasser | 226 |
Weitere | 447 |