API src

Found 114 results.

Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV II (DRIVAR II)

Das Projekt "Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV II (DRIVAR II)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Die Variabilität der oberen Atmosphäre der Erde wird durch die Schwankungen in der Absorption solarer UV- und EUV-Strahlung die Ionosphäre hervorgerufen. Dabei tritt jedoch eine Verzögerung auf, die durch das Zusammenspiel verschiedener physikalischer und chemischer Prozesse verursacht wird. So haben die bestimmenden Ionisations- und Rekombinationsprozesse in den verschiedenen Schichten der Ionosphäre, aber auch Transportprozesse einen entscheidenden Einfluss. Die Rolle dieser Prozesse wurde in verschiedenen Studien untersucht, jedoch haben sich diese Analysen bisher nur mit einzelnen Aspekten der Verzögerung beschäftigt.Im Projekt DRIVAR II werden jene Aspekte der Verzögerung untersucht werden, die bisher nicht in Studien aufgenommen wurden. Dies beinhaltet die Variation der Verzögerung in hohen und niedrigen Breiten und die Rolle von Kopplungsprozessen zwischen Thermosphäre und Ionosphäre. Aufbauend auf diesen Ergebnissen und vorangegangenen Studien wird im Rahmen des Projektes eine globale Beschreibung der Verzögerung bereitgestellt.Die Analyse wird dabei einerseits auf etablierten Datensätzen (z.B. SDO-EVE, GOES, GUVI, Ionosonde oder TEC-Karten) aufbauen, aber andererseits auch neue Daten berücksichtigen (z.B. GOLD und ICON). Diese Vielzahl an solaren, thermosphärischen und ionosphärischen Parametern wird eine detaillierte Beschreibung der ionosphärischen Verzögerung ermöglichen. Hinzu kommen Modelluntersuchungen mit dem Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Modell und dem Thermosphere-Ionosphere- Electrodynamics General Circulation (TIE-GCM) Modell. Die Untersuchungen mithilfe dieser Modelle werden die verantwortlichen Prozesse ionosphärischer Variabilität zu bestimmen. Mit den Ergebnissen der Untersuchungen sollen dann ggf. auch Vorschläge für die Optimierung dieser Modelle formuliert werden und empirische Modelle ergänzt werden.Mit dem DRIVAR-II-Projekt werden die ionosphärischen und thermosphärischen Prozesse, welche die verzögerte Reaktion der Ionosphäre bestimmen umfassender und genauer analysiert. Diese Untersuchungen werden auch das generelle Verständnis von Prozessen in der oberen Atmosphäre verbessern und sind für das Vorhersagen von ionosphärischen Bedingungen interessant.Das Projekt ist eine Kooperation zwischen dem Institut für Solar-Terrestrische Physik in Neustrelitz und dem Institut für Meteorologie der Universität Leipzig.

DECOR: Der Einfluss der Dynamik auf die Zusammensetzung und den Transport von klimarelevanten Spurenstoffen in der extratropischen oberen Troposphäre und unteren Stratosphäre

Das Projekt "DECOR: Der Einfluss der Dynamik auf die Zusammensetzung und den Transport von klimarelevanten Spurenstoffen in der extratropischen oberen Troposphäre und unteren Stratosphäre" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. durchgeführt. Die Quantifizierung der Effekte von Transport, Mischung und chemischer Prozessierung von klimarelevanten Spurengasen in der extratropischen oberen Troposphäre und unteren Stratosphäre (UTLS) ist von großer Bedeutung für das Verständnis des Strahlungsbudgets der Atmosphäre. Dynamische Systeme wie der Jetstream, der Asiatische Monsun, Schwere- und Rossbywellen verändern die Verteilung und den Transport von Spurenstoffen in der UTLS und beeinflussen dadurch das Klima. Ziel des Projektes ist es die Veränderung der Zusammensetzung und des Transports in der UTLS durch diese dynamischen Systeme zu untersuchen. Ein spezifischer Fokus liegt hierbei auf den Spurengasen H2O, O3, Stickoxid- und Halogenverbindungen sowie Zirren. Zu diesem Zweck wird das Atmosphärische chemische Ionisations-Massenspektrometer AIMS und das durchstimmbare Diodenlaser Hygrometer WARAN bei WISE eingesetzt. Erfolgreiche erste Messungen wurden bereits während der Kampagnen TACTS/ESMVal, ML-CIRRUS und POLSTRACC/GW-Cycle/SALSA durchgeführt. Der Nachweis mit dem Reagenzien SF5- wurde bislang zur Messung der Spurengase HCl, HNO3, SO2 und HONO verwendet. In diesem Projekt schlagen wir den quantitativen Nachweis von ClONO2 und HBr mit AIMS als Weiterentwicklung vor. Im Rahmen der WISE Mission liegt der Fokus auf der quantitativen Bestimmung der Beiträge von stratosphärischem O3 und HNO3 in der UTLS abgeleitet aus dem stratosphärischen Tracer HCl. Transportprozesse und ihr Einfluss auf die Inversionsschicht der Tropopause (TIL) werden in Abhängigkeit von Breite und dynamischer Situation untersucht . Tracer-Tracer Korrelationen in der extratropischen Tropopausen Schicht werden eingesetzt um den Mischungszustand in und oberhalb dieser Schicht zu charakterisieren. Unsere in-situ Messungen werden zur Validierung der Fernerkundungsinstrumente GLORIA (HNO3, ClONO2, H2O und SO2), DOAS (HONO, Bry) und WALES (H2O) herangezogen. Der Einfluss von Eiswolken und kaltem Aerosol auf die Spurengaszusammen in der polaren UTLS wird mit Daten der Mission POLSTRACC bestimmt. Die Aufnahme von HNO3 in Eis und die Bildung von kondensierten Salpetersäure/Wasser Kondensaten ist bei tiefen Temperaturen unzureichend verstanden. Diese Fragestellungen werden aus Messungen von Wasser, gasförmiger HNO3 und HNO3 in Eispartikeln beantwortet. Tracer-tracer Korrelationen der Chlor- und Stickoxidverbindungen werden benutzt um die Verteilung von Chloraktivierung und De- und Nitrifizierung zu bestimmen. Unsere Messungen dienen dazu das Verständnis des Einflusses dynamischer und heterogener chemischer Prozesse auf die Verteilung klimarelevanter Spurengase in der UTLS zu verbessern.

Untersuchungen zum Einfluß des Weltraumwetters auf die Chemie und Dynamik der Erdatmosphäre (SPEACH)

Das Projekt "Untersuchungen zum Einfluß des Weltraumwetters auf die Chemie und Dynamik der Erdatmosphäre (SPEACH)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Energetische Elektronen aus der Aurora und den Strahlungsgürteln sind bekannte Quellen von Stickoxiden in der Auroraregion der oberen Mesosphäre und unteren Thermosphäre (MLT, 60-140 km). Im polaren Winter können diese Stickoxide bis in die mittlere Stratosphäre (30—45 km) herunter transportiert werden; sie variieren dabei mit der geomagnetischen Aktivität und dem dynamischen Zustand der Atmosphäre. Hier tragen Stickoxide maßgeblich zum katalytischen Ozonabbau bei; da Ozon eine wesentliche Rolle in der Strahlungsheizung der Stratosphäre spielt, ändern sich durch den Abwärtstransport von auroralen Stickoxiden auch Temperaturen und Windfelder. Diese Änderungen der Atmosphärendynamik können die ganze Atmosphäre bis hinunter zu troposphärischen Wettersystemen betreffen. Aus diesem Grund wurde kürzlich zum ersten Mal empfohlen, geomagnetische Aktivität als Teil des solaren Forcings des Klimasystems in Klima-Chemiemodellstudien wie CMIP-6 zu berücksichtigen. Die atmosphärischen Ionisationsraten, welche verwendet werden, um solche Modellexperimente anzutreiben, basieren empirisch auf Flüssen von präzipitierenden Elektronen, welche jedoch mit großen Unsicherheiten behaftet sind; neue Studien legen nahe, daß es ernsthafte Probleme mit der Genauigkeit dieser Daten gibt. In diesem Projekt werden wir untersuchen, wie vom Sonnenwind getriebene Prozesse in der Magnetosphäre präzipitierende Elektronen verschiedener Energien beeinflussen, und welchen Einfluß diese präzipitierenden Elektronen auf die Zusammensetzung, Temperatur, und Windfelder in der mittleren Atmosphäre haben.Insbesondere werden wir untersuchen:• Wie beeinflussen vom Sonnenwind getriebene Prozesse in der Magnetosphäre das Präzipitieren von Strahlungsgürtelelektronen in die Atmosphäre?• Zu welchen Energien werden präzipitierende Elektronen in den unterschiedlichen geomagnetischen Stürmen in der Magnetosphäre beschleunigt? • Welcher Energiebereich der Präzipitierenden Elektronen hat den größten Einfluss auf die Zusammensetzung und Dynamik der mittleren Atmosphäre?Dazu werden Modellsimulationen mit dem neuentwickelten VERB-4D Modell durchgeführt, welches Elektronenbeschleunigung in die Atmosphäre durch Welle-Teilchen-Wechselwirkungen mit Chorus, Plasmaspheric hiss, hiss in plumes, und EMIC-Wellen berücksichtigt. Ergebnisse werden mit NOAA POES Daten validiert. Modellierte Elektronenflüsse am Oberrand des Modells werden als Input verwendet für das neuentwickelte Klima-Chemiemodells EMAC/EDITh (Boden bis 220km). Modellierte Temperaturen und der Stickoxid-Gehalt werden anhand von Beobachtungen validiert. Fallstudien werden durchgeführt werden für geomagnetische Stürme, die durch Korotating Interaction Regions (CIR) und solare koronale Massenauswürfe (CMEs) ausgelöst wurden, um zu untersuchen, wie die verschiedenen Prozesse unterschiedliche Bereiche der Atmosphäre beeinflussen.

Teilprojekt 9 (GUF-NF): Ausbau des Taunusobservatoriums (TO) am Kleinen Feldberg im Hinblick auf umfassende in-situ-Messungen von Aerosolen und kurzlebigen Spurengasen im Rahmen von ACTRIS

Das Projekt "Teilprojekt 9 (GUF-NF): Ausbau des Taunusobservatoriums (TO) am Kleinen Feldberg im Hinblick auf umfassende in-situ-Messungen von Aerosolen und kurzlebigen Spurengasen im Rahmen von ACTRIS" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Im Rahmen von ACTRIS-D wird das Taunusobservatorium (TO) mit modernsten Messgeräten ausgestattet. Die Geräte dienen umfassenden in-situ Messungen von Aerosolen, Spurengasen, meteorologischen Parametern sowie Strahlungsflüssen. Aerosolspektrometer ermöglichen die Erfassung der Aerosolgrößenverteilung zwischen 1 nm und 10 Mikro m. Des Weiteren sind Aerosol-Messgeräte zur Bestimmung der Rußkonzentration, der optischen Eigenschaften und der größenaufgelösten chemischen Zusammensetzung vorgesehen. Die Messung der Spurengase umfasst O3, NOx, CO, SO2 und NH3. Ein Protonentransfer-Massenspektrometer (MS) und ein Medusa GC-Flugzeit-MS ermöglichen die Messung von flüchtigen organischen Substanzen und Kohlenwasserstoffen. Für die Messung gasförmiger Schwefelsäure und hochoxygenierter organischer Moleküle ist ein Chemisches-Ionisations-MS mit Nitrat-Primärionen vorgesehen. Zusätzlich zu den geplanten Langzeitmessungen der genannten Komponenten ermöglichen die Geräte detaillierte Studien zur Aerosolnukleation und zum Aerosolwachstum sowie zum Einfluss verschiedener Spurengase auf diese Prozesse. Aufgrund der Lage des TO können die dort ankommenden Luftmassen entweder relativ sauber (Luft von der bewaldeten Region im Nordwesten) oder anthropogen belastet (Luft vom Rhein-Main-Gebiet in südlicher Richtung) sein. Aus diesem Grund kann ebenfalls der Einfluss der Luftmassenherkunft (biogen vs. anthropogen) auf die Aerosol-Beladung und die Partikelneubildung untersucht werden. In vergangenen Jahren wurden bereits mehrere umfangreiche Messkampagnen am TO durchgeführt (in Zusammenarbeit mit dem Max-Planck-Institut für Chemie in Mainz, der Technischen Universität Darmstadt, der Universität Bremen, etc.). Die Ausstattung des Taunus-Observatoriums mit modernsten Messgeräten für kontinuierliche Langzeitmessungen etabliert den Standort als herausragende Forschungs- und Messstation.

Untersuchung der Schlüsselmechanismen der Aerosolnukleation in der tropischen Troposphäre über dem Indopazifik im Rahmen der HALO-Mission CAFE-Pacific

Das Projekt "Untersuchung der Schlüsselmechanismen der Aerosolnukleation in der tropischen Troposphäre über dem Indopazifik im Rahmen der HALO-Mission CAFE-Pacific" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Im Rahmen des Projekts soll die Neubildung von Aerosolpartikeln in der tropischen oberen Troposphäre über dem Indopazifik untersucht werden. Die chemischen Substanzen, die für die Aerosolnukleation und das Wachstum von Partikeln in der tropischen oberen Troposphäre verantwortlich sind, konnten bisher nicht identifiziert werden. Ein zentrales Ziel der Mission CAFE-Pacific mit dem Forschungsflugzeug HALO wird es sein, die Nukleationsprozesse in der oberen Troposphäre zu untersuchen und insbesondere die für die Nukleation verantwortlichen Substanzen erstmals zu identifizieren und zu quantifizieren. Mit Hilfe des in diesem Projekt eingesetzten Chemischen Ionisations-Massenspektrometers können schwerflüchtige Substanzen wie Schwefelsäure, Methansulfonsäure und hochoxidierte organische Verbindungen gemessen werden. Es werden die photochemischen Oxidationsprozesse, die im Ausfluss von hochreichender Konvektion ablaufen, untersucht, beispielsweise die Umwandlung von Dimethylsulfit zu Schwefeldioxid, Schwefelsäure und Methansulfonsäure. Die Aufklärung der Oxidations- und Nukleationsprozesse ermöglicht es, die Rolle der Aerosolnukleation in der tropischen oberen Troposphäre als zentrale Quellregion sowohl für die Entstehung von Wolkenkondensationskernen in den Tropen als auch für die Entstehung der stratosphärischen Aerosolschicht zu beurteilen.

Die Strukturen der Tagionosphären von Mars und Venus: Vergleich und Interpretation eines schnellen und flexiblen Modells mit laufenden Beobachtungen

Das Projekt "Die Strukturen der Tagionosphären von Mars und Venus: Vergleich und Interpretation eines schnellen und flexiblen Modells mit laufenden Beobachtungen" wird vom Umweltbundesamt gefördert und von Rheinisches Institut für Umweltforschung an der Universität zu Köln e.V. durchgeführt. Die Beobachtungen der Radio Science Experimente Mars Express Radio Science, Mars Global Surveyor Radio Science und Venus Express Radio Science liefern eine sehr große Datenbasis für die Elektronendichteverteilung der Tagionosphäre von Mars und Venus. In der Laufzeit des Original-Antrags erfolgte die Ableitung von Profileigenschaften/Umgebungsparametern und die Entwicklung eines schnellen, flexiblen zeitunabhängigen photochemischen Modells der ionosphärischen Elektronendichte (IonA-1) für Mars (Neutralatmosphäre: Mars Climate Database) und Venus (Neutralatmosphäre: VenusGRAM). Der Vergleich der beobachteten und modellierten MaRS und VeRa Parameter des ionosphärischen Hauptmaximums (M2/V2) ergaben für Mars global eine exzellente Übereinstimmung, aber nicht für Venus (unrealistische VenusGRAM Neutralatmosphäre, Peter et al., 2014). Für die Modellierung kleinskaliger Ionosphärenmerkmale wird jedoch die individuelle Übereinstimmung der jeweiligen M2/V2 Höhen und Breiten benötigt, da dies auf Ähnlichkeiten zwischen realer und Modellatmosphäre zur Zeit der Beobachtung hinweist. Für die Modellierung von Meteorschichten unterhalb der Sekundärschicht M1/V1 wurden Fallstudien mit entsprechenden MaRS Profilen in Kombination mit einem Modell für Meteorschichten (IonA/MSDM) durchgeführt. MSDM berücksichtigt die Deponierung von Mg und Fe in eine Atmosphäre und simuliert die Bildung von Metallionen durch Photoionisation/Ladungsaustausch. Ein zusätzlich entwickeltes hydrostatisches 1D Modell der Neutralatmosphäre für ionosphärischen Höhen (NIA) bildet als flexiblere Neutralatmosphäre mit kleinskaligem Höhengitter die Basis für die Anwendung von IonA auf einen größeren Beobachtungsdatensatz. Die Weiterentwicklung von IonA-1 zu einem zeitabhängigen photochemischen Modell mit komplexem Reaktionsschema (Iona-2) ermöglicht die Modellierung von ionosphärischen Ionen. Der Fortsetzungsantrag soll NIA und IonA-2 koppeln, um ein detaillierteres Verständnis der Wechselwirkung zwischen den Ionosphären und Neutralatmosphären in ionosphärischen Höhen zu erreichen. Die Radio Science Beobachtungen der unteren Neutralatmosphäre erfolgen fast zeitgleich mit den Ionosphärenbeobachtungen und bietet so eine erste Abschätzung der Neutraldichte für NIA. Das gekoppelte Modell der Neutralatmosphäre/Ionosphäre mit konsistenter Berechnung der Neutral, Ionen- und Elektronentemperaturen (a) deckt den transportdominierten Bereich der Ionosphäre oberhalb von M2/V2 ab, (b) liefert eine realistischere Modellierung der Anomalien unterhalb von M1/V1, (c) schätzt den Beitrag der sekundären Ionisation in M1/V1/M2/V2 ab, (d) liefert Erklärungen für den sog. Bulge, eine anomale Anhäufung von Elektronen in der Topside und (e) stellt mögliche Zustände der Neutralatmosphäre in ionosphärischen Höhen während der Beobachtungen zur Verfügung. Der letzte Punkt dient der Weiterentwicklung von globalen Zirkulationsmodellen, besonders für Venus, da die Datenlage im entsprechenden Höhenbereich sehr schlecht ist.

Entwicklung der Laserionisation bei Atmosphärendruck: APLI

Das Projekt "Entwicklung der Laserionisation bei Atmosphärendruck: APLI" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Physikalische und Theoretische Chemie durchgeführt. In einer Zusammenarbeit der Physikalischen und Theoretischen Chemie und der Analytischen Chemie der BUW ist es 2005 gelungen, neben den etablierten Atmosphärendruck-Ionisationsverfahren ESI, APCI und APPI eine vierte AP Methode einzuführen, die auf der Laserionisation basiert (Atmospheric Pressure Laser Ionization, APLI). Das Verfahren hat ein sehr großes Potential im Bereich der Ultra-Spurenanalytik in der Gas- und Flüssigphase und findet zurzeit international größere Beachtung. Mit Hilfe der APLI werden völlig neue Ansätze in der Atmosphärendruck-Massenspektrometrie möglich. Diese sollen in den kommenden Jahren mit Nachdruck verfolgt werden. Die APLI Methode verbindet die Massenspektrometrie sowohl mit den chromatographischen Methoden HPLC, CE, als auch GC. Darüber hinaus kann sie direkt an Reaktoren gekoppelt werden, die bei Atmosphärendruck operieren und ist damit optimal für den Einsatz in atmosphärisch-chemischen Untersuchungen geeignet.

7 Schmalband-Atmospherics a.t.B.-Registrierung (keine Blitze) der horizontal und vertikal polarisierten Luftmassenbewegungen; Atmospherics a.t.B.-Wirkungsgroesse auf biologische und medizinische Systeme

Das Projekt "7 Schmalband-Atmospherics a.t.B.-Registrierung (keine Blitze) der horizontal und vertikal polarisierten Luftmassenbewegungen; Atmospherics a.t.B.-Wirkungsgroesse auf biologische und medizinische Systeme" wird vom Umweltbundesamt gefördert und von Sönning, Medizin-Meteorologe durchgeführt. Die Meteorologie kennt zur Darstellung biotroper Wettervorgaenge nur die Trivialparameter Temperatur und Feuchte der freien Atmosphaere (Toelzer Schema), die jedoch in umbauten Raeumen wie z.B. Wohnungen auch bei Vollklimatisierung und elektrischer Abschirmung nicht wirken und ausserdem die erwiesene Wettervorfuehligkeit nicht erklaeren koennen. Der derzeit einzige bekannte Parameter, der aufgrund der Wellenlaenge in alle umbauten Raeume eindringen kann sind die Atmospherics (Sferics) der natuerlichen elektromagnetischen Impulsstrahlung der Atmosphaere (AIS) im Einzugsbereich bis maximal 500 km, aber nicht die Gewitterblitze. Es wurden bis heute rund 7 860 000 Sferics-Messzyklen registriert und bearbeitet und dies gestattet folgende Aussage: Wesentlichst ist, dass die biotrope Wirkung dieser Sferics-Frequenzbaender (oder Wechselfelder) nur dann vorhanden ist, wenn die Huellkurve dieser Impulse der Zeitbasis biologischer Systeme entspricht. Als Zeitbasis zu verstehen ist z.B. die Refraktaerzeit der Synapsen, die Reaktionsgeschwindigkeit der Ionen des elektrostatischen Grundtonus der Extrazellulaerfluessigkeit oder das Membranverhalten der Astrozyten. So einfach, wie allgemein ueber das Problem referiert wird, ist es wahrlich nicht.

Entwicklung eines tragbaren Ionenmobilitaetsspektrometers mit Korona-Ionisierungsquelle fuer die schnelle Analytik von Stoffen unter Feldbedingungen

Das Projekt "Entwicklung eines tragbaren Ionenmobilitaetsspektrometers mit Korona-Ionisierungsquelle fuer die schnelle Analytik von Stoffen unter Feldbedingungen" wird vom Umweltbundesamt gefördert und von Bruker-Saxonia-Analytik durchgeführt.

Dosimetrie gepulster Strahlung

Das Projekt "Dosimetrie gepulster Strahlung" wird vom Umweltbundesamt gefördert und von Universität Gießen, Strahlenzentrum durchgeführt. Es wird Dosimetrie von gepulster Elektronen- und Bremsstrahlung am Giessener Elektronenlinearbeschleuniger (LB) durchgefuehrt. Dazu werden die Ausgangsimpulse der benutzten Parallel- und Kugelionisationskammern in Abhaengigkeit von der Elektronenenergie, von deren Srom, von der Wiederholungsfrequenz und Impulsdauer des LB untersucht.

1 2 3 4 510 11 12