API src

Found 235 results.

T!Raum - greenCHEM - LiqChlor

Das Projekt "T!Raum - greenCHEM - LiqChlor" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Freie Universität Berlin, Institut für Chemie und Biochemie, Aufgabenbereich Anorganische Chemie.

Nachhaltige Produktion von Natrium-Ionen-Batterien, NaNaBatt - Nachhaltige Produktion von Natrium-Ionen-Batterien

Das Projekt "Nachhaltige Produktion von Natrium-Ionen-Batterien, NaNaBatt - Nachhaltige Produktion von Natrium-Ionen-Batterien" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: IoLiTec - Ionic Liquid Technologies GmbH.

4NiB - Vier-Volt-Natrium-Ionen-Batterie, 4NiB - Vier-Volt-Natrium-Ionen-Batterie

Das Projekt "4NiB - Vier-Volt-Natrium-Ionen-Batterie, 4NiB - Vier-Volt-Natrium-Ionen-Batterie" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg.

Energieeffiziente Chemie: Niedertemperaturmaterialsynthese in Ionischen Flüssigkeiten

Das Projekt "Energieeffiziente Chemie: Niedertemperaturmaterialsynthese in Ionischen Flüssigkeiten" wird/wurde gefördert durch: Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Max-Planck-Institut für chemische Physik fester Stoffe / Technische Universität Dresden. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Ionische Flüssigkeiten sind Salze, die unterhalb 100 Grad C flüssig sind und als unkonventionelle Lösungsmittel eingesetzt werden. Da sie keinen messbaren Dampfdruck besitzen, gelten sie als umweltfreundlich. Ihr hochpolarer Charakter wird genutzt, um Niedertemperatursynthesen für anorganische Materialien zu entwickeln, die energieaufwendige Hochtemperaturprozesse ersetzen sollen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Tieftemperatur-Umwandlungen von komplexen festen Präkursoren in ionischen Flüssigkeiten: Neue Verbindungen und Einsichten in Reaktionsprinzipien

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Tieftemperatur-Umwandlungen von komplexen festen Präkursoren in ionischen Flüssigkeiten: Neue Verbindungen und Einsichten in Reaktionsprinzipien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Niedertemperatursynthesen anorganischer Materialien in ionischen Flüssigkeiten (ILs) führten in den letzten Jahren zu bemerkenswerten Ergebnissen. So konnten z. B. ein neues Germanium-Allotrop, ein supraleitendes Material auf der Basis von aromatischen Tellurringen sowie auch große Cluster und Heteropolykationen in ionischen Flüssigkeiten synthetisiert werden. Ein Projektziel ist die Suche nach neuen metastabilen bzw. Niedertemperaturverbindungen auf der Basis von Elementen der Gruppen 13 bis 16, von denen wir außergewöhnliche chemische und physikalische Eigenschaften erwarten. Um dieses zu erreichen, sollen komplex aufgebaute, heteropolare Vorläuferverbindungen unter milden Bedingungen in ionischen Flüssigkeiten so umgesetzt werden, dass Baugruppen als Ganzes herausgelöst werden, die dann in Lösung modifiziert und in neuen Verbindungen rekristallisiert werden können. Auf diese Weise können die typischen thermodynamischen und kinetischen Einschränkungen der Festkörperchemie überwunden werden. Alle Produkte sollen mit modernen Methoden vollständig charakterisiert werden. Da wenig über die Grundlagen dieser Chemie in ionischen Flüssigkeiten bekannt ist, werden wir auch verschiedene Parameter untersuchen, die Einfluss auf die Löslichkeit, Reaktivität und das Kristallisationsverhalten ausüben. Neben Temperatur, Konzentration und der Lewis-Säurestärke soll insbesondere der Einfluss der ionischen Flüssigkeit untersucht werden, indem gezielt synthetisierte ILs eingesetzt werden. Diese sollen es ermöglichen, die Synthesevorschriften zu optimieren und die Luft- und Feuchtigkeitsempfindlichkeit des Reaktionsmediums zu reduzieren. Mittels zeitaufgelöster NMR-Spektroskopie wird der Reaktionsfortschritt in der IL (Lösungs-NMR) ebenso wie der Beginn der Strukturbildung (Festkörper-NMR) verfolgt werden.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Die synthetische Materialchemie steht vor enormen Herausforderungen: Die Energiewende erfordert völlig neue Materialien mit herausragenden Eigenschaften - effektive Fotokatalysatoren für die solargetriebene Wasserstoffentwicklung, effiziente Energiespeichermaterialien, Materialien für Energiekonversion und vieles mehr. Auf der anderen Seite besteht die zwingende Notwendigkeit des ressourcenschonenden Einsatzes von Rohstoffen und Energie durch effizientere Herstellung bekannter und bereits verwendeter Materialien. Hier müssen nachhaltige chemische Prozesse erdacht und entwickelt werden, die bei niedrigerer Temperatur ablaufen, höhere Reinheit und Ausbeute ermöglichen und weniger Abfall produzieren. Eine Erfolg versprechende Option hierfür ist die Nutzung von ionischen Flüssigkeiten (engl. Ionic Liquids, ILs) - organische Salze, die bereits unterhalb 100 Grad Celsius, oftmals sogar bei Raumtemperatur, als hoch polare Flüssigkeiten vorliegen. Die einzigartigen Eigenschaften dieser neuartigen 'Designer-Lösungsmittel' lassen sich durch vielfältige Variation ihrer chemischen Zusammensetzung an das jeweilige Synthesesystem adaptieren. Vielversprechende erste Forschungsergebnisse zeigen, dass unter Nutzung von ILs anorganische Materialien (Metalle, Legierungen, Halbleiter, Hartstoffe, Funktionswerkstoffe etc.) unter Umgebungsbedingungen hergestellt werden können. Dadurch lassen sich Energieeinsatz und technischer Aufwand im Vergleich zu den bisher notwendigen Hochtemperaturprozessen, wie Schmelzreaktionen, Solvothermalsynthesen oder Gasphasenabscheidungen, enorm reduzieren. Zugleich werden chemische Materialsynthesen besser steuerbar, was ebenfalls die Energie- und Rohstoffeffizienz erhöht. Unabhängig davon eröffnen Synthesen in ILs die Möglichkeit, auch völlig neue Niedertemperaturverbindungen mit noch unbekannten chemischen und physikalischen Eigenschaften erstmalig zugänglich zu machen. Tatsächlich lassen sich in diesem frühen Stadium der Forschung noch längst nicht alle wissenschaftlichen, ökonomischen und ökologischen Implikationen abschätzen. Somit sind die Ziele des Schwerpunktprogramms: (1) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien, (2) Entdeckung neuartiger, auch unorthodoxer Funktionsmaterialien, die nur durch die Synthesen nahe Raumtemperatur in ILs zugänglich sind, (3) Verständnis der Prinzipien von Auflösung, Reaktion und Abscheidung anorganischer Feststoffe in ILs.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Synthese anorganischer Materialien in ionischen Flüssigkeiten: Aufklärung der Reaktionsmechanismen vom Komplex zum Kristall

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Synthese anorganischer Materialien in ionischen Flüssigkeiten: Aufklärung der Reaktionsmechanismen vom Komplex zum Kristall" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Institut für Physikalische und Theoretische Chemie - Mulliken Center for theoretical Chemistry.Unter Verwendung von ionischen Flüssigkeiten wurde in den vergangenen Jahren eine Vielfalt an neuartigen Synthesen von kristallinen und anorganischen Materialen entwickelt. Trotz vorteilhafter Eigenschaften und Synthese-Bedingungen gegenüber konventionellen Methoden mangelt es stark am mechanistischen Verständnis, besonders was die dirigierende Rolle der ionischen Flüssigkeiten angeht. Wir setzen uns hier zum Ziel, die Synthese von mehreren ungewöhnlichen Modifikationen des TiO2, nämlich der Bronze-Phase TiO2(B) und einem jüngst synthetisierten Titanoxyhydroxy-Fluorid, aufzuklären. Beide werden unter erstaunlich milden Bedingungen aus einer Mischung von einfachen ionischen Flüssigkeiten mit Wasser und TiCl4 erhalten. Unsere bisherigen Experimente zeigten bereits den prägenden Einfluss von ionischen Flüssigkeiten, welche Fluor-Atome im Anion enthalten, und von Mischungen zweier Kationen mit jeweils Seitenketten von unterschiedlicher Länge. Die wesentliche Aufgabenstellung unseres Projektes besteht nun darin, mechanistische Zusammenhänge zu klären, und zwar sowohl zwischen der molekularen Struktur der Reaktionslösung und der Bildung von Fluorohydroxotitan-Komplexen als auch der Bildung von Clustern. Darüber hinaus möchten wir die Entstehung von Primär- und Nanopartikeln verstehen. Unser Ansatz liegt in der Variation von ionischen Flüssigkeiten (z. B. Ersatz von (BF4)- durch (F)-) und in der Verwendung alternativer Ti-Verbindungen wie (NH4)(TiF6). Einerseits sollen in-situ-Methoden (Raman-Spektroskopie, Röntgenweit- und Kleinwinkelstreuung) dabei helfen, die relevanten Zwischenstufen auf molekularer Ebene und Nanometer-Skala zu identifizieren, andererseits stärkt die Berechnung der molekularen Bildungsmechanismen und des Wachstums von Clustern aus Komplexen das mechanistische Verständnis. Zu diesem Zweck werden neue Wechselwirkungspotentiale parametrisiert, aber auch solche Simulationen durchgeführt, die mit expliziter elektronischer Struktur-Berechnung arbeiten. Es werden dabei Computer-Experimente aufgesetzt, die dem Experiment nicht zugängliche Einsichten erlauben, zum Beispiel zum Einfluss von lokaler Polarität, spezifischen Wechselwirkungen oder gewissen Zwischenstufen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Koordinationsfonds

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Das Schwerpunktprogramm 1708 bündelt und koordiniert die Forschungsaktivitäten zur wissenschaftlichen und technologischen Entwicklung von Niedertemperatursynthesen anorganischer Materialien in Ionischen Flüssigkeiten (ILs). Das Schwerpunktprogramm hat drei Hauptziele: (A) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien. (B) Entdeckung neuer, möglicherweise unorthodoxer Materialien, die erst durch die besonderen, milden Synthesebedingungen in ILs zugänglich werden. (C) Verstehen der Prinzipien der Auflösung, Reaktion und Kristallisation von anorganischen Feststoffen in ILs. Das Koordinatorprojekt stellt die zentrale Plattform für Zusammenarbeit im SPP bereit. Dies umfasst die Organisation und Durchführung von Workshops und Arbeitstreffen, die Förderung von Nachwuchswissenschaftlern, die Betreuung von Mercator Fellows, Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Elektrochemie.Das Projekt beabsichtigt die Entwicklung von III-V-Verbindungshalbleitern (GaN, InN, GaSb, InSb und AlSb) und Metallsulfid-Verbindungshalbleitern (ZnS- und GaS) Dünnfilmen und Nanostrukturen (Nanoröhrchen, Nanodrähte und makroporöse Strukturen) bei elektrochemischer Abscheidung/stromloser Abscheidung in verschiedenen ionischen Flüssigkeiten nahe Raumtemperatur. Der Hauptfokus wird auf das Verständnis des Reaktionsmechanismus der Bildung der Verbindungshalbleiter gesetzt. Die Reaktionsmechanismen werden anhand von IL-Salz-Mischungen, Elektrode/Elektrolyt-Grenzfläche und der hergestellten Strukturen und Schichten analysiert. Der Einfluss der IL-Zusammensetzung auf die Morphologie und die optischen Eigenschaften der erhaltenen Halbleiter wird untersucht. Zusätzlich werden die Halbleiternanostrukturen Templat-basiert und Templat-frei elektrochemisch hergestellt, was eine neue Methode zur Synthese von Halbleiternanostrukturen nahe Raumtemperatur eröffnet.

H2Giga: QT1.1 - Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden, PrometH2eus: Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden

Das Projekt "H2Giga: QT1.1 - Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden, PrometH2eus: Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, Department Chemie und Pharmazie, Lehrstuhl für Anorganische und Allgemeine Chemie.

1 2 3 4 522 23 24