Bestrahlung von Tieren (Maeusen), Zellen und Organen mit Roentgenstrahlen. Untersuchung des Wachstums der Tiere sowie bestimmter Funktionen der Organe nach Bestrahlung sowie Untersuchung des Verhaltens von Saeugetierzellen. Untersuchung an isolierten Organen nach Einwirkung von Roentgenstrahlen.
Bauartzulassungen von Geräten und Vorrichtungen, in die radioaktive Stoffe eingefügt sind, sowie von Anlagen zur Erzeugung ionisierender Strahlung (analog zu der bis 2018 gültigen Strahlenschutzverordnung) Das Verfahren der Bauartzulassung von Geräten und Vorrichtungen, in die radioaktive Stoffe eingefügt sind, sowie von Anlagen zur Erzeugung ionisierender Strahlung wird durch die Paragraphen 45 bis 48 Strahlenschutzgesetz ( StrlSchG ) in Verbindung mit den Paragraphen 16, 17, 24, 25 und 26 der Verordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung ( Strahlenschutzverordnung - StrlSchV ) geregelt. Für die Erteilung der Bauartzulassung ist nach Paragraph 185 Absatz 1 Nummer 4 StrlSchG das Bundesamt für Strahlenschutz ( BfS ) zuständig. Bei Vorrichtungen, in die radioaktive Stoffe eingefügt sind, beteiligt das BfS bei der Bauartprüfung nach § 46 Absatz 2 StrlSchG die Bundesanstalt für Materialforschung und -prüfung ( BAM ) zu Fragen der Dichtheit, der Werkstoffauswahl und der Konstruktion der Geräte bzw. Vorrichtungen sowie zu Fragen der Qualitätssicherung. Erteilte Bauartzulassungen In der folgenden Tabelle finden Sie die vom Bundesamt für Strahlenschutz erteilten Bauartzulassungen. 1 - 10 von 63 Ergebnissen 1 2 3 … 7 Downloads Titel Kurztext Datum BfS 02/04 StrlSchV (4. Ergänzung) (PDF, 99 KB, Datei ist barrierefrei⁄barrierearm) Bruker Optics GmbH & Co. KG, Detektor mit Pneumatiksystem für Ionenmobilitätsspektrometer 20.09.2024 BfS 02/04 und BfS 01/06 StrlSchV, 3. Ergänzung und BfS 04/08 und BfS 05/08 StrlSchV, 4. Ergänzung Bruker Optics GmbH & Co. KG, Ionenmobilitätsspektrometer 07.03.2022 BfS 01/10 StrlSchV, 2. Ergänzung (PDF, 16 KB, Datei ist barrierefrei⁄barrierearm) Eckert & Ziegler Nuclitec GmbH , Demonstrationsstrahler jeweils mit Schutzbehälter 18.02.2020 BfS 03/06 StrlSchV, 3. Ergänzung und BfS 04/06 StrlSchV, 3. Ergänzung (PDF, 30 KB, Datei ist barrierefrei⁄barrierearm) Apparatebau Gauting GmbH, Ionisationsrauchmelder 30.12.2019 BfS 01/12 StrlSchV (3. Ergänzung), BfS 02/12 StrlSchV (3. Ergänzung), BfS 03/12 StrlSchV (3. Ergänzung) (PDF, 16 KB, Datei ist barrierefrei⁄barrierearm) Siemens AG, Ionisationsrauchmelder 16.08.2019 BfS 05/08 StrlSchV, 2.Erg. (PDF, 99 KB, Datei ist barrierefrei⁄barrierearm) Bruker Daltonik GmbH, Ionenmobilitätsspektrometer 24.01.2019 BfS 04/08 StrlSchV, 2.Erg. (PDF, 98 KB, Datei ist barrierefrei⁄barrierearm) Bruker Daltonik GmbH, Ionenmobilitätsspektrometer 24.01.2019 BfS 01/05 StrlSchV, 3. Ergänzung (PDF, 35 KB, Datei ist barrierefrei⁄barrierearm) Apollo Fire Detectors Ltd., Ionisationsrauchmelder 02.11.2017 BfS 01/10 StrlSchV, 1. Ergänzung (PDF, 32 KB, Datei ist barrierefrei⁄barrierearm) Eckert & Ziegler Nuclitec GmbH , Demonstrationsstrahler jeweils mit Schutzbehälter 06.09.2017 BfS 04/06 StrlSchV, 2. Ergänzung (PDF, 75 KB, Datei ist barrierefrei⁄barrierearm) Apparatebau Gauting GmbH, Ionisationsrauchmelder 05.12.2016 1 - 10 von 63 Ergebnissen 1 2 3 … 7 Stand: 07.10.2025
Biologische und gesundheitliche Wirkungen statischer Magnetfelder Statische Magnetfelder üben Kräfte auf magnetisierbare Metalle sowie auf sich bewegende elektrisch geladene Teilchen aus. Der Mensch nutzt stärkere Magnetfelder beispielsweise für bildgebende medizinische Verfahren. Untersuchungen haben gezeigt, dass statische Magnetfelder bis zu einer Stärke von vier Tesla keine direkten negativen Auswirkungen auf die Gesundheit haben. Die Auswirkungen stärkerer statischer Magnetfelder müssen weiter erforscht werden. Das Erdmagnetfeld lenkt einen Teil der kosmischen Strahlung ab. Diese Strahlung ist ionisierend – also sehr energiereich – und kann Krebs bei Lebewesen verursachen. Am Äquator hat das Erdmagnetfeld eine magnetische Flussdichte von circa 30 Mikrotesla, an den Polen ist seine Stärke doppelt so groß. In Mitteleuropa sind es circa 48 Mikrotesla. Einige Fischarten können sehr schwache statische Felder, wie das Erdmagnetfeld, wahrnehmen und sich danach orientieren. Haie und Rochen haben sehr empfindliche Sinnesorgane in der Haut, die auf elektrische Felder reagieren, die das Magnetfeld im Salzwasser verursacht. Wanderfische wie der Lachs verwenden zur Wahrnehmung des Erdmagnetfeldes Magnetit (eine Verbindung aus Eisen und Sauerstoff) in der Nasenschleimhaut. Auch viele Vogelarten nehmen das statische Erdmagnetfeld wahr und orientieren sich danach. Sie nutzen dafür mehrere voneinander unabhängige Sinnesorgane: Spezielle Rezeptoren in der Netzhaut reagieren auf die Ausrichtung des Magnetfeldes. Im Schnabel befinden sich Zellen, die Magnetit enthalten und zur Wahrnehmung der magnetischen Feldstärke dienen. Auch Teile des Innenohrs reagieren auf Magnetfelder. Unter den Säugetieren besitzen nur einige wenige Tiere die Fähigkeit, sich nach dem Erdmagnetfeld zu orientieren. Sie leben in der Dunkelheit, wie zum Beispiel Fledermäuse, oder unterirdisch, wie die Nacktmulle (Nagetiere). Menschen können das Erdmagnetfeld nicht wahrnehmen. Magnet-Resonanz-Tomographie (MRT) Starke statische Magnetfelder bei der Magnet-Resonanz-Tomographie Beschäftigte und Patientinnen und Patienten können mit starken statischen Magnetfeldern zum Beispiel bei der Magnet-Resonanz-Tomographie (kurz: MRT , einem in der Medizin verwendeten bildgebenden diagnostischen Verfahren) in Kontakt kommen. Die aktuell in der klinischen Praxis verwendeten Geräte haben meistens eine magnetische Flussdichte von 1,5 oder 3 Tesla . In der Forschung werden bereits Geräte mit 7 bis 11 Tesla getestet, die zukünftig auch in der medizinischen Diagnostik eingesetzt werden sollen. Ob sich die stärkeren Felder bei den Patientinnen und Patienten oder beim medizinischen Personal gesundheitlich auswirken, wird derzeit erforscht. Zusätzlich zu den starken statischen Magnetfeldern werden in der Magnet-Resonanz-Tomographie zeitlich veränderliche Gradientenfelder und hochfrequente elektromagnetische Felder eingesetzt. Bei den Gradientenfeldern handelt es sich um niederfrequente Magnetfelder . Wissenslücken Stärkere Magnetfelder (oberhalb von vier Tesla ) wurden bisher nur unzureichend auf ihre Auswirkungen untersucht, da die Technologie der Magnet-Resonanz-Tomographie mit hohen magnetischen Flussdichten relativ neu ist. Deshalb gibt es in vielen Bereichen noch keine gesicherten Forschungsergebnisse über die gesundheitlichen Auswirkungen. Der Einfluss starker statischer Magnetfelder auf die Schwangerschaft und die Entwicklung des Embryos wurde bisher nur bei geringen Flussdichten untersucht. Dieses Wissen ist jedoch für die Sicherheit von schwangeren Patientinnen und medizinischem Personal wichtig. Aus Vorsorgegründen empfiehlt die Strahlenschutzkommission deshalb vor allem in den ersten drei Schwangerschaftsmonaten eine besonders strenge Abwägung des Nutzen-Risiko-Verhältnisses. Trotzdem wird diese Technologie zunehmend für die Diagnostik von Schwangeren genutzt, da dabei nicht wie beim Röntgen oder bei der Computertomographie ionisierende Strahlung angewandt wird. Ob die unangenehmen Wahrnehmungen und Einflüsse auf das Nervensystem die Leistungsfähigkeit des medizinischen Personals beeinträchtigen, muss ebenfalls untersucht werden, da eine solche Beeinträchtigung eine Gefahr für die Patientinnen und Patienten bedeuten könnte. Mäuse in und vor dem Tomographen Quelle: Universität Duisburg-Essen Forschung des BfS In mehreren vom BfS beauftragten Forschungsvorhaben (siehe Links bei "Zum Thema" am Seitenende) wurde untersucht, ob sich statische Magnetfelder von Magnet-Resonanz-Tomographen bei den Patientinnen und Patienten oder beim medizinischen Personal gesundheitlich auswirken könnten. Es zeigte sich bei Untersuchungen an Mäusen, dass Magnetfelder bis sieben Tesla keinen negativen gesundheitlichen Einfluss auf die Fruchtbarkeit männlicher Mäuse, die Schwangerschaft weiblicher Mäuse und die embryonale Entwicklung sowie die weitere Entwicklung der Jungtiere haben. In Untersuchungen an Menschen konnten unangenehme Empfindungen, vor allem Schwindel, bestätigt werden. Dies wirkte sich aber nicht auf die kognitive Leistungsfähigkeit wie Reaktionszeiten und Gedächtnis aus. Stand: 31.10.2025
Personen, die eigenverantwortlich in Bereichen arbeiten, in denen sie Strahlung ausgesetzt sind oder mit Strahlenquellen umgehen, müssen über eine fachliche Qualifikation und praktische Erfahrungen verfügen. Dies betrifft Strahlenschutzbeauftragte, Human-, Zahn- und Tiermedizinerinnen und -mediziner sowie Medizinphysik-Expertinnen und -experten. Diese nach Strahlenschutzrecht erforderliche Fachkunde dient dazu, die Sicherheit der eigenen Person und anderer Personen zu gewährleisten. Die notwendigen Fertigkeiten und Berechtigungen werden in Form einer Bescheinigung durch die zuständige Stelle erteilt. Dies gilt für verschiedene Branchen wie Medizin, Technik und Industrie sowie Forschung und Entwicklung. Im medizinischen Bereich gibt es auch Personen, die nicht eigenverantwortlich, sondern unter ständiger Aufsicht und Verantwortung einer fachkundigen Person ionisierende Strahlung und radioaktive Stoffe im human-, zahn- und tiermedizinischen Bereich anwenden. Diese benötigen nach § 49 Absatz 1 StrlSchV die erforderlichen Kenntnisse . Die Bedingungen für den Erwerb und die Aktualisierung von Kenntnissen im Strahlenschutz entsprechen denen der Fachkunde. Um die erforderliche Fachkunde im Strahlenschutz zu erlangen, müssen Antragsteller bei der zuständigen Stelle folgende Nachweise einreichen, die für das jeweilige Anwendungsgebiet erforderlich sind: Ausbildungsnachweise in Form von Urkunden Sachkundezeugnisse, die praktische Erfahrungen belegen. Bei der Ausstellung des Sachkundezeugnisses sind die Anforderungen gemäß § 47 Absatz 2 StrlSchV zu berücksichtigen. Bescheinigungen über erfolgreiche Teilnahme an anerkannten Grund- und Spezialkursen, die nicht älter als fünf Jahre sind. Die für die Erteilung der Fachkunde zuständige Stelle prüft die vorgelegten Unterlagen und stellt eine Bescheinigung zum Erwerb der Fachkunde aus. Es ist zu berücksichtigen, dass die vom Kursanbieter ausgehändigten Bescheinigungen über die Teilnahme an Kursen nicht als Fachkunde gilt. In einigen Fällen wird die Fachkunde mit dem Bestehen der Abschlussprüfung einer staatlichen oder staatlich anerkannten Berufsausbildung erworben, wenn die Anforderungen nach § 47 Absatz 5 StrlSchV erfüllt sind. Die zuständige Behörde kann im Ausland erworbene Qualifikationen im Strahlenschutz anerkennen, wenn sie mit den Anforderungen nach deutschem Strahlenschutzrecht vergleichbar sind. Dafür müssen entsprechende Ausbildungsnachweise sowie Nachweise über relevante Berufserfahrung und Qualifikationen vorgelegt werden. Für Medizinische Technologinnen und Technologen für Radiologie gilt der Nachweis der erforderlichen Fachkunde durch die Erlaubnis gemäß § 1 Absatz 1 Nummer 2 des MT-Berufe-Gesetzes (Gesetz über die Berufe in der medizinischen Technologie) als erbracht. Die erforderliche Fachkunde im Strahlenschutz muss gemäß § 48 StrlSchV alle fünf Jahre durch die erfolgreiche Teilnahme an einem anerkannten Kurs oder anderen geeigneten Fortbildungsmaßnahmen aktualisiert werden. In Ausnahmefällen kann die Fachkunde auch auf andere Weise aktualisiert werden, vorausgesetzt, dass der Wissensstand dem eines anerkannten Kurses entspricht. Die Entscheidung darüber liegt bei der zuständigen Stelle. Für die Aktualisierung der Fachkunde ist der Nachweis der erfolgreichen Teilnahme an anerkannten Aktualisierungsmaßnahmen ausreichend; eine erneute Prüfung und Bestätigung durch die zuständige Stelle ist in diesem Fall nicht erforderlich. Der Nachweis ist jedoch dieser auf Anordnung vorzulegen. Die zuständige Stelle ist berechtigt gemäß § 50 StrlSchV die Anerkennung der Fachkunde im Strahlenschutz zu widerrufen oder Auflagen hinzuzufügen, wenn Fortbildungsmaßnahmen nicht nachgewiesen werden oder Zweifel an den Kenntnissen bestehen. Bei begründeten Zweifeln kann eine erneute Überprüfung angeordnet werden.
Es gibt wenige grundlegende Prozesse in der Umwelt, die zur Exposition von Menschen mit radioaktiven Stoffen führen. Ein Grundverständnis dieser Prozesse hilft dabei, sich richtig zu verhalten. Schadstoffe können aus einer Vielzahl von verschiedenen Quellen in die Atmosphäre freigesetzt werden. Diese Emission kann durch normale natürliche oder zivilisatorische Prozesse (z.B. Waldbrände, Vulkanausbrüche, Hausfeuerung, Industrie) verursacht werden oder durch Unfälle bedingt sein (z.B. in Industrieanlagen oder (Kern-)Kraftwerken). Nach der Emission wird die „Schadstofffahne“ mit dem Wind transportiert. Durch die Turbulenzen der Luft findet eine Durchmischung mit der Umgebungsluft statt und die Schadstofffahne fächert sich mit zunehmender Entfernung immer stärker auf. Dadurch nimmt die Schadstoffkonzentration ab. Die Belastung der Luft an einem bestimmten Ort mit Schadstoffen hängt daher von der freigesetzten Schadstoffmenge, den meteorologischen Bedingungen und der Entfernung von der Quelle ab. Jeder Schadstoff besitzt physikalisch-chemische Eigenschaften, z. B. Wasserlöslichkeit oder Flüchtigkeit. Diese beeinflussen sein Umweltverhalten sehr stark. Zum Beispiel können Substanzen, die in der Atmosphäre gasförmig vorliegen, über weite Entfernungen transportiert werden, wenn sie weder lichtempfindlich noch leicht wasserlöslich sind. Sie werden dann in der Luft nämlich weder abgebaut noch durch Regen ausgewaschen. Durch chemische Umwandlungen verringert sich die Konzentration des ursprünglichen Schadstoffs. Dabei entstehen neue Substanzen, und diese können andere physikalisch-chemische Eigenschaften als der Ausgangsstoff haben. Ein gutes Beispiel dafür ist Ozon. Es wird bei Sonneneinstrahlung durch Reaktionen von „Vorläufersubstanzen“ gebildet, in diesem Fall Sauerstoff, Stickstoff und flüchtige Kohlenwasserstoffe. Schadstoffe können trocken oder nass aus der Luft entfernt werden. Große Partikel haben eine hohe Sedimentationsgeschwindigkeit und daher nur kurze Verweilzeiten in der Atmosphäre. Kleine Partikel und die mit ihnen assoziierten Schadstoffe werden dagegen durch Kontakt mit Oberflächen aus der Atmosphäre entfernt und gasförmige Substanzen werden durch physikalisch-chemische Wechselwirkungen auf Oberflächen abgeschieden. Darüber hinaus können Schadstoffe auch durch Niederschläge (Regen, Nebel, Schnee) aus der Luft ausgewaschen werden, wenn sie selbst wasserlöslich sind oder an Partikel gebunden vorliegen. Diese Prozesse des Eintrags von Stoffen aus der Luft auf die Erdoberfläche werden trockene bzw. nasse Deposition genannt. Sie führen dazu, dass die Schadstoffe in natürliche Ökosysteme und landwirtschaftliche Nutzflächen gelangen und auf Oberflächen aller Art abgelagert werden. Damit kann es auch zu einer Aufnahme dieser Schadstoffe durch Mensch und Tier kommen. Die beschriebenen Grundmechanismen gelten für alle Schadstoffe, die in die Luft freigesetzt werden. Sie sind die Ursache dafür, dass nach dem Unfall in Tschernobyl im Jahr 1986 die Radioaktivität so weiträumig verbreitet wurde. Und sie erklären auch, warum sich chlororganische Substanzen wie Polychlorierte Biphenyle (PCB) und Dioxine sogar in der Antarktis nachweisen lassen. Radioaktivität ist allgegenwärtig und findet sich damit auch in unseren Nahrungsmitteln. Doch woher stammen die radioaktiven Stoffe, und wie gelangen sie in unser Essen? Dieser Film gibt Antworten hierauf. Radioaktive Stoffe in der Luft oder auf Oberflächen können dazu führen, dass Menschen mit ionisierender Strahlung belastet werden. Generell unterscheidet man zwei Wege, auf denen dies erfolgen kann: Äußere und innere Strahlenbelastung. Bei der äußeren Strahlenbelastung wirken die von radioaktiven Stoffen in Materialien, in der Luft oder auf Oberflächen (Boden, Pflanzen, Gebäude, …) abgegebene ionisierende Strahlung von außen auf den menschlichen Körper ein. Eine innere Strahlenbelastung erfolgt nach der Aufnahme von radioaktiven Substanzen über die Atemluft, durch kontaminierte Nahrungsmittel oder kontaminiertes Wasser. Weitere Informationen dazu, wie man sich persönlich schützen kann, finden Sie auf der Seite Schutzmaßnahmen .
Krebs durch CT-Untersuchungen? - Bewertung einer US-amerikanischen Studie zum Krebsrisiko durch CT-Untersuchungen " Projected Lifetime Cancer Risks From Current Computed Tomography Imaging " von Smith-Bindman et al. in JAMA International Medicine, 2025 Forschende aus den USA haben in einer im April 2025 veröffentlichten Studie versucht, über Modellierungen vorherzusagen, wie viele Krebserkrankungen als Folge der im Jahr 2023 in den USA durchgeführten CT -Untersuchungen zu erwarten sind. 2023 wurden in den USA bei geschätzt 61,5 Millionen Personen 93 Millionen CT -Untersuchungen durchgeführt. Die Modellierungen in der Studie ergaben, dass als Folge dieser CT -Untersuchungen 103.000 der untersuchten Personen im Laufe ihres Lebens an Krebs erkranken werden. Die Berücksichtigung verschiedener Unsicherheiten ergab einen Bereich von 96.400 bis 109.500 Krebsfällen (90 %-Unsicherheitsintervall). Die Autor*innen der Studie folgern daraus, dass bei Fortführung dieser Praxis der Anteil der durch CT -Untersuchungen verursachten Krebsfälle an der Gesamtzahl der jährlich in den USA neu diagnostizierten Krebsfälle 5 % betragen könnte. Modellierungen wie in der vorliegenden Studie beinhalten zahlreiche Einflussgrößen, deren Werte nicht bekannt sind und für die lediglich möglichst plausible Annahmen getroffen werden können. Ihre Ergebnisse sind daher sehr unsicher. Computertomographien ( CT ) spielen eine wichtige Rolle in der medizinischen Diagnostik. Sie können für die untersuchten Personen einen großen Nutzen haben, da sie die Diagnose von Krankheiten erleichtern und die Behandlungsmöglichkeiten verbessern können. Die Häufigkeit von CT -Untersuchungen hat in den letzten zehn Jahren in Deutschland um ca. 20 % zugenommen. Im Jahr 2023 wurden in Deutschland etwa 15 Millionen CT -Untersuchungen durchgeführt. Bei CT -Untersuchungen wird Röntgen-Strahlung, also ionisierende und damit besonders energiereiche Strahlung, eingesetzt. Die Strahlendosis, die auf die Untersuchten einwirkt, ist bei CT -Untersuchungen deutlich höher als bei konventionellen Röntgenaufnahmen. Da ionisierende Strahlung grundsätzlich das Risiko für Krebserkrankungen erhöhen kann, stellt sich die Frage, welche Gefahr mit CT -Untersuchungen verbunden ist. Was weiß man zum Krebsrisiko durch CT -Untersuchungen? Die Strahlendosis durch eine oder auch mehrere CT -Untersuchungen fällt im Allgemeinen in den Niedrigdosisbereich. Aussagen zum Krebsrisiko durch solche sehr niedrigen und niedrigen Strahlendosen sind generell schwierig zu treffen. Beobachtungsstudien, in denen der Zusammenhang zwischen im Erwachsenenalter durchgeführten CT -Untersuchungen und bei diesen Personen aufgetretenen Krebserkrankungen direkt untersucht wird, sind selten und liefern keine eindeutigen Ergebnisse. Ergebnisse aus Studien zu CT -Untersuchungen, die bei Kindern oder Jugendlichen durchgeführt worden sind, deuten auf einen leichten Anstieg des Risikos für bestimmte Krebserkrankungen und mit steigender Strahlendosis durch CT -Untersuchungen hin. Was hat die amerikanische Studie untersucht? Forschende aus den USA haben in einer im April 2025 veröffentlichten Studie versucht, über Modellierungen vorherzusagen, wie viele Krebserkrankungen als Folge der im Jahr 2023 in den USA durchgeführten CT -Untersuchungen zu erwarten sind. Die Gesamtzahl der im Jahr 2023 in den USA durchgeführten CT -Untersuchungen in der Studie stammt aus einer Marktanalyse zur Verbreitung von Bildgebungstechniken in den USA . Da sich das strahlenbedingte Krebsrisiko für verschiedene Altersgruppen, Geschlechter und betroffene Körperregionen unterscheidet, wurden diese CT -Untersuchungen in entsprechende Kategorien eingeteilt. Basis für diese Einteilung waren ein nationales Register zu Radiologie-Daten und ein Dosisregister der University of California San Francisco , das detaillierte Daten zu 120.000 Untersuchungen aus den Jahren 2018 bis 2020 enthält. Letzteres wurde auch dazu genutzt, um typische Organdosen für die verschiedenen Altersgruppen, Geschlechter und Körperregionen abzuschätzen, die dann auf die Untersuchungen aus dem Jahr 2023 übertragen wurden. Über verfügbare Modelle zum Krebsrisiko durch Strahlung haben die Forschenden anhand dieser Datenbasis berechnet, wie viele durch die Strahlung bedingte Krebsfälle zu erwarten sind. Diese Modelle beruhen weitgehend auf Daten von Personen, die relativ hohen Dosen ausgesetzt waren, insbesondere den japanischen Atombomben-Überlebenden sowie Personen, die aus medizinischen Gründen strahlenexponiert wurden. In den Modellen werden die Erkenntnisse zum Krebsrisiko bei höheren Strahlendosen auf den Niedrigdosisbereich übertragen. Damit wird bis hin zu sehr niedrigen Dosiswerten von einem proportionalen Zusammenhang zwischen Dosis und Strahlenrisiko ausgegangen ( Linear-No-Threshold (LNT) Hypothese ). Was hat die Studie ergeben? 2023 wurden in den USA bei geschätzt 61,5 Millionen Personen 93 Millionen CT -Untersuchungen durchgeführt. Die Modellierungen in der Studie ergaben, dass als Folge dieser CT -Untersuchungen 103.000 der untersuchten Personen im Laufe ihres Lebens an Krebs erkranken werden. Die Berücksichtigung verschiedener Unsicherheiten ergab einen Bereich von 96.400 bis 109.500 Krebsfällen (90%-Unsicherheitsintervall). Die Autor*innen der Studie folgern daraus, dass bei Fortführung dieser Praxis der Anteil der durch CT -Untersuchungen verursachten Krebsfälle an der Gesamtzahl der jährlich in den USA neu diagnostizierten Krebsfälle 5 % betragen könnte. Bewertung der Studie Modellierungen wie in der vorliegenden Studie beinhalten zahlreiche Einflussgrößen, deren Werte nicht bekannt sind und für die lediglich möglichst plausible Annahmen getroffen werden können. Ihre Ergebnisse sind daher sehr unsicher. Eine Stärke der Studie ist, dass bei den Modellierungen Unterschiede im strahlenbedingten Krebsrisiko zwischen verschiedenen Altersgruppen, Geschlechtern und Organen berücksichtigt wurden. Zudem wurden die relevanten Organdosen und ihre Unsicherheiten aufwendig geschätzt. Jedoch wurden diese Unsicherheiten der Organdosiswerte nicht bei der Gesamtschätzung der Unsicherheit der Risikoabschätzung berücksichtigt. Zusätzlich zu diesen Unsicherheiten könnte die in der Studie vorhergesagte Anzahl an Krebsfällen überschätzt sein, da CT -Untersuchungen häufig bei älteren Personen und Personen mit schweren Grunderkrankungen durchgeführt werden. Bei diesen ist die Wahrscheinlichkeit, dass sie im Laufe ihres verbleibenden Lebens eine durch die CT bedingte Krebserkrankung entwickeln, deutlich geringer als beim Bevölkerungsdurchschnitt. Denn die Latenzzeit – also der Zeitraum zwischen der Einwirkung von Strahlung und dem möglichen Auftreten einer dadurch verursachten Krebserkrankung – kann viele Jahre oder sogar Jahrzehnte betragen. Zwar wurde in der Studie rechnerisch versucht, CT -Untersuchungen, die im letzten Lebensjahr durchgeführt wurden, aus der Analyse auszuschließen. Doch dieser Zeitraum von nur einem Jahr ist in Anbetracht der langsamen Entwicklung von Krebserkrankungen deutlich zu kurz. Es ist zudem fraglich, wie gut die in der Studie verwendeten Risikomodelle aus RadRAT für die Abschätzung des strahlenbedingten Krebsrisikos nach Röntgen-Strahlung geeignet sind. Dies gilt insbesondere für Personen, bei denen die CT -Untersuchung in der Kindheit stattfand. Von den in der Studie berücksichtigten CT -Untersuchungen entfallen zwar nur 4,2 % auf Kinder, bei der Interpretation der damit verbundenen Studienergebnisse ist jedoch besondere Vorsicht angebracht. Sind die Ergebnisse auf Deutschland übertragbar? Die CT -Praxis in Deutschland unterscheidet sich deutlich von der in den USA . Während in Deutschland im Jahr 2023 nur 175 Untersuchungen pro 1000 Einwohner durchgeführt wurden, lag dieser Wert mit 270 Untersuchungen pro 1000 Einwohner in den USA um fast 50 % höher. Insbesondere ist der Anteil der CT -Untersuchungen, die bei Kindern durchgeführt wurden, in den USA mit 4,2 % wesentlich höher als in Deutschland, wo er unter 1 % liegt. In Deutschland gelten im Vergleich zu den USA besonders hohe Anforderungen an den Strahlenschutz und die Qualitätssicherung. Laut Strahlenschutzrecht darf eine Röntgenuntersuchung – einschließlich CT – nur durchgeführt werden, wenn eine Ärztin oder ein Arzt mit der erforderlichen Fachkunde zuvor festgestellt hat, dass der diagnostische Nutzen das Strahlenrisiko deutlich überwiegt (rechtfertigende Indikation). Darüber hinaus gibt es sogenannte diagnostische Referenzwerte für die Strahlendosis, die möglichst eingehalten oder unterschritten werden soll. Die Strahlendosis ist grundsätzlich so niedrig zu wählen, wie es unter Wahrung einer ausreichenden Bildqualität möglich ist (Prinzip der Dosisoptimierung). Die Einhaltung dieser zentralen Strahlenschutzprinzipien wird regelmäßig durch die sogenannten Ärztlichen Stellen überprüft, die in der Regel bei den Landesoberbehörden angesiedelt sind. Die Berechnungen der amerikanischen Studie – insbesondere der Anteil von 5 % an den Krebsneuerkrankungen – lassen sich daher nicht auf Deutschland übertragen. Bedeutung für den Strahlenschutz Trotz der bestehenden Unsicherheiten verdeutlichen Abschätzungen wie in der vorliegenden Studie von Smith-Bindman et al., wie wichtig es ist, dass die geltenden strahlenschutzrechtlichen Vorgaben für die Durchführung von CT -Untersuchungen sorgfältig eingehalten werden. Bei der Kommunikation solcher projizierten Zahlen ist jedoch darauf zu achten, die Bevölkerung nicht zu verunsichern – insbesondere, um zu verhindern, dass medizinisch sinnvolle CT -Untersuchungen unbegründet abgelehnt werden. Besonders bei Kindern und Jugendlichen sollten, wann immer möglich, bildgebende Verfahren ohne ionisierende Strahlung erwogen werden. Ist die Durchführung einer CT -Untersuchung jedoch medizinisch indiziert und steht keine gleichwertige Alternative zur Verfügung, so sollte sie auch konsequent durchgeführt werden. Weitere Informationen zum Thema und Tipps, wie man als Patient seine Strahlenbelastung niedrig halten kann finden Sie in der Broschüre Röntgen Nutzen und Risiken . Stand: 24.06.2025
Zu den Aufgaben des Referats Luftreinhaltung/ Atomrechtliche Aufgaben gehören: im Bereich Luftreinhaltung > die Bearbeitung von planerischen und grundsätzlichen Fragen der Luftreinhaltung, > die Zuständigkeit für - die Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV), - die Verordnung über Emissionsgrenzwerte für Verbrennungsmotoren (28. BImSchV), - das Hamburgisches Gesetz zur Umsetzung der europäischen Schwefel-Richtlinie 2005/33/EG, > die Steuerung der Luftqualitätsüberwachung (Luftmessnetz), > die Bewertung der Luftqualität, > die Aufstellung und Fortschreibung von Luftreinhalteplänen, > die Entwicklung und Begleitung von Luftreinhaltemaßnahmen, > die Bewertung von Luftreinhaltungsaspekten im Rahmen der Bauleitplanung, > die Mitwirkung an Rechtsetzungsverfahren, > die Vertretung Hamburger Interessen in Bund-Länder-Gremien, im Bereich Atomrechtlicher Aufgaben > die Wahrnehmung atomrechtlicher Aufgaben für das Land Hamburg in der Zusammenarbeit zwischen Bund und Ländern, > die Risikovorsorge und Gefahrenabwehr beim legalen und illegalen Umgang mit Kernbrennstoffen, > die Bearbeitung von Grundsatzfragen beim Schutz der Bevölkerung vor der schädlichen Einwirkung ionisierender Strahlung, > die Optimierung der nuklearen Katastrophenschutzvorsorge für die hamburgische Bevölkerung, im Bereich Emissionskataster > das Führung des Emissionskatasters Luft und die Erteilung von Auskünften, > die Organisation und Durchführung der Datenerhebungen in Hamburg für das Emissionskataster sowie für das nationale und das europäische PRTR (Pollutant Release and Transfer Register, Schadstofffreisetzungs- und -verbringungsregister), > die Erfüllung weiterer nationaler und europäischer Berichtspflichten, > das Verfassen von Stellungnahmen zur Bauleitplanung > die Aufbereitung und Bereitstellung der Informationen für diese Aufgaben in GIS-Systemen, sowie der Immissionsschutz vor elektromagnetischen Feldern bei Anlagen der Energie- und Kommunikationstechnik.
Mittels einer Kobalt-60-Bestrahlungsanlage (80000 Curie) werden Klaerschlaemme und Abwaesser keimfrei gemacht; das Verhalten von Parasiten, Mikroorganismen und Viren wird untersucht. Schwer abbaubare Abwasserinhaltsstoffe sollen mittels Gamma-Bestrahlung einer Reinigung zugaenglich werden.
| Origin | Count |
|---|---|
| Bund | 445 |
| Land | 57 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Ereignis | 7 |
| Förderprogramm | 221 |
| Gesetzestext | 15 |
| Text | 125 |
| unbekannt | 142 |
| License | Count |
|---|---|
| geschlossen | 218 |
| offen | 288 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 490 |
| Englisch | 147 |
| Leichte Sprache | 1 |
| Resource type | Count |
|---|---|
| Bild | 5 |
| Datei | 11 |
| Dokument | 115 |
| Keine | 262 |
| Multimedia | 6 |
| Unbekannt | 3 |
| Webseite | 144 |
| Topic | Count |
|---|---|
| Boden | 167 |
| Lebewesen und Lebensräume | 364 |
| Luft | 154 |
| Mensch und Umwelt | 510 |
| Wasser | 139 |
| Weitere | 409 |