API src

Found 421 results.

Related terms

Bergbauliche Hinterlassenschaften mit erhöhter natürlicher Radioaktivität

Bergbauliche Hinterlassenschaften mit erhöhter natürlicher Radioaktivität Überreste aus dem Bergbau und der Erzverarbeitung können natürliche radioaktive Anteile enthalten und bei ihrer Freisetzung Mensch und Umwelt unerwünscht beeinflussen. In Sachsen, Thüringen und Sachsen-Anhalt betrifft dies die Rückstände des mittelalterlichen Bergbaus und insbesondere des Uranerzbergbaus. Die bergbaulichen Hinterlassenschaften wurden in einem großen Projekt untersucht und die Folgen der Umweltradioaktivität eingeschätzt. Da die abgebauten Erze häufig eine hohe Uranmineralisation aufwiesen, liegen in den Rückständen des Bergbaus (Berge- oder Haldenmaterial) und besonders in den Aufbereitungsrückständen (zum Beispiel Tailings, Schlacken) so hohe Gehalte an Radionukliden der Uran -Radium-Zerfallsreihe vor, dass diese Hinterlassenschaften aus der Sicht des Strahlenschutzes beachtet werden müssen. Äußere und innere Strahlenbelastung Die wichtigsten Expositionspfade, durch die die Bevölkerung in den Bergbaugebieten eine Strahlenbelastung erfahren kann, sind: die äußere Strahlenbelastung durch Gammastrahlung beim Aufenthalt auf bergbaulich beeinflussten Flächen (Materialablagerungen) oder in unmittelbarer Nähe von Bergbauanlagen (Halden und so weiter) und die innere Strahlenbelastung durch Ingestion (Nahrungsaufnahme) von Trinkwasser sowie von landwirtschaftlich oder gärtnerisch erzeugten Produkten und Pilzen, Ingestion von kontaminiertem Staub und Boden durch spielende Kinder, Inhalation (Einatmen) von kontaminiertem Staub und Inhalation von Radon . Für die Strahlenbelastung der Bevölkerung ist dabei von besonderer Bedeutung, dass Rückstände des Bergbaus und der Erzaufbereitung (zum Beispiel Haldenmaterialien, Schlacken) häufig zur Geländeauffüllung, zum Straßenbau, aber auch zum Hausbau verwendet wurde. Regionale Schwerpunkte Infolge der geologischen Bedingungen liegt der Schwerpunkt der bergbaulichen Hinterlassenschaften mit erhöhter natürlicher Radioaktivität in Sachsen, Sachsen-Anhalt und Thüringen, da dort der Bergbau und die Gewinnung von Silber, Zinn, Kupfer und anderen Metallen seit dem Mittelalter ein bedeutender Wirtschaftsfaktor war. Nach dem Zweiten Weltkrieg kam die Urangewinnung durch die SAG/SDAG (Sowjetische Aktiengesellschaft/Sowjetisch-Deutsche Aktiengesellschaft) Wismut hinzu, die zeitweise weltweit an dritter Stelle lag. Altlastenkataster Von 1991 bis 1999 hat das BfS das Projekt "Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten (Altlastenkataster)" durchgeführt und folgte damit dem damaligen gesetzlichen Auftrag zur Ermittlung der aus bergbaulicher Tätigkeit in Gegenwart natürlicher Radioaktivität stammenden Umweltradioaktivität in den neuen Bundesländern. Wie die in der folgenden Tabelle zusammengestellten Ergebnisse des Projektes "Altlastenkataster" zeigen, wurden in den Ländern Sachsen, Sachsen-Anhalt und Thüringen infolge des Bergbaus insgesamt zirka 20 Millionen Kubikmeter Schlacken, zirka 130 Millionen Kubikmeter Haldenmaterial und zirka 30 Millionen Kubikmeter Aufbereitungsrückstände auf Hinterlassenschaften abgelagert, die als "radiologisch relevant" bewertet werden müssen. Überblick über Anzahl und Fläche der bergbaulichen Hinterlassenschaften in Sachsen, Sachsen-Anhalt und Thüringen und die Menge der abgelagerten Rückstände Parameter Klasse A1 "radiologisch nicht relevant" und "uneingeschränkt nutzbar" Klasse A2 "radiologisch nicht relevant" und "weiter zu beobachten" Klasse B "radiologisch relevant" Anzahl der Hinterlassenschaften 437 2.553 820 Fläche in Hektar 289 255 2.280 Volumen in Millionen Kubikmeter 24 5,7 184 Die Identifikation der radiologisch relevanten Flächen und Hinterlassenschaften ist jedoch nicht gleichbedeutend mit einem Entscheid über die Notwendigkeit von Sanierungsmaßnahmen, da derartige Entscheidungen nur auf der Grundlage von fall- und standortspezifischen Untersuchungen getroffen werden können. Für die alten Bundesländer liegen keine Untersuchungen in vergleichbarer Qualität wie das "Altlastenkataster" vor. Repräsentative Erhebungen, die zur Bewertung der radiologischen Bedeutung bergbaulicher Hinterlassenschaften herangezogen werden können, gibt es für Bayern, Baden-Württemberg und Niedersachsen. Wie eine Abschätzung des BfS gezeigt hat, dürften in den alten Bundesländern nur etwa eine Million Kubikmeter radiologisch relevante Rückstände des Bergbaus lagern. Einige dieser Hinterlassenschaften wurden in der Vergangenheit bereits untersucht und zum Teil saniert. Stand: 20.03.2025

Der Unfall von Tschornobyl ( russ. : Tschernobyl)

Der Unfall von Tschornobyl ( russ. : Tschernobyl) Am 26. April 1986 kam es in Block 4 des Kernkraftwerks Tschornobyl in der Ukraine zu einem schweren Unfall. Dabei wurden erhebliche Mengen radioaktiver Substanzen freigesetzt, die aufgrund hoher Temperaturen des brennenden Reaktors in große Höhen gelangten und sich mit Wind und Wetter über weite Teile Europas verteilten. In der Folge wurden die in einem Umkreis von etwa 30 Kilometern um den havarierten Reaktor lebenden Menschen evakuiert oder zogen aus eigenem Antrieb fort. Messung der Ortsdosisleistung mit einem Handmessgerät am Reaktor von Tschornobyl im Rahmen einer Messübung im Jahr 2016. Zum Zeitpunkt des Unglücks waren die Messwerte weit höher. Am 26. April 1986 ereignete sich im Block 4 des Kernkraftwerks Tschornobyl ( russ. : Tschernobyl) in der Ukraine der bisher schwerste Reaktorunfall in der Geschichte. Die weitreichenden und langwierigen ökologischen, gesundheitlichen – auch psychischen – und wirtschaftlichen Folgen dieses Unfalls stellten die damalige Sowjetunion und später Russland, Belarus und insbesondere die Ukraine vor große Herausforderungen – auch heute noch. Unfallhergang Das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) gehörte zu einem Reaktortyp, der ausschließlich in der ehemaligen Sowjetunion gebaut wurde. Wesentliche Unterschiede dieses Reaktortyps zu westlichen Reaktoren liegen darin, dass sie Graphit nutzen, um die Geschwindigkeit von Neutronen in der Kernspaltungsreaktion zu reduzieren, und keine druckdichte Beton- und Stahl-Sicherheitshülle um den Reaktorkern, das so genannte Containment, besitzen. Während eines planmäßigen langsamen Abschaltens und eines gleichzeitigen Versuchsprogramms zur Überprüfung verschiedener Sicherheitseigenschaften der Anlage, kam es zu einer unkontrollierten atomaren Kettenreaktion. Dies führte zu einer Explosion des Reaktors, die das rund 1.000 Tonnen schwere Dach des Reaktorbehälters anhob. Mangels Containment lag der Reaktorkern infolge der heftigen Explosion frei, so dass radioaktive Stoffe aus dem Reaktor ungehindert in die Atmosphäre gelangten. Das im Reaktor verwendete Graphit brannte. Bei den Lösch- und Aufräumarbeiten wurden viele Beschäftigte des Reaktors, Feuerwehrleute sowie als "Liquidatoren" bekannte Rettungs- und Aufräumkräfte einer extrem hohen Strahlenbelastung ausgesetzt. Bei 134 von ihnen kam es zu akuten Strahlensyndromen . Die gesundheitlichen – auch psychischen – Folgen des Reaktorunfalls werden bis heute untersucht. Die Freisetzungen radioaktiver Stoffe konnten erst nach 10 Tagen durch den Abwurf von ca. 5.000 Tonnen Sand, Lehm, Blei und Bor aus Militärhubschraubern auf die Reaktoranlage und das Einblasen von Stickstoff zur Kühlung des geschmolzenen Kernbereichs beendet werden. In den Jahren 1986 und 1987 waren über 240.000 Personen als Liquidatoren innerhalb einer 30-Kilometer-Sperrzone rund um den havarierten Reaktor eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Insgesamt waren etwa 600.000 Liquidatoren für den Einsatz registriert. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls gelangten vom 26. April bis zum 6. Mai 1986 in erheblichem Maße radioaktive Stoffe in die Umwelt . Durch den 10 Tage anhaltenden Reaktorbrand entstand eine enorme Hitze. Mit dem thermischen Auftrieb gelangten tagelang große Mengen radioaktiver Stoffe durch das zerstörte Dach der Reaktorhalle in Höhen von vielen Tausenden Metern. Verschiedene Luftströmungen (Winde) verteilten die radioaktiven Stoffe über weite Teile Europas. Sie kontaminierten mehr als 200.000 Quadratkilometer, davon rund 146.000 Quadratkilometer im europäischen Teil der ehemaligen Sowjetunion. Ein Schild warnt im Sperrgebiet vor dem "Roten Wald", einem Gebiet, das nach dem Unfall in Tschornobyl (russ.--russisch: Tschernobyl) am höchsten kontaminiert wurde. Freigesetzt wurden unter anderem radioaktive Edelgase wie etwa Xenon-133, leicht flüchtige Stoffe wie radioaktives Jod, Tellur und radioaktives Cäsium, die sich mit dem Wind weit über die Nordhalbkugel, insbesondere über Europa, verteilten und schwer flüchtige radioaktive Nuklide wie Strontium und Plutonium , die sich vor allem in einem Umkreis von etwa 100 Kilometern um den Unfallreaktor in der Ukraine und in den angrenzenden Gebieten von Belarus ablagerten. Aufgrund ihrer vergleichsweise kurzen Halbwertszeiten waren radioaktives Jod und Xenon-133 drei Monate nach dem Unfall praktisch aus der Umwelt verschwunden. Cäsium-137 und Strontium-90 haben dagegen eine Halbwertszeit von rund 30 Jahren und kontaminieren die Umwelt deutlich länger: 30 Jahre nach dem Unfall in Tschernobyl hat sich die Aktivität dieser radioaktiven Stoffe etwa halbiert. Plutonium -239 und Plutonium -240 haben mehrere Tausend Jahre Halbwertszeit – diese in der näheren Umgebung des Unfallreaktors vorzufindenden radioaktiven Stoffe sind bis heute praktisch nicht zerfallen, ihre Aktivitäten sind etwa so hoch wie 1986. Ende April/Anfang Mai 1986 trafen die radioaktiven Luftmassen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) in Deutschland ein. Aufgrund heftiger lokaler Niederschläge im Süden Deutschlands wurde Süddeutschland deutlich höher belastet als Norddeutschland. Die radioaktiven Stoffe lagerten sich unter anderem in Wäldern, auf Feldern und Wiesen ab – auch auf erntereifem Gemüse und Weideflächen. Über die Folgen für die Umwelt in der näheren Umgebung des Reaktors sowie in Deutschland informiert der Artikel " Umweltkontaminationen und weitere Folgen des Reaktorunfalls von Tschornobyl ". Frühe Schutzmaßnahmen Der Unfall im Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) hatte nicht nur Folgen für die Umwelt , sondern auch massive Auswirkungen auf die Gesundheit und das Leben der Bevölkerung in den am stärksten betroffenen Gebieten in der nördlichen Ukraine, in Belarus und im Westen Russlands. Am 1. Mai 1986 sollte ein Vergnügungspark in Prypjat eröffnet werden. Die Stadt wurde am 27. April 1986 evakuiert; das Riesenrad steht seitdem. Evakuierungen Am Tag nach dem Unfall wurde die Stadt Prypjat evakuiert, sie ist bis heute nicht bewohnt. Das Gebiet in einem Radius von 30 Kilometern rund um das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) wurde anschließend zum Schutz der Bevölkerung vor hoher Strahlung zur Sperrzone. Die Orte innerhalb der Sperrzone wurden evakuiert und aufgegeben – betroffen davon waren 1986 neben Prypjat auch Tschornobyl, Kopatschi und weitere Ortschaften. Die Sperrzone wurde später anhand der Höhe der Kontamination räumlich angepasst. Insgesamt wurden mehrere 100.000 Personen umgesiedelt (zwangsweise oder aus eigenem Antrieb). Schutz vor radioaktivem Jod Die Zahl der Schilddrüsenkrebserkrankungen stieg nach 1986 in der Bevölkerung von Weißrussland, der Ukraine und den vier am stärksten betroffenen Regionen Russlands deutlich an. Dies ist zum größten Teil auf die Belastung mit radioaktivem Jod innerhalb der ersten Monate nach dem Unfall zurückzuführen. Das radioaktive Jod wurde vor allem durch den Verzehr von Milch von Kühen aufgenommen, die zuvor kontaminiertes Weidegras gefressen hatten. Dies gilt als Hauptursache für die hohe Rate an Schilddrüsenkrebs bei Kindern. Radioaktives Jod wurde außerdem durch weitere kontaminierte Nahrung sowie durch Inhalation mit der Luft aufgenommen. Nach Aufnahme in den Körper reichert es sich in der Schilddrüse an. Wird genau zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen, kann verhindert werden, dass sich radioaktives Jod in der Schilddrüse anreichert (sogenannte Jodblockade ). Entsprechende Informationen der zuständigen Behörden gab es in den betroffenen Staaten der ehemaligen Sowjet-Union für die Bevölkerung, insbesondere in ländlichen Gebieten, jedoch nicht – auch nicht darüber, dass potenziell betroffene Lebensmittel, insbesondere Milch, nicht oder nur eingeschränkt verzehrt werden sollte. Dazu kam, dass die betroffene Bevölkerung oft keine Alternativprodukte zur Nahrungsaufnahme zur Verfügung hatte. Schutzhülle am Reaktor Schutzhülle (New Safe Confinement) über dem havarierten Reaktor von Tschernobyl Quelle: SvedOliver/Stock.adobe.com Um die im zerstörten Reaktorblock befindlichen radioaktiven Stoffe sicher einzuschließen und weitere Freisetzungen radioaktiver Stoffe in die Umgebung zu begrenzen, wurde von Mai bis Oktober 1986 eine als "Sarkophag" bekannte Konstruktion aus Beton und Stahl um den zerstörten Reaktor errichtet. Wegen der Dringlichkeit blieb keine Zeit für eine detaillierte Planung. 2016 wurde mit internationaler Unterstützung eine etwa 110 Meter hohe Schutzhülle - das "New Safe Confinement" - über den ursprünglichen Sarkophag geschoben und 2019 betriebsbereit in die Verantwortung der Ukraine übergeben. Die Schutzhülle ist rund 165 Meter lang und besitzt eine Spannweite von ungefähr 260 Metern; ihre projektierte Lebensdauer beträgt 100 Jahre. Der Rückbau des alten Sarkophags sowie die Bergung und sichere Endlagerung des darin enthaltenen radioaktiven Materials stehen als nächste Herausforderung an. Konsequenzen für den Notfallschutz in Deutschland Über die Folgen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) für die Organisation und Umsetzung des radiologischen Notfallschutzes in Deutschland informiert der Artikel " Entwicklung des Notfallschutzes in Deutschland " Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 15.01.2025

Ozon-Belastung

Ozon-Belastung Die Höhe der Ozon-Spitzenkonzentrationen und die Häufigkeit sehr hoher Ozonwerte haben seit Mitte der 1990er-Jahre deutlich abgenommen. Der Zielwert zum Schutz der menschlichen Gesundheit wird jedoch weiterhin überschritten. Im Unterschied zu der Entwicklung der Spitzenwerte nahmen die Ozon-Jahresmittelwerte in städtischen Wohngebieten im gleichen Zeitraum zu. Überschreitung von Schwellenwerten Um gesundheitliche Risiken für die Bevölkerung bei kurzfristiger ⁠ Exposition ⁠ gegenüber erhöhten Ozonkonzentrationen auszuschließen, legt die 39. BImSchV Informations- und Alarmschwellenwerte fest (siehe Tab. „Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon“). Der Informationsschwellenwert von 180 Mikrogramm pro Kubikmeter (µg/m³), gemittelt über eine Stunde, dient dem Schutz der Gesundheit besonders empfindlicher Bevölkerungsgruppen. Bei der Überschreitung des Alarmschwellenwertes von 240 µg/m³, gemittelt über eine Stunde, besteht ein Gesundheitsrisiko für die Gesamtbevölkerung. Seit 1995 hat die Zahl der Stunden mit Ozonwerten über 180 beziehungsweise 240 µg/m³ deutlich abgenommen (siehe Abb. „Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen“ und Abb. „Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen)“). Diese Abnahme ist von zwischenjährlichen Schwankungen überlagert, die auf die jährlich schwankenden meteorologischen sommerlichen Witterungsbedingungen zurückzuführen sind. Besonders deutlich ist dies im Jahr 2003 erkennbar. Im Sommer 2003 wurde eine außergewöhnlich langanhaltende Wettersituation beobachtet, welche die Ozonbildung begünstigte. Der Ozonsommer 2003 ist daher hinsichtlich der Spitzenwerte ein Sonderfall. Verglichen mit dem Jahr 1990 sind die Emissionen der Ozonvorläuferstoffe (Stickstoffoxide und flüchtige organische Verbindungen ohne Methan) in Deutschland bis 2022 um 67 % beziehungsweise 74 % zurückgegangen (siehe „Stickstoffoxid-Emissionen“ und „Emission flüchtiger organischer Verbindungen ohne Methan“ ). Der geringere Ausstoß von Ozonvorläufersubstanzen führte bereits in den 1990er Jahren zu einer Abnahme der Ozonspitzenwerte. Tab: Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon Quelle: BImSchG Tabelle als PDF Tabelle als Excel Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Zielwerte und langfristige Ziele für Ozon Seit 2010 gibt es zum Schutz der menschlichen Gesundheit für Ozon einen europaweit einheitlichen Zielwert: 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittel sollen nicht öfter als 25-mal pro Kalenderjahr, gemittelt über drei Jahre, überschritten werden. Um die meteorologische Variabilität der einzelnen Jahre bei einer langfristigen Betrachtung zu berücksichtigen, wird über einen Zeitraum von drei Jahren gemittelt. Die meisten Überschreitungen werden an ländlichen Hintergrundstationen registriert, also entfernt von den Quellen der Vorläuferstoffe (siehe Abb. „Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon“). Das liegt daran, dass Stickstoffmonoxid (NO), das in Autoabgasen enthalten ist, mit Ozon reagiert. Dabei wird Ozon abgebaut, so dass die Ozonbelastung in Innenstädten deutlich niedriger ist. Andererseits werden die Ozonvorläuferstoffe mit dem Wind aus den Städten heraus transportiert und tragen entfernt von deren eigentlichen Quellen zur Ozonbildung bei. Langfristig soll der 8-Stunden-Mittelwert von 120 µg/m³ während eines Kalenderjahres nicht mehr überschritten werden. Dieses Ziel wird in Deutschland allerdings an kaum einer Station eingehalten. Die höchste Zahl an Überschreitungstagen wird üblicherweise an ländlichen Hintergrundstationen registriert (siehe Abb. „Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit, Mittelwert über ausgewählte Stationen“. Zahl der Tage mit Überschreitung des Ozon-Langfristziels (120 µg/m³) zum Schutz der Gesundheit ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Entwicklung der Jahresmittelwerte Jahresmittelwerte der Ozonkonzentrationen spielen bei der Bewertung der Belastung eine nachgeordnete Rolle. Dennoch können sie zur Beurteilung der Immissionssituation verwendet werden. Die Jahresmittelwerte haben eine größere Bedeutung für die langfristige Entwicklung der Ozonbelastung, sofern historische Werte herangezogen werden. Die Jahresmittelwerte der Ozonkonzentration von 1995 bis 2023 zeigen an städtischen Stationen insgesamt einen schwach zunehmenden Trend. Einerseits nahmen die Ozonspitzenwerte durch die Minderungsmaßnahmen für die NO x - und ⁠ NMVOC ⁠-Emissionen in Deutschland deutlich ab, andererseits führte dies wegen der Verringerung des Titrationseffekts (Ozonabbau durch Stickstoffmonoxid) zu einem Anstieg der mittelhohen Ozonkonzentrationen, was schließlich bei den Jahresmittelwerten sichtbar wird (siehe Abb. „Trend der Ozon-Jahresmittelwerte“). Zudem wird von einer zunehmenden Bedeutung des interkontinentalen (hemisphärischen) Transports für die Ozonbelastung in Deutschland und Europa aufgrund der industriellen Emissionen in Asien und Nordamerika ausgegangen. Bodennahes Ozon Ozon (O 3 ) wird nicht direkt freigesetzt, sondern bildet sich in den unteren Luftschichten der ⁠ Atmosphäre ⁠ bis in etwa zehn Kilometer Höhe bei intensiver Sonneneinstrahlung durch komplexe photochemische Reaktionen von Sauerstoff und Luftverunreinigungen. Vor allem flüchtige organische Verbindungen (⁠ VOC ⁠ = volatile organic compounds) einschließlich Methan sowie Stickstoffoxide (NO x ) sind an diesen Reaktionen beteiligt. Herkunft Die Emissionen von flüchtigen organischen Verbindungen und Stickstoffoxiden, den sogenannten Ozon-Vorläuferstoffen, werden überwiegend durch den Menschen verursacht. Hinzu kommt eine natürliche sogenannte Ozon-Hintergrundbelastung, die von hemisphärischem Transport und natürlichen Bildungsprozessen herrührt. Eine wichtige Quelle für die ⁠ Emission ⁠ der Ozon-Vorläuferstoffe stellt der Kraftfahrzeugverkehr dar. Darüber hinaus werden besonders aus dem Kraftwerksbereich Stickstoffoxide und aus der Anwendung von Lacken und Lösungsmitteln flüchtige organische Verbindungen emittiert (siehe „Stickstoffoxid-Emissionen“ und „Emission flüchtiger organischer Verbindungen ohne Methan“ ). Die Emissionen sind teilweise auch natürlichen Ursprungs, zum Beispiel Ausdünstungen flüchtiger organischer Stoffe aus Laub- und Nadelbäumen. Gesundheitliche Wirkungen Viele Menschen leiden an Tagen hoher Ozonkonzentration an Reizungen der Augen (Tränenreiz) und Schleimhäute (Husten) sowie − verursacht durch Begleitstoffe des Ozons − an Kopfschmerzen. Diese Reizungen sind von der körperlichen Aktivität weitgehend unabhängig. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt. Die Empfindlichkeit der Menschen gegenüber Ozon ist sehr unterschiedlich ausgeprägt. Eine Risikogruppe lässt sich nicht genau eingrenzen. Man geht davon aus, dass etwa 10 bis 15 Prozent der Bevölkerung (quer durch alle Bevölkerungsgruppen) besonders empfindlich auf Ozon reagieren. Vor allem die Atemwege sind von der Ozonwirkung betroffen. Neben Reizungen der Schleimhäute in den oberen Atemwegen kann Ozon bei tiefer oder häufiger Einatmung (etwa bei körperlicher Aktivität) verstärkt bis in die tiefen Lungenabschnitte gelangen und dort durch seine hohe Reaktionsbereitschaft Gewebe schädigen und entzündliche Prozesse auslösen. Vor allem nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion nachgewiesen. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück. Die Reizwirkungen sind im Sinne einer Vorschädigung des Lungengewebes zu verstehen, durch die sowohl eine Sensibilisierung durch chemische oder biologische Allergene ermöglicht als auch die Auslösung von allergischen Symptomen begünstigt werden kann. Messdaten Die Ozonkonzentration wird an rund 260 Messstationen in Deutschland überwacht. An den Messstellen, die das Umweltbundesamt im ländlichen Hintergrund betreibt, wurde im Zeitraum 1980 bis zum Ende der 1990er-Jahre ein Anstieg der Jahresmittelwerte der Ozonkonzentration registriert, der sich in den folgenden Jahren nicht fortsetzte.

Lagerfeuer, Feuerschalen

Lagerfeuer schaden Mensch und Umwelt – Sicherheit geht vor Was Sie beim Umgang mit offenem Feuer befolgen sollten So schön ein Lagerfeuer auch ist: Aus Umwelt- und Gesundheitssicht sollte es vermieden werden. Wenn Sie dennoch ein Lagerfeuer machen möchten, beachten Sie bitte folgende Tipps: Verwenden Sie für ein Lagerfeuer nur trockenes, gut abgelagertes und unbehandeltes Holz. Das Verbrennen von Strauch- und Grünschnitt ist gesetzlich grundsätzlich verboten. Es führt zu sehr hohen Emissionen von Luftschadstoffen. Nutzen Sie dafür vorgesehene Behältnisse auf feuerfestem Untergrund. Prüfen Sie die Wind- und Wetterverhältnisse. Kein Feuer bei starkem Wind oder Trockenheit (Waldbrandgefahr!). Informieren Sie sich vorab nach den Bestimmungen Ihrer Gemeinde, ob, wann und wie Lagerfeuer zulässig sind. Gewusst wie Ein Lagerfeuer schafft eine gemütliche ⁠Atmosphäre⁠, die viele Menschen besonders in der wärmeren Jahreszeit schätzen. Jedoch ist ein Feuer im Freien mit zahlreichen Belastungen für die Umwelt und die Gesundheit verbunden. Vermeiden Sie offene Feuer: Selbst bei sachgemäßer Durchführung entstehen bei dem Verbrennungsprozess eine Vielzahl von Schadstoffen wie Ruß, (Fein-)Stäube und verschiedene Gase, die in die Luft und durch Inhalation auch in den menschlichen Körper gelangen. Dabei ist zu beachten, dass Partikel und Bestandteile aus dem Rauch durch den Wind verbreitet werden und somit größere und weitflächigere Auswirkungen auf Mensch und Natur in der Umgebung haben, als den meisten bewusst ist. Aus Sicht des Umwelt- und Gesundheitsschutzes sind offene Feuer daher nicht empfehlenswert und sollten möglichst vermieden werden. Geben Sie (Ast-)Holz stattdessen in die öffentliche Grünschnittabfuhr oder legen Sie Totholzhecken an. Nur trockenes Holz verwenden: Für ein Feuer sollte nur trockenes und gut abgelagertes Holz verwendet werden. Damit das Brennholz richtig durchtrocknen kann, stapeln Sie das gespaltene Holz am besten an einem schnee- und regengeschützten, sonnigen und luftigen Platz. Achten Sie darauf, dass das Brennholz keinen Kontakt zum Erdreich hat, da es sonst aus dem Boden Feuchtigkeit ziehen kann. Nur unbehandeltes Holz verwenden: Achten Sie unbedingt darauf, unbehandeltes Holz für ein Lagerfeuer zu verwenden. Denn Holz, das mit Holzschutzmitteln oder Lack behandelt wurde, kann beim Verbrennen hochgiftige ⁠Dioxine⁠ und Furane ("Seveso-Gifte") freisetzen. Auch Materialien wie (Zeitungs-)Papier, Pappe oder Kunststoffe setzen beim Verbrennen unnötig hohe gesundheitsgefährdende Schadstoffemissionen frei und gehören nicht ins Feuer. Das offene Verbrennen von solchen Stoffen ist gesetzlich verboten. Es stellt zudem eine illegale Abfallentsorgung dar, sofern die Materialien Abfälle sind (z. B. Kunststoffverpackungen, Altholz). Keine Grünabfälle verbrennen: Die Entsorgung von Gartenabfällen, Grünschnitt, Laub, Blättern und Holz mittels eines offenen Feuers ist im Allgemeinen verboten (siehe Hintergrund). Das Verbrennen führt zu sehr hohen Staub- und Geruchsemissionen sowie anderen organischen Schadstoffen wie z. B. Polyzyklische Aromatische Kohlenstoffe (PAKs) und schädigt so Umwelt und Gesundheit. Eine gute Alternative für die Entsorgung von Gartenabfällen ist die Kompostierung auf dem eigenen Komposthaufen oder die Entsorgung über die Biotonne. Wertvolle Inhaltsstoffe werden so recycelt. Im Falle einer Behandlung des kommunalen Bioabfalls in Biogasanlagen wird darüber hinaus auch die im Bioabfall enthaltene Energie genutzt, um z. B. Strom und/oder Wärme zu gewinnen. Größere Mengen an Grünschnitt und/oder dickere Äste können Sie über das lokale Entsorgungsunternehmen abgeben. Der über die Recyclinghöfe gesammelte Baum- und Strauchschnitt wird in Kompostieranlagen zu einem Qualitätskompost verarbeitet oder in Biomasseheizwerken thermisch verwertet. Lagerfeuer nur an dafür geeigneten Stellen machen: Wenn Sie ein Lagerfeuer machen möchten, müssen Sie sicherstellen, dass sich das Feuer nicht ausbreiten kann. Hierfür eignen sich feuerfeste Behältnisse (z. B. Feuerschalen oder Feuerkörbe) auf feuerfestem Grund (z. B. Feuerplatz). Dies reduziert die Brandgefahr und vereinfacht das Löschen. Stellen Sie ein ausreichend großes Gefäß zum Löschen bereit (z. B. Eimer mit Wasser). Wichtig ist aber auch: Mindestens eine Person sollte das Lagerfeuer immer im Blick haben, damit es auch tatsächlich innerhalb der Feuerstelle verbleibt. Auf Wind- und Wetterverhältnisse achten: Prüfen Sie vor jedem Lagerfeuer die Wind- und Wetterverhältnisse. Im Sommer sollte aus Brandschutzgründen auf ein Lagerfeuer ganz verzichtet werden. Bei Wind stellt der Funkenflug ein erhöhtes Brandrisiko dar. Achten Sie daher auf ausreichend Abstand zu brennbaren Objekten (Bäume, Büsche, Häuser, Schuppen, etc.). Glut löschen: Aus Brandschutzgründen sollte auch die Glut nicht unbeaufsichtigt gelassen werden. Beim Verlassen des Lagerfeuerortes sollten Sie diese deshalb mit Wasser ablöschen. Nehmen Sie Rücksicht auf Ihre Nachbarn: Beachten Sie auch Mindestabstände zu Gebäuden, Straßen, Lüftungsöffnungen wie Fenster und Türen. Rauch- und Geruchsentwicklungen durch Lagerfeuer führen regelmäßig zu Beschwerden aus der Bevölkerung aufgrund starker Belästigung und gesundheitlicher Beeinträchtigung. Nehmen Sie Rücksicht auf Ihre Nachbarn und beachten Sie behördliche Auflagen. Lagerfeuerqualm in der Wohnung kann ebenso Ärger verursachen wie nach Rauch riechende Wäsche von der Wäscheleine. Falls Sie sich selbst durch Nachbarn gestört fühlen, die häufig ein Lagerfeuer entzünden, und ein freundliches Gespräch nicht weiterhilft, können Sie sich an das örtliche Umwelt- oder Ordnungsamt wenden. Aus dem Rauch gehen: Halten Sie genügend Abstand zur Rauchfahne, auch wenn Sie dafür bei wechselhaften Windverhältnissen den Platz am Feuer wechseln müssen. Denn selbst bei korrekter Verwendung von Brennholz sind die gesundheitsschädlichen Folgen im Rauch des Lagerfeuers am größten. Asche in den Restmüll geben: Lagerfeuerasche sollte ausgekühlt im Restmüll landen. Für Garten und Kompost ist sie nicht geeignet, da es sonst zu einer Anreicherung von Schwermetallen (die natürlicherweise im Holz vorhanden sind), aber auch von Schadstoffen aus der Verbrennung wie z. B. PAKs im Boden kommen kann. Was Sie noch tun können: Anzündhilfen (fest, flüssig, Gel), die zum Anzünden verwendet werden, sollten die Anforderungen der DIN EN 1860-3 einhalten. Nutzen Sie möglichst pflanzliche oder naturnahe Anzündhilfen (z. B. Holzwolle). Verwenden Sie niemals Brandbeschleuniger, wie Spiritus oder Benzin. Diese Flüssigkeiten verdampfen bereits bei niedrigen Temperaturen und bilden ein explosives Gas-Luft-⁠Gemisch⁠. Sie können meterhoch verpuffen und umstehenden Menschen Schaden zufügen. Die Gesundheit wird vor allem durch die hohen Feinstaub- und PAK- Emissionen bei der unvollständigen Verbrennung beeinträchtigt. Hintergrund Umweltsituation: Die Verbrennung von Holz im Freien führt zu sehr hohen lokalen Schadstoffemissionen u. a. von Feinstaub , Kohlenmonoxid und organischen Verbindungen, darunter auch krebserzeugende Polyzyklische Aromatische Kohlenwasserstoffe (PAKs), die durch unzureichende Verdünnung direkt eingeatmet werden können. Insbesondere an Tagen mit austauscharmen Wetterlagen führt dies zu einer erheblichen Beeinträchtigung der Luftqualität. So liefert das Verbrennen von Gartenabfällen einen nicht zu vernachlässigenden Beitrag zur Erhöhung der regionalen Hintergrundbelastung in Bezug auf Feinstaub (⁠PM10) und kann daher lokal zur Überschreitung der Luftqualitätsgrenzwerte beitragen. Dies geschieht vor allem dann, wenn viele Lagerfeuer in einer Region gleichzeitig abgebrannt werden, wie durch sogenannte Brauchtumsfeuer oder Brenntage. . Darüber hinaus kommt es zu einer höheren Belastung mit Feinstaubpartikeln (PM2.5) in den bodennahen Luftschichten ( Verbrennung von Gartenabfällen - Landesamt für Umweltschutz Sachsen-Anhalt 2009/2011 ). Durch seine geringe Größe kann Feinstaub beim Einatmen in die Lunge gelangen. Je nach Größe der Feinstaubpartikel dringen diese unterschiedlich tief in den Atemtrakt ein und können so die Gesundheit auf vielfältige Weise beeinträchtigen. Folgen können lokale Reizungen oder Entzündungen der Atemwege, aber auch systemische Krankheiten wie Bluthochdruck oder Arterioskerose bis hin zum Schlaganfall oder Herzinfarkt sein. Feinstaub ist krebserregend und steht außerdem im Verdacht, Diabetes mellitus Typ 2 zu fördern. Zusammenhänge zu neurologischen Erkrankungen wie Demenz oder Morbus Parkinson werden diskutiert. Für Schwangere, Kinder, Ältere und Personen mit geschädigten Atemwegen stellen Feinstaub und weitere Luftschadstoffe eine besondere gesundheitliche Belastung dar. Gesetzeslage: Trotz der klaren Vorgaben im Kreislaufwirtschaftsgesetz (KrWG) hinsichtlich des Verwertungsgebots (Vorrang der Verwertung von Abfällen vor deren Beseitigung nach § 7 KrWG) und hinsichtlich der Überlassungspflicht von Abfällen, die im privaten Rahmen nicht verwertet werden können (§ 17 "Überlassungspflichten"), gibt es aufgrund der Ausnahmeregelung nach § 28 Absatz 3 KrWG ("Ordnung der Abfallbeseitigung") keine bundeseinheitlichen Vorgaben zur Beseitigung von pflanzlichen Abfällen. Den Bundesländern ist die gesetzliche Möglichkeit eingeräumt, vom Grundprinzip der Abfallbeseitigung nach § 28 Absatz 1 KrWG Ausnahmen zu regeln, dass und wie bestimmte Abfälle oder auch nur bestimmte Mengen dieser Abfälle außerhalb von Abfallbeseitigungsanlagen beseitigt werden dürfen. Fast jedes Bundesland, mit Ausnahme von Bremen und Berlin, hat eine entsprechende Landesverordnung über die Entsorgung von pflanzlichen Abfällen außerhalb von Abfallentsorgungsanlagen erlassen. Die Regelungen variieren jedoch von Bundesland zu Bundesland. Einige Bundesländer verbieten das Verbrennen von pflanzlichen Abfällen auf dem eigenen Grundstück oder dem freien Feld generell, andere Bundesländer machen diese Art der Abfallbeseitigung von bestimmten Faktoren abhängig oder fordern eine Anzeigepflicht gegenüber der zuständigen Abfallbehörde. Insoweit ist es unumgänglich, sich über die länderspezifischen Bestimmungen vorab zu informieren, um Verstöße, die mit einer Ordnungswidrigkeit nach § 69 Absatz 1 Nummer 8 KrWG geahndet werden können, zu vermeiden.

Minister Meyer unterstützt NLWKN-Kampagne: Radonschutz ist Gesundheitsschutz

Hameln/Holzminden. Es entweicht dem Boden, ist mit den menschlichen Sinnen nicht wahrnehmbar und versteckt überall vorhanden: Das radioaktive Edelgas Radon. Wird es längerfristig in erhöhter Konzentration eingeatmet, kann es das Lungengewebe schädigen und möglicherweise Krebs verursachen. Um das Radon-Vorkommen in Privathaushalten erfassen zu können, bietet der Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) Messkampagnen in ausgewählten niedersächsischen Gemeinden an, aktuell in den Landkreisen Hameln-Pyrmont und Holzminden. Bis zum 30. November haben interessierte Anwohnerinnen und Anwohner aus dieser Region noch die Möglichkeit sich beim NLWKN zu melden, um kostenlos die individuelle Radonsituation in den eigenen Räumlichkeiten bestimmen zu lassen. Privathaushalte werden dafür vom Landesbetrieb mit kleinen Messgeräten (sogenannte Dosimeter) ausgestattet. Es entweicht dem Boden, ist mit den menschlichen Sinnen nicht wahrnehmbar und versteckt überall vorhanden: Das radioaktive Edelgas Radon. Wird es längerfristig in erhöhter Konzentration eingeatmet, kann es das Lungengewebe schädigen und möglicherweise Krebs verursachen. Um das Radon-Vorkommen in Privathaushalten erfassen zu können, bietet der Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) Messkampagnen in ausgewählten niedersächsischen Gemeinden an, aktuell in den Landkreisen Hameln-Pyrmont und Holzminden. Bis zum 30. November haben interessierte Anwohnerinnen und Anwohner aus dieser Region noch die Möglichkeit sich beim NLWKN zu melden, um kostenlos die individuelle Radonsituation in den eigenen Räumlichkeiten bestimmen zu lassen. Privathaushalte werden dafür vom Landesbetrieb mit kleinen Messgeräten (sogenannte Dosimeter) ausgestattet. Niedersachsens Umweltminister Christian Meyer, gebürtiger Holzmindener, unterstützt die aktuelle Kampagne des NLWKN in seiner Heimatregion. „Die Messungen des NLWKN sind für die Bürgerinnen und Bürger eine sehr gute Gelegenheit, um sich Klarheit über eine mögliche Radon-Belastung in den eigenen vier Wänden zu verschaffen. Die Teilnahme kostet nichts, die Dosimeter sind einfach und unkompliziert aufgestellt und über zwölf Monate werden automatisch wichtige Erkenntnisse gesammelt, die vor allem dem eigenen Gesundheitsschutz dienen“, betont Meyer. Der Minister ruft deshalb Anwohnerinnen und Anwohner, vor allem diejenigen, die sich regelmäßig länger in Keller- oder Erdgeschossräumen aufhalten, auf, sich beim NLWKN zu melden und für eine kostenlose Teilnahme zu bewerben. „Ich nutze diese Gelegenheit selber und mache sehr gern mit“, so Meyer. Organisiert und durchgeführt wird die Kampagne von der niedersächsischen Radonberatungsstelle des NLWKN in Hildesheim. Die erfahrenen Strahlenschützer haben zuvor bereits drei große Radon-Messkampagnen in Niedersachsen betreut, zuletzt im Südharz. Die Auswahl der Untersuchungsgebiete erfolgt nicht zufällig, sondern hängt von der Bodenbeschaffenheit in den ausgewählten Regionen ab. „In den Landkreisen Hameln-Pyrmont und Holzminden liegen im landesweiten Vergleich prinzipiell ergiebigere Quellen im Untergrund für Radon vor. Durch Festgesteinsschollen der Mittelgebirgsschwelle ist hier mit höheren Radon-Messwerten zu rechnen als beispielsweise in der norddeutschen Tiefebene“, erklärt NLWKN-Mitarbeiterin Susanne Herrmann aus der Radonberatungsstelle. Sie unterstreicht die Bedeutung einer möglichst großen Bürgerbeteiligung. „Je mehr Privathaushalte sich freiwillig bei uns zur Teilnahme bewerben, desto aussagekräftiger wird die anschließende Auswertung. Zum einen können dadurch wichtige Informationen zum Radon-Vorkommen in Niedersachsen erfasst werden, zum anderen dient es dem langfristigen Gesundheitsschutz der Bevölkerung. Bei erhöhten Radonwerten in Innenräumen ist oft durch einfache Maßnahmen eine rasche Abhilfe möglich. Der NLWKN steht hier den Betroffenen beratend zur Seite.“ Im Südharz konnte sich der NLWKN durch eine große Resonanz aktiv im Strahlenschutz einbringen. Mehr als 900 Dosimeter wurden aus den Privathaushalten nach Ablauf des zwölfmonatigen Messzeitraums an den NLWKN zurückgesendet. Die Auswertung führte zu dem erfreulichen Ergebnis, dass für 84 Prozent der Privathaushalte im Südharz keine kritischen Radonwerte vorlagen. Die verbliebenen 16 Prozent des Teilnehmerkreises erhielt ein Empfehlungsschreiben über mögliche Maßnahmen zur Reduzierung von Radon. „Die gesammelten Messergebnisse werden durch den NLWKN anonymisiert ausgewertet und sind für die Einschätzung der Radonsituation in Niedersachsen sehr wertvoll. Aber auch positive Erkenntnisse zu gesammelten Messdaten wie beispielsweise im Südharz sind nur dann möglich, wenn wir eine möglichst große Datenbasis haben. Wir freuen uns über jeden Interessenten!“, betont Herrmann. Bewerbungen sind bis zum 30. November über die Webseite des NLWKN möglich unter www.nlwkn.de/radonmessung oder telefonisch werktags von 8 bis 16 Uhr unter 05121 509 313. Bei grundsätzlichen Fragen rund um das Thema Radon steht die Radonberatungsstelle Niedersachsen als Ansprechpartner zur Verfügung. Weitere Informationen und eine Möglichkeit zur Kontaktaufnahme gibt es unter www.nlwkn.niedersachsen.de/Radon Hintergrundinformationen: Hintergrundinformationen: Radon ist ein natürlich vorkommendes Edelgas, welches fortlaufend in unterschiedlichen Mengen überall im Untergrund entsteht. Durch die Bodenporen gelangt es in die Atmosphäre und verflüchtigt sich dort. Über undichte Stellen in Gebäude kann Radon jedoch eindringen und sich dort bei unzureichender Belüftung in der Innenraumluft ansammeln. Nach aktuellem Stand der Wissenschaft kann eine langfristige Einatmung von Radon und dessen Folgeprodukte in erhöhter Konzentration eine gesundheitsgefährdende Wirkung zeigen. Aufgrund der möglichen gesundheitlichen Auswirkungen wurde das Thema Radon und der Umgang damit 2017 im Strahlenschutzgesetz und der zugehörigen Strahlenschutzverordnung verankert. Da Menschen Radon weder riechen, schmecken noch sehen können, verschafft nur eine Radonmessung Gewissheit darüber, ob in einem Innenraum tatsächlich ein überdurchschnittlicher Radonwert vorliegt. Finanziert werden diese Messkampagnen durch das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) mit der gesetzlich festgelegten Zielsetzung, das Thema Radon im Rahmen des Gesundheitsschutzes einer breiteren Öffentlichkeit zugänglich zu machen. Zugleich werden wertvolle Daten für wissenschaftliche Studien über die bundesweite Radonsituation gewonnen. Die Ergebnisse dieser Messungen werden durch den NLWKN anonymisiert ausgewertet.

Radon-Messkampagne des NLWKN im Südharz endet mit erfreulichen Ergebnissen

Hildesheim. Mehr als 1.000 sogenannte Dosimeter hat der Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) Anfang 2023 an Privathaushalte in ausgewählten niedersächsischen Gemeinden im Südharz versendet. Viele Bürgerinnen und Bürger hatten sich zuvor beworben, um an einer großen Messkampagne des NLWKN zum Radon-Vorkommen teilzunehmen. Zwölf Monate lang erfassten die kleinen, schwarzen Messgeräte dabei die Konzentration des natürlich vorkommenden Edelgases in Innenräumen und Kellern. Durch die Auswertung der inzwischen vorliegenden Ergebnisse konnte der NLWKN wichtige und positive Erkenntnisse gewinnen – auch dank einer sehr hohen Resonanz. Mehr als 1.000 sogenannte Dosimeter hat der Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) Anfang 2023 an Privathaushalte in ausgewählten niedersächsischen Gemeinden im Südharz versendet. Viele Bürgerinnen und Bürger hatten sich zuvor beworben, um an einer großen Messkampagne des NLWKN zum Radon-Vorkommen teilzunehmen. Zwölf Monate lang erfassten die kleinen, schwarzen Messgeräte dabei die Konzentration des natürlich vorkommenden Edelgases in Innenräumen und Kellern. Durch die Auswertung der inzwischen vorliegenden Ergebnisse konnte der NLWKN wichtige und positive Erkenntnisse gewinnen – auch dank einer sehr hohen Resonanz. „90 Prozent der angemeldeten Personen, die wir mit Dosimetern ausgestattet hatten, haben diese an uns zurückgesendet. Aus insgesamt 362 Privathaushalten liegen uns nun mehr als 900 Messergebnisse vor – eine insgesamt sehr gute Auswertungsgrundlage. Die hohe Rücklaufquote zeigt dabei das große öffentliche Interesse an einer besseren Informationslage zur persönlichen Radon-Belastung und ist insgesamt ein toller Erfolg. Wir möchten uns herzlich bei allen Beteiligten für die rege Teilnahme bedanken“, sagt Susanne Herrmann von der niedersächsischen Radonberatungsstelle des NLWKN in Hildesheim. Erfreulich sind auch die Jahresmittelwerte, die der NLWKN ermittelt hat. „84 Prozent der Radonmesswerte liegen unterhalb des bestehenden Referenzwertes von 300 Becquerel pro Kubikmeter Raumluft. In diesem Fall sind keine weiteren Maßnahmen zur Reduzierung von Radon nötig, doch regelmäßiges Lüften wird prinzipiell empfohlen“, erklärt Susanne Herrmann. Durch einen Jahresmittelwert lässt sich die tatsächliche Radonkonzentration für die Gebäudenutzer am besten einschätzen, denn aufgrund eines unterschiedlichen Lüftungsverhaltens sind die gemessenen Werte in den Wintermonaten häufig höher als im Sommer. Die verbleibenden 16 Prozent der Messwerte werden nach aktuellem Stand der Wissenschaft als Referenzwertüberschreitungen eingeordnet. „Dabei gilt es allerdings zu beachten, dass ein Referenzwert kein Grenzwert ist und somit überschritten werden darf“, so Herrmann. Er diene als Maßstab für die Prüfung der Angemessenheit von Maßnahmen, denn Radon ist natürlichen Ursprungs und somit ist jeder Mensch immer und überall Radon unvermeidbar ausgesetzt, erläutert die Strahlenschützerin des NLWKN. Alle Teilnehmenden wurden nach der Auswertung über die Ergebnisse in ihrem Haushalt informiert. Eine detaillierte Auswertung der Messkampagne wird der Landesbetrieb in den kommenden Wochen auf seiner Webseite veröffentlichen. Bei den erhöhten Werten gibt es klar erkennbare Auffälligkeiten hinsichtlich der Räumlichkeiten. Die überwiegende Anzahl dieser Referenzwertüberschreitungen tritt demnach in Kellerräumen auf. Grundsätzlich ist der zeitliche Aufenthalt in Kellern als eher gering bis vernachlässigbar einzuschätzen. Ausnahmen bilden dabei Aufenthaltsräume wie beispielsweise Büros oder Gästezimmer, die regelmäßig für längere Zeiträume genutzt werden. Unabhängig von der Raumnutzung oder der Etage gibt es für die meisten Situationen oftmals rasche Hilfe, um die Radonkonzentration zu reduzieren. „Die Erfahrung der vergangenen Jahre hat gezeigt, dass hier sehr oft bereits eine kleine Maßnahme eine große Wirkung erzielen kann: Regelmäßiges und konsequentes Lüften!“, betont Susanne Herrmann. Ist durch regelmäßigen Luftaustausch keine Verbesserung der Radonsituation eingetreten, rät der NLWKN dazu, einen auf entsprechende Sanierungsmaßnahmen spezialisierten Fachbetrieb zu kontaktieren. Bei grundsätzlichen Fragen rund um das Thema Radon steht die Radonberatungsstelle Niedersachsen zur Verfügung. Weitere Informationen und Kontaktmöglichkeiten gibt es unter www.nlwkn.niedersachsen.de/Radon Hintergrundinformationen: Hintergrundinformationen: Radon ist ein natürlich vorkommendes Edelgas, welches fortlaufend in unterschiedlichen Mengen überall im Untergrund entsteht. Durch die Bodenporen gelangt es in die Atmosphäre und verflüchtigt sich dort. Über undichte Stellen kann Radon jedoch in Gebäude eindringen und sich dort bei unzureichender Belüftung in der Innenraumluft ansammeln. Nach aktuellem Stand der Wissenschaft kann eine langfristige Einatmung von Radon in erhöhter Konzentration eine gesundheitsgefährdende Wirkung zeigen. Aufgrund der möglichen gesundheitlichen Auswirkungen wurde das Thema Radon und der Umgang damit 2017 im Strahlenschutzgesetz und der zugehörigen Strahlenschutzverordnung verankert. Da Menschen Radon weder riechen, schmecken noch sehen können, verschafft nur eine Radonmessung Gewissheit darüber, ob in einem Innenraum tatsächlich ein überdurchschnittlicher Radonwert vorliegt. Zu diesem Zweck stellte die niedersächsische Radonberatungsstelle des NLWKN im Rahmen einer Radon-Innenraummesskampagne 2023/24 kostenfreie Messgeräte (Dosimeter) an Privathaushalte zur Verfügung und wertete diese nach Beendigung der Messung für alle Teilnehmenden aus. Finanziert werden diese Messkampagnen durch das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) mit der gesetzlich festgelegten Zielsetzung, das Thema Radon im Rahmen des Gesundheitsschutzes einer breiteren Öffentlichkeit zugänglich zu machen und anonymisierte Daten für wissenschaftliche Studien über die bundesweite Radonsituation zu erfassen. Die Auswahl des Untersuchungsgebietes für diese Messkampagne erfolgte nicht zufällig, sondern ist durch die unmittelbare Nähe zum Harz begründet. Geologisch bedingt bieten die Grundgesteine des Mittelgebirges im landesweiten Vergleich zur norddeutschen Tiefebene prinzipiell ergiebigere Quellen für Radon. In der Harzregion und Umgebung ist daher statistisch betrachtet mit höheren Radon-Messwerten zu rechnen als in den übrigen Regionen Niedersachsens.

Natürliche Strahlung in Deutschland

Natürliche Strahlung in Deutschland Die gesamte natürliche Strahlenexposition eines Menschen in Deutschland oder genauer die effektive Dosis beträgt durchschnittlich 2,1 Millisievert im Jahr. Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von 1 Millisievert bis zu 10 Millisievert . Der Mensch lebt seit jeher auf Grund von natürlichen Strahlenquellen in einer strahlenden Umwelt. Die dadurch vorhandene natürliche Strahlenexposition führt für einen Menschen in Deutschland zu einer jährlichen effektiven Dosis von durchschnittlich 2,1 Millisievert . Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von 1 Millisievert bis zu 10 Millisievert . Aufnahme radioaktiver Stoffe durch Atemluft und Nahrung Die natürliche Strahlenexposition setzt sich aus inneren und äußeren Komponenten zusammen. Die innere Komponente macht den Hauptanteil der natürlichen Strahlenexposition aus. Über die Atemluft und die Nahrung nimmt der Mensch seit jeher natürliche radioaktive Stoffe in den Körper auf: Die Inhalation des radioaktiven Gases Radon mit seinen Folgeprodukten führt pro Jahr zu einer effektiven Dosis von 1,1 Millisievert (Mittelwert, bezogen auf eine einzelne Person). Mit der Nahrung werden natürliche Radionuklide aus den radioaktiven Zerfallsreihen des Thoriums und des Urans sowie Kalium-40 und Kohlenstoff-14 aufgenommen; dadurch kommen jährlich circa 0,3 Millisievert (Mittelwert, bezogen auf eine einzelne Person) hinzu. Äußere Strahlenexposition durch kosmische und terrestrische Strahlung Die äußere Strahlenexposition beträgt etwa ein Drittel der gesamten natürlichen Strahlenbelastung - woraus eine Dosis von rund 0,7 Millisievert im Jahr (Mittelwert, bezogen auf eine einzelne Person) resultiert. Kosmische Strahlung Die äußere Strahlenexposition beinhaltet etwa zur Hälfte die kosmische Strahlung . Diese gelangt aus den Tiefen des Weltalls zur Erde und besteht im Wesentlichen aus energiereichen Teilchen. Auf ihrem Weg durch die Lufthülle wird durch Kernreaktionen mit den Atomkernen der Luftmoleküle die kosmische Strahlung zur Erdoberfläche hin zum großen Teil absorbiert. Die Intensität der kosmischen Strahlung hängt somit von der Höhenlage ab. Sie ist auf Meeresniveau am niedrigsten und nimmt mit der Höhe eines Ortes zu. Auf der Zugspitze ist sie viermal höher als an der Küste. Terrestrische Strahlung Zur äußeren Strahlenexposition zählt auch die terrestrische Strahlung . Ihre Ursache sind natürliche radioaktive Stoffe , die in den Böden und Gesteinsschichten der Erdkruste vorhanden sind - in regional unterschiedlichen Konzentrationen. Steine und Erden sind wiederum wichtige Rohstoffe für mineralische Baumaterialien . Die darin enthaltenen Radionuklide gehen in die Baustoffe, wie zum Beispiel Ziegel und Beton, über und tragen auf diese Weise beim Aufenthalt in Häusern ebenfalls zu einer äußeren Strahlenexposition bei. Die durch die terrestrische Strahlung verursachte jährliche effektive Dosis der Bevölkerung beträgt etwa 0,4 Millisievert (Mittelwert, bezogen auf eine einzelne Person), davon entfallen auf den Aufenthalt im Freien circa 0,1 Millisievert und auf den Aufenthalt in Gebäuden etwa 0,3 Millisievert . Medizinische und technische Anwendungen Neben der natürlichen Radioaktivität wirkt auf den Menschen auch Strahlung aus medizinischen und technischen Anwendungen, vor allem aus der Röntgendiagnostik. Die daraus resultierende Strahlenexposition beträgt in Deutschland circa 1,5 Millisievert pro Jahr (Mittelwert, bezogen auf eine einzelne Person). Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 01.08.2024

Aufgaben von Bund, Ländern und Betreibern im radiologischen Notfallschutz

Aufgaben von Bund, Ländern und Betreibern im radiologischen Notfallschutz Kommt es in einem deutschen Kernkraftwerk zu einem radiologischen Notfall , muss dessen Betreiber sofort die zuständigen Behörden informieren. Sie werden – wie bei allen denkbaren radiologischen Notfällen – schnellstmöglich aktiv, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. In einem Notfall bildet das Bundesumweltministerium zusammen mit verschiedenen Bundesbehörden das Radiologische Lagezentrum des Bundes. Für diesen Krisenstab fasst das BfS in einem radiologischen Lagebild alle wichtigen Informationen zum Unfallgeschehen zusammen, bewertet die Auswirkungen auf die betroffene Bevölkerung und die Umwelt und empfiehlt alle notwendigen Schutzmaßnahmen. Die Länder stimmen sich mit dem Bund über diese Vorschläge ab und führen die Maßnahmen bei Bedarf durch. Unter dem Begriff "radiologischer Notfallschutz" versteht man den Schutz der Bevölkerung vor den Auswirkungen von radiologischen Ereignissen. Radiologische Ereignisse sind beispielsweise Notfälle in Kernkraftwerken und anderen kerntechnischen Anlagen, Transportunfälle und Terroranschläge ("schmutzige Bomben"). Anlageninterner Notfallschutz: Aufgabe des Anlagenbetreibers In einer kerntechnischen Anlage - wie zum Beispiel einem Kernkraftwerk - ist der Betreiber für die Sicherheit der Anlage verantwortlich. Der anlageninterne Notfallschutz umfasst alle technischen und organisatorischen Maßnahmen, die innerhalb der kerntechnischen Anlage dafür sorgen sollen, dass keine gefährlichen Mengen radioaktiver Stoffe in die Umwelt gelangen können. Kommt es trotz allem zu einem radiologischen Notfall , muss der Betreiber unverzüglich die zuständigen Behörden von Bund, Ländern und Kommunen benachrichtigen (für die Aufsicht von kerntechnischen Anlagen sind meist die Umweltministerien in den Ländern und das Bundesumweltministerium zuständig). Anlagenexterner Notfallschutz: Aufgabe von Bund, Ländern und Kommunen Für den anlagenexternen Notfallschutz sind staatliche Behörden verantwortlich. Sie leiten auf Basis einer Bewertung der radiologischen Lage durch das Radiologische Lagezentrum des Bundes ( RLZ-Bund ) schnellstmöglich die notwendigen Notfallschutzmaßnahmen für die Bevölkerung ein. Dadurch sollen die Bevölkerung und die Umwelt außerhalb einer kerntechnischen Anlage vor gefährlichen Mengen radioaktiver Stoffe geschützt werden. Das Radiologische Lagezentrum des Bundes als Krisenstab Im Falle eines Notfalls mit radiologischen Folgen für Mensch und Umwelt bildet der Bund unter Leitung des Bundesumweltministeriums ( BMUV ) einen Krisenstab, das Radiologische Lagezentrum des Bundes . Kommt es zu einem radiologischen Notfall von überregionaler Bedeutung, stellt das Radiologische Lagezentrum des Bundes unter anderem Bundes- und Länderbehörden ein einheitliches Lagebild zur radiologischen Situation zur Verfügung. Zudem koordiniert es radiologische Messungen, empfiehlt Schutzmaßnahmen und informiert die Bevölkerung. Als Beratergremien des Bundesumweltministeriums unterstützen die Reaktor-Sicherheitskommission ( RSK ) und die Strahlenschutzkommission ( SSK ) das Radiologische Lagezentrum bei der Empfehlung von Schutzmaßnahmen. Darüber hinaus arbeitet das RLZ-Bund eng mit den Ländern zusammen. Bundesländer führen Katastrophenschutzmaßnahmen durch In einem radiologischen Notfall stimmen sich die Länder mit dem Bund über notwendige Katastrophenschutzmaßnahmen ab und führen diese durch. Die Katastrophenschutzbehörden der Länder veranlassen zum Beispiel, dass die Bevölkerung im Haus bleibt und Fenster und Türen schließt, um die Dosis durch externe Strahlung und Inhalation zu vermindern. Reicht dies nicht aus, wird die betroffene Bevölkerung evakuiert. Darüber hinaus organisieren sie die Verteilung von hochdosierten Jodtabletten , deren Einnahme bei Kindern und Erwachsenen Schilddrüsenkrebs vorbeugen soll. Das Technische Hilfswerk ( THW ), die Polizei, die Feuerwehr und verschiedene Hilfsorganisationen unterstützen die Länderbehörden. Nachdem die radioaktive Wolke abgezogen ist, verbleiben radioaktive Stoffe auf dem Boden und in der Nahrung. Die Länder ermitteln dann die Kontamination von Nahrungs- und Futtermitteln durch Probenahme und Messungen. Sämtliche Ergebnisse werden an das Integrierte Mess- und Informationssystem zur Überwachung der Umweltradioaktivitä t ( IMIS ) übermittelt. Längerfristige Maßnahmen nach einem radiologischen Notfall Um die längerfristige Strahlenbelastung der Bevölkerung nach einem radiologischen Notfall so gering wie möglich zu halten, steht den Behörden ein Maßnahmenkatalog zur Verfügung. Diesen hat der Bund mit Hilfe des BfS entwickelt. Er wird zurzeit mit Erkenntnissen nach dem Unfall in Fukushima fortgeschrieben. Der Maßnahmenkatalog enthält eine Sammlung möglicher langfristiger Maßnahmen nach einem radiologischen Notfall , wie zum Beispiel das Abtragen von Oberboden oder die Dekontamination von Flächen mit Hochdruckreinigern. Die Maßnahmen sollen gewährleisten, dass zum Beispiel evakuierte Menschen wieder in sichere Aufenthaltsbereiche zurückkehren können. Medien zum Thema Mehr aus der Mediathek Wie funktioniert Notfallschutz? Welche Szenarien gibt es für den radiologischen Notfall ? Wer macht im Ernstfall was? Das BfS klärt auf - in Videos, Grafiken und Broschüren. Stand: 25.06.2024

Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter

Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter Im Folgenden sind Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter vor oder während der Schwangerschaft aufgelistet. Diese Dosiskoeffizienten wurden für Inhalation und Ingestion sowohl für akute als auch für chronische Aufnahme mit Hilfe einer im BfS entwickelten Software ermittelt. Als Grundlage bei der Entwicklung der Software dienten die aktuellsten Empfehlungen der internationale Strahlenschutzkommission ICRP sowie die neuesten biokinetischen und dosimetrischen Modelle. Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter (PDF, 205 KB, Datei ist barrierefrei⁄barrierearm) Stand: 31.01.2024

Gefährdungen und Belastungen von Böden

Boden ist ein empfindliches Gut und unterliegt schon allein durch die vielfältige Nutzung der Böden, z. B. in der Landwirtschaft, bei der Bebauung, durch Industrie und Verkehr zahlreichen Gefährdungen und Belastungen. Bodenbelastungen können in zwei Formen auftreten: als stoffliche Belastung , in dem Fremd- bzw. Schadstoffe in den Boden eingetragen werden, oder als nichtstoffliche Belastung , in dem Natur und Zustand des Bodens geändert wird z.B. durch: Erosion (Wind- und Wassererosion), Verdichtung, Versiegelung (Abdichtung des Bodens gegen die Atmosphäre), Verschlämmung, Abtrag (durch Rohstoffabbau). Im Sinne des Bundes-Bodenschutzgesetzes handelt es sich in beiden Fällen dann um “schädliche Bodenveränderungen”, wenn diese Beeinträchtigungen der Bodenfunktionen geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für den einzelnen oder die Allgemeinheit herbeizuführen. Die größte Gefahr schädlicher Bodenveränderungen in Berlin besteht durch stoffliche Belastungen für das Grundwasser: Berlin bezieht sein gesamtes Trinkwasser aus dem Grundwasser, zu dem auch das aus Uferfiltrat gewonnene Grundwasser gehört. Besonders im Urstromtal steht das Grundwasser relativ nah an der Oberfläche und ist durch eine nur geringmächtige sandgeprägte Bodenschicht oft sehr schlecht gegen möglichen Schadstoffeintrag geschützt. Durch Beeinträchtigung des Grundwassers kann es zu Problemen bei der Trinkwasseraufbereitung und -versorgung kommen. Als besonders problematisch werden derzeit die Altlasten der alten Industriestandorte angesehen. Stoffliche Belastungen sind in der Vergangenheit durch unsachgemäßen Umgang mit wassergefährdenden Stoffen, Leckagen, Unfälle oder aufgrund von Kriegseinwirkungen entstanden. Auch heute noch kommt es zu stofflichen Belastungen durch unsachgemäße Handhabung von Mineralölen, aromatischen und chlorierten Kohlenwasserstoffen, PAK, PCB, Schwermetallen o.ä., aber auch z.B. durch Tausalze oder Hundekot in Baumscheiben. Quelle dieser Stoffe sind unter anderem Industrieanlagen, Tankstellen, chemische Reinigungen, Werkstätten, Lager und Umfüllanlagen, sie können jedoch auch aus dem Trümmerschutt stammen, der nach dem Krieg einplaniert wurde. Typische Stadtböden weisen deswegen in der Regel eine – stark schwankende – Grundbelastung mit diesen Stoffen auf. Schädliche Stoffeinträge gibt es aber auch auf Landwirtschaftsflächen zum Beispiel durch unsachgemäße Düngung oder auf Waldböden durch Luftschadstoffe. Die Wirkungen dieser stofflichen Belastungen sind so vielfältig wie die Stoffe selbst. Zunächst einmal können die Stoffe den Boden selbst und unmittelbar schädigen, häufig indem sie die Bodenorganismen oder die Pflanzenwurzeln beeinträchtigen. Über den Boden hinaus können die Belastungen über bestimmte “Pfade” weiter gehen: Wirkungspfad Boden – Mensch Er resultiert aus direktem Kontakt des Menschen mit dem Boden durch direkte Bodenaufnahme in den Mund (orale Aufnahme) oder durch Einatmen (Inhalation). Eine direkte Gefährdung des Menschen kann in seltenen Fällen dadurch entstehen, dass leichtflüchtige Bodenschadstoffe als schädliches Gas freigesetzt werden, das an der Bodenoberfläche austritt und durch Einatmen in den Körper gelangt. Vor allem für mit dem Boden spielende Kinder oder bei der Gartenarbeit ist der direkte Kontakt mit kontaminierten Boden relevant. Wirkungspfad Boden – Nutzpflanze Indirekte Wirkung zeigen die Bodenschadstoffe, wenn sie von (Nahrungs-) Pflanzen mit den Wurzeln aufgenommen werden; diese Schadstoffe können auch in die oberirdischen Pflanzenteile (Blätter, Früchte) transportiert werden. Der Verzehr solcher belasteter Nahrungspflanzen kann gesundheitsgefährdend sein. Bedeutsam ist dies auf ehemaligen Rieselfeldern und in Gärten, die auf ehemaligen Gewerbestandorten oder über Altablagerungen angelegt wurden. Dies kann auch auf Kleingärten in Berlin zutreffen; die dortigen Belastungen können allerdings ebenso durch schlechte Komposte (durch Asche etc.) oder unmittelbaren Straßeneinfluss entstanden sein. Wirkungspfad Boden – Grundwasser Der Boden gibt die Schadstoffe an das durchsickernde Wasser ab, das diese Belastung in das Grundwasser einträgt. Das Ausmaß dieser Belastung hängt vor allem von der Menge des Schadstoffs, von seiner Wasserlöslichkeit und von seiner Bindungskraft an Bodenpartikel ab. In Berlin ist die Belastung des Grundwassers die bedeutendste Auswirkung der Bodenverunreinigungen. Vor allem dann, wenn das Grundwasser der Trinkwassergewinnung dient, ist dieser Pfad wesentlicher Grund für notwendige Sanierungen. Je nach Nutzung der Fläche und Herkunft der Schadstoffe kann man unterscheiden: Altstandorte : Grundstücke stillgelegter Anlagen und sonstige Grundstücke, auf denen mit umweltgefährdenden Stoffen umgegangen worden ist und von denen eine Gefährdung ausgeht. Altablagerungen: Stillgelegte Abfallbeseitigungsanlagen sowie sonstige Grundstücke, auf denen Abfälle behandelt, gelagert oder abgelagert worden sind und von denen eine Gefährdung ausgeht. Immissionsgebiete: Gebiete, in denen Schadstoffe aus emittierenden Anlagen über die Luft in den Boden eingetragen werden. Rieselfelder : Die Böden sind durch Abwässer, die auf die Felder geleitet wurden, meist stark mit Schadstoffen angereichert. Landwirtschaftsflächen: Unsachgemäße Düngung (Tierpharmazeutika in der Gülle, Schwermetalle in Mineraldüngern, belastete Klärschlämme), Pestizide oder Luftschadstoffe können Äcker und Wiesen großflächig belasten. Waldgebiete: Im Wald machen sich vor allem versauernde und eutrophierende (= düngende) Luftschadstoffe bemerkbar, da die hohe Oberflächenrauheit die Luftschadstoffe auskämmt. Anders als in der Landwirtschaft fehlt die Bodenbearbeitung, so dass die Schadstoffe sich in der obersten Bodenschicht stark anreichern können. Da es normalerweise keine Düngung oder Kalkung gibt, wirkt sich der säurebildende Charakter von SO 2 , NO x und NH 3 im Boden besonders stark aus. Die in den letzten Jahren deutlich verringerten Schwermetalldepositionen sind auch in den Berliner Wäldern positiv zu beobachten. Für immobile Metalle wie Blei bedeutet dies jedoch eine weiterhin hohe Konzentration im Boden – wenn auch keine so hohe jährliche Steigerung mehr. Eine Gesamtbewertung der stofflichen Belastung des Berliner Stadtgebietes ist nicht möglich, da sich die bisherigen Untersuchungen dazu nicht auf die ganze Fläche beziehen, sondern die Proben nach vermuteten Belastungen genommen wurden. Wegen der hohen räumlichen Variabilität der Böden und der meist lokalen Belastungsursachen können die so ermittelten Werte nicht generell auf die Gesamtfläche übertragen werden. Versiegelung, Bodenschadverdichtung, Erosion (Wind- und Wassererosion), Abtrag, Auftrag und Durchmischung, also die nichtstofflichen Bodenbelastungen, beeinträchtigen nicht direkt und nicht primär die menschliche Gesundheit. Es lassen sich deswegen keine Belastungsgrenzen zur Gefahrenabwehr definieren und somit existieren keine diesbezüglichen Vorsorge- und Prüfwerte. In der Stadt bedeutet „nichtstoffliche Belastung“ vor allem Versiegelung des Bodens durch Nutzung als Baufläche für Siedlung und Verkehr. Wesentliches Ziel des Bodenschutzes im städtischen Bereich ist deswegen generell der Erhalt des Bodens, sein Schutz vor Überbauung und Versiegelung. Immer mehr Landwirtschafts- und Forstfläche, also Nutzungen, die den Boden relativ naturnah belassen, werden in Siedlungs- und Verkehrsfläche umgewandelt Flächeninanspruchnahme oder Flächenverbrauch , wodurch es zu starken Bodenveränderungen und somit zum Verlust wichtiger Bodenfunktionen kommt. Folgen sind die schleichende Verminderung der klimaökologischen Ausgleichsfunktion, der Wasserspeicherfunktion, der biotischen Funktionen sowie der Erholungsfunktion stadtnaher Freiräume. Die Dynamik der Veränderung der Bodennutzung wird deutlich, wenn man die Entwicklung der Siedlungs- und Verkehrsflächen näher betrachtet. Der steigende Lebensstandard seit Ende des zweiten Weltkrieges führte zu einer stetigen Ausweitung von Siedlungs- und Verkehrsflächen. Die räumliche Ausbreitung rund um die Ballungsgebiete führt zu einem erhöhten Verkehrsaufkommen auch wegen des zunehmenden Individualverkehrs. Daher entstehen neben den lokalen Immissionen durch mehr Autoverkehr auch mehr globale Belastungen (Treibhauseffekt). Aus Sicht des Bodenschutzes ist sowohl der Freiflächenverbrauch für versiegelungsintensive Nutzungen (z.B. Siedlungs- und Verkehrsflächen) als auch die Zunahme des Versiegelungsgrades insgesamt eindeutig negativ zu bewerten. Die Versiegelung von Böden hat gravierende Folgen für das Ökosystem Boden. Diese Folgen sind nicht oder nur teilweise reversibel. Vollständig versiegelte Flächen verlieren ihre Funktion als Pflanzenstandort, als Lebensraum von Organismen und als Grundwasserspender und –filter. Bodenversiegelung wirkt sich auf Grund der engen Verzahnung des Schutzgutes Boden mit den Schutzgütern Pflanzen und Tiere, Wasser und Klima auch auf diese negativ aus. Eine Trendwende bei Flächenverbrauch und Versiegelung herbeizuführen, ist zentrales Anliegen des vorsorgenden Bodenschutzes und seiner Maßnahmen.

1 2 3 4 541 42 43