API src

Found 49 results.

Related terms

SAGES: Simulation und Analyse des globalen Energiespektrums von der Grenzschicht bis zur Mesopause, part I and II

Das Projekt "SAGES: Simulation und Analyse des globalen Energiespektrums von der Grenzschicht bis zur Mesopause, part I and II" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt.

Wind- und Temperaturstruktur der arktischen Mesosphäre und der unteren Thermosphäre (TRAMP-IAP)

Das Projekt "Wind- und Temperaturstruktur der arktischen Mesosphäre und der unteren Thermosphäre (TRAMP-IAP)" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt.

Role of geomagnetic field in atmospheric escape from Earth

Das Projekt "Role of geomagnetic field in atmospheric escape from Earth" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. The geomagnetic field prevents the Earth from having its atmosphere swept away by the solar wind. But due to the partial ionization of the upper atmosphere by the sun's short-wavelength radiation electrodynamic forces can move the charged particles upward, against gravity, along open field lines. Already in the early space age it was recognized that considerable amounts of ionospheric ions populate the magnetosphere. In this study we will investigate the acceleration mechanisms of the up-welling ions at source regions altitude. For the first time the role of the neutral particles in the thermosphere are also included in the considerations. For our studies we will make use of data from the satellites CHAMP (400km), GRACE (500km) and DMSP (830km). The space observations shall be augmented by suitable EISCAT radar measurements. As a result the total rates of the different out-flow regions, polar cap, cusp, and auroral region will be quantified and their dependence on geophysical conditions determined.

Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde

Das Projekt "Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.

Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV II (DRIVAR II)

Das Projekt "Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV II (DRIVAR II)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Die Variabilität der oberen Atmosphäre der Erde wird durch die Schwankungen in der Absorption solarer UV- und EUV-Strahlung die Ionosphäre hervorgerufen. Dabei tritt jedoch eine Verzögerung auf, die durch das Zusammenspiel verschiedener physikalischer und chemischer Prozesse verursacht wird. So haben die bestimmenden Ionisations- und Rekombinationsprozesse in den verschiedenen Schichten der Ionosphäre, aber auch Transportprozesse einen entscheidenden Einfluss. Die Rolle dieser Prozesse wurde in verschiedenen Studien untersucht, jedoch haben sich diese Analysen bisher nur mit einzelnen Aspekten der Verzögerung beschäftigt.Im Projekt DRIVAR II werden jene Aspekte der Verzögerung untersucht werden, die bisher nicht in Studien aufgenommen wurden. Dies beinhaltet die Variation der Verzögerung in hohen und niedrigen Breiten und die Rolle von Kopplungsprozessen zwischen Thermosphäre und Ionosphäre. Aufbauend auf diesen Ergebnissen und vorangegangenen Studien wird im Rahmen des Projektes eine globale Beschreibung der Verzögerung bereitgestellt.Die Analyse wird dabei einerseits auf etablierten Datensätzen (z.B. SDO-EVE, GOES, GUVI, Ionosonde oder TEC-Karten) aufbauen, aber andererseits auch neue Daten berücksichtigen (z.B. GOLD und ICON). Diese Vielzahl an solaren, thermosphärischen und ionosphärischen Parametern wird eine detaillierte Beschreibung der ionosphärischen Verzögerung ermöglichen. Hinzu kommen Modelluntersuchungen mit dem Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Modell und dem Thermosphere-Ionosphere- Electrodynamics General Circulation (TIE-GCM) Modell. Die Untersuchungen mithilfe dieser Modelle werden die verantwortlichen Prozesse ionosphärischer Variabilität zu bestimmen. Mit den Ergebnissen der Untersuchungen sollen dann ggf. auch Vorschläge für die Optimierung dieser Modelle formuliert werden und empirische Modelle ergänzt werden.Mit dem DRIVAR-II-Projekt werden die ionosphärischen und thermosphärischen Prozesse, welche die verzögerte Reaktion der Ionosphäre bestimmen umfassender und genauer analysiert. Diese Untersuchungen werden auch das generelle Verständnis von Prozessen in der oberen Atmosphäre verbessern und sind für das Vorhersagen von ionosphärischen Bedingungen interessant.Das Projekt ist eine Kooperation zwischen dem Institut für Solar-Terrestrische Physik in Neustrelitz und dem Institut für Meteorologie der Universität Leipzig.

Die Bedeutung der Dynamik der MLT in mittleren und hohen Breiten auf das ionosphärische/thermosphärische Wetter (DYNAMITE)

Das Projekt "Die Bedeutung der Dynamik der MLT in mittleren und hohen Breiten auf das ionosphärische/thermosphärische Wetter (DYNAMITE)" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt. Das ionosphärische/thermosphärische (I/T) System unterliegt zum einen solaren und magnetosphärischen Einflüssen und wird ebenfalls von zwar kleinskaligen, aber persistenten und darum bedeutenden Prozessen aus der mittleren Atmosphäre angetrieben. Gerade der zuletzt genannte Einfluss wird seit Jahren vermutet, es konnte jedoch bis jetzt kein klarer Beleg für die Kopplung gefunden werden. Alle Anregungen aus der mittleren Atmosphäre müssen sich durch die Mesosphäre und untere Thermosphäre (MLT) ausbreiten. Dabei wechselwirken die Wellen untereinander und koppeln an die I/T. Diese Kopplung kann (a) durch die direkte Ausbreitung von primären (oder sekundären) Wellen, und /oder (b) indirekt durch den E-Region-Dynamo erfolgen. Deshalb ist die MLT generell von Bedeutung für die dynamische Anregung der I/T, in mittleren und hohen Breiten tritt sie aber besonders hervor: (1) auf diesen Breiten wurden bislang wenige Untersuchungen des I/T Systems (z.B. der Gezeiten) durchgeführt, was auf die unzureichende Auflösung der meisten Satelliten zurückzuführen ist, und (2) aktuelle Studien mit globalen gekoppelten Atmosphären/Ionosphären Simulationen zeigen, dass gerade bei diesen Breiten die solaren und lunaren Gezeiten, die für viele elektrodynamische Effekte in niedrigen Breiten verantwortlich sind, besonders große Amplituden während stratosphärischer Erwärmungen (SSW) erreichen. Wir beantragen, die einzigartigen Radars und Lidars des IAP in mittleren und hohen Breiten zu nutzen, um den Grundstrom, die Wellen und deren Wechselwirkungen in der MLT zu charakterisieren. Die lokalen Radarwindbeobachtungen erfolgen kontinuierlich in einem Höhenbereich von 70 -100 km und können durch Lidarmessungen zu niedrigeren Höhen erweitert werden. Dies ermöglicht die Untersuchung der vertikalen Ausbreitung von Wellen im Wind und der Temperatur. Diese Studien werden zusätzlich durch Satellitendaten und Re-Analyse komplementiert, um sowohl regional als auch global den Antrieb durch die mittlere Atmosphäre zu erfassen. Die direkte Kopplung wird durch Vergleiche der saisonalen und jährlichen Gezeiten über den Radaren mit den thermosphärischen Daten der Satelliten aus den Überflügen mit polaren Orbits untersucht. Der Einfluss des E-Region-Dynamos wird mit Hilfe von Simulationen gekoppelter Atmosphären/Ionosphären-Modellen analysiert und beinhaltet die Anregung der lunaren Gezeit in Zeiträumen mit und ohne SSW. Die Modelle werden mit bodengebunden Beobachtungen und satellitengestützten ionosphärischen Daten verglichen und validiert. Neben vielen offenen Fragen zur Kopplung der MLT mit dem I/T-System, erwarten wir insbesondere Ergebnisse zu folgenden Fragen: (a) Wie wirkt sich die beobachtete Kurzzeitvariabilität der MLT auf Wellen und dem Grundstrom in Bezug zum I/T Wetter aus?, (b) Was sind die Charakteristiken der solaren und lunaren Gezeiten für verschiedene Strukturen des polaren Wirbels während SSW und welche Auswirkungen entsprechen diesen im I/T-System?

Co-estimation of the Earth main magnetic field and the ionospheric variation field

Das Projekt "Co-estimation of the Earth main magnetic field and the ionospheric variation field" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Mathematik durchgeführt. The aim of this project is to co-estimate models of the core and ionosphere magnetic fields, with the longer-term view of building a 'comprehensive' model of the Earths magnetic field. In this first step we would like to take advantage of the progresses made in the understanding of the ionosphere by global M-I-T modelling to better separate the core and ionospheric signals in satellite data. The magnetic signal generated in the ionosphere is particularly difficult to handle because satellite data provide only information on a very narrow local time window at a time. To get around this difficulty, we would like to apply a technique derived from assimilation methods and that has been already successfully applied in outer-core flow studies. The technique relies on a theoretical model of the ionosphere such as the Upper Atmosphere Model (UAM), where statistics on the deviations from a simple background model are estimated. The derived statistics provided in a covariance matrix format can then be use directly in the magnetic data inversion process to obtain the expected core and ionospheric models. We plan to apply the technique on the German CHAMP satellite data selected for magnetically quiet times. As an output we should obtain a model of the ionospheric magnetic variation field tailored for the selected data and a core-lithosphere field model where possible leakage from ionospheric signals are avoided or at least reduced. The technique can in theory be easily extended to handle the large-scale field generated in the magnetosphere.

SWACI: Space Weather Application Center - Ionosphere

Das Projekt "SWACI: Space Weather Application Center - Ionosphere" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt.

Einfluss der Sonnenvariabilität auf das Klima

Das Projekt "Einfluss der Sonnenvariabilität auf das Klima" wird vom Umweltbundesamt gefördert und von Universität Berlin, Institut für Meteorologie WE03, Fachrichtung Wechselwirkung im Klimasystem der Erde, Arbeitsgruppe Modellierung des Klimasystems durchgeführt. The fundamental energy source of the climate System is the Sun. Variability of the solar radiation is one potential source of climate change. Variations in the thermal, dynamical and chemical structure of the atmosphere have been observed that can be attributed to 11-year solar irradiance Variations. Since the advent of satellites in the late 1970s global atmospheric and solar variability data have been collected. Together with numerical models of the atmosphere they allow the study of the solar influence on climate. However, current general circulation models (GCMs) have an insufficient representation of atmospheric chemistry and are restricted to the lower parts of the atmosphere. They are therefore not capable of reproducing the observed Sun-climate interactions. The aim of this project is to investigate the solar influence on climate with a GCM recently developed at the National Center for Atmospheric Research (NCAR) in Boulder, USA. The model is the first that has been designed specifically to investigate the interaction between radiation, chemistry and dynamics from the Earth's surface to the thermosphere (140 km). The close collaboration with NCAR's experienced model team ensures the realization of the project which adds new aspects to previous work with GCMs looking for the mechanism of Sun-climate interactions. This study provides the opportunity to work on a highly interdisciplinary topic at an internationally renowned Institution and to transfer the acquired knowledge as well as the unique model to Europe and the Free University of Berlin, Germany. The knowledge and experience gained in this project will be valuable to the EU research community in order to better determine the underlying natural variability of the atmosphere and to better estimate the anthropogenic contribution to the recent global warming. This will improve the accuracy of future climate predictions in forthcoming Intergovernmental Panel on Climate Change (IPGC) reports.

Kopplung der solaren und geomagnetischen Aktivität mit der räumlichen Verteilung von Trends in Treibhausgasen in der oberen Atmosphäre

Das Projekt "Kopplung der solaren und geomagnetischen Aktivität mit der räumlichen Verteilung von Trends in Treibhausgasen in der oberen Atmosphäre" wird vom Umweltbundesamt gefördert und von Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Max-Planck-Institut für Sonnensystemforschung durchgeführt. Die Struktur und Zusammensetzung des Thermosphäre-Ionosphäre Systems (T-I) wird stark durch die solare EUV-Strahlung beeinflusst. Die andere wichtige externe Quelle von Variabilität in dieser Atmosphärenregion ist das geomagnetische Feld, das geladene Teilchen in die Atmosphäre leitet wo sie insbesondere um die Pole herum ihre Energie abgeben. Wie neue Daten zeigen, können auch interne Antriebsprozesse sowohl auf kurzen (Tage) als auch langen (Jahre) Zeitskalen die T-I Variabilität dominieren. Eine wesentliche Rolle wird dabei dem langsamen aber kontinuierlichen Anstieg von CO2 in der Mesosphäre und unteren Thermosphäre (MLT) zugeschrieben, der zu verstärkter Strahlungskühlung und damit einhergehender Kontraktion der Atmosphäre führt. Auch andere Treibhausgase können auf kürzeren Zeitskalen die T-I Variabilität stark modulieren, u.a. O3 und NO. Das Hauptziel dieses Projektes ist zu untersuchen, wie die räumliche Verteilung von Langzeittrends in MLT Treibhausgasen mit der T-I Langzeit Variabilität gekoppelt ist. Dabei sollen sowohl bodengebundene als auch Satellitendaten von CO2, O3, NO, H2O sowie Elektronendichten herangezogen werden. Durch Kombination von Daten der Satelliten CHAMP, GRACE, SWARM, COSMIC, GOMOS, ACE-FTS, MLS, SABER, MIPAS, HALOE und AIM soll eine nahezu globale Abdeckung über einen Zeitraum von 2 Sonnenzyklen erreicht werden. Aus diesen Daten soll eine globale Klimatologie erstellt werden als Grundlage für die Ableitung von Langzeittrends und ihrer Korrelation in Zeit, Raum und T-I Parametern, einschließlich der Untersuchung von möglichen zeitlichen Verzögerungen in der Variabilität. Ferner sollen chemische und dynamische Wirkmechanismen der T-I Reaktion auf diese Variabilität identifiziert sowie zum ersten Mal echte Abkühlungs- und Aufheizraten aus der globalen Klimatologie und ihre Korrelationen in der T-I Region berechnet werden. Diese können direkt in allgemeinen Zirkulationsmodellen anstatt der aus Volumenemissionsraten gewonnenen Abkühlraten verwendet werden.

1 2 3 4 5