In 2001 the International Civil Aviation Organization (ICAO) initiated the Balanced Approach to Aircraft Noise Management. It consists of four essential elements to reduce aircraft noise. One is land-use planning and management. In Germany, this already starts with planning of an airport in order to find a suitable site. This planning process deals with aircraft operational aspects as well as economical and environmental ones. After the airport has been built, noise protection areas are to be established according to the German Act for Protection against Aircraft Noise. The noise protection area is subdivided into two daytime and one nighttime protection zone. The act oblige the airport operator to pay for constructional soundproofing measures in existing residential buildings located in daytime protection zone 1 and in the nighttime protection zone. Moreover, expenses for installation of ventilation systems in rooms predominantly used for sleeping are to be reimbursed by the airport operator for buildings in the nighttime protection zone. Furthermore, several local regulations which comprise building restrictions in the vicinity of the airport exists which primary have the aim to prevent or reduce noise conflicts. The land-use planning at German airports will be described and evaluated.Quelle: http://www.acoustics.asn.au
Das Projekt "Energy Storage for Direct Steam Solar Power Plants (DISTOR)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Objective: Solar thermal power plants represent today's most economic systems to generate electricity from solar insulation in them-range in regions like the Mediterranean area. By demonstrating the feasibility of direct steam generation in the absorber pipes European industry and research institutions have gained a leading position in this technology area. A key element foray successful market penetration is the availability of storage systems to reduce the dependence on the course of solarinsolation. The most important benefits result from -reduced internal costs due to increased efficiency and extended utilisation of the power block-facilitating the integration of a solar power plant into an electrical grid-adoption of electricity production to the demand thus increasing revenues Efficient storage systems for steam power plants demand transfer of energy during the charging/discharging process at constant temperatures. The DISTOR project focuses on the development of systems using phase change materials (PCM) as storage media. In order to accelerate the development, the DISTOR project is based on parallel research on three different storage concepts. These concepts include innovative aspects like encapsulated PCM, evaporation heat transfer and new design concepts. This parallel approach takes advantage of synergy effects and will enable the identification of the most promising storage concept. A consortium covering the various aspects of design and manufacturing has been formed from manufacturers, engineering companies and research institutions experienced in solar thermal power plants and PCM technology. The project will provide advanced storage material based on PCM for the temperature range of 200-300 C adapted to the needs of Direct Steam generation thus expanding Europe's strong position in solar thermal power plants.
Das Projekt "Collection of raw materials, Removal of flAme reTardants and Reuse of secondary raw materials (CREAToR)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein durchgeführt.
Das Projekt "Development of Nanotechnology-based High-performance Opaque & Transparent Insulation Systems for Energy-efficient Buildings (NANOINSULATE)" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. NANOINSULATE will develop durable, robust, cost-effective opaque and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materials (nanofoams, aerogels, aerogel composites) and high-barrier films that are up to four times more energy efficient than current solutions. These new systems will provide product lifetimes in excess of 50 years suitable for a variety of new-build and retrofit building applications. Initial building simulations based on the anticipated final properties of the VIPs indicate reductions in heating demand of up to 74Prozent and CO2 emissions of up to 46Prozent for Madrid, Spain and up to 61Prozent and 55Prozent respectively for Stuttgart, Germany for a building renovation which reduces the U-value of the walls and roof from 2.0 W m-2 K-1 to 0.2 W m-2 K-1. This reduction could be achieved with NANOINSULATE products that are only 25 mm thick, giving a cost-effective renovation without the need of changing all the reveals and ledges. Similarly, significant reductions in U-values of transparent VIPs (3 W m-2 K-1 to 0.5 W m-2 K-1) are shown by substituting double glazed units in existing building stock. Six industrial & four research based partners from seven EU countries will come together to engineer novel solutions capable of being mass produced. Target final manufacturing costs for insulation board (production rates above 5 million m2/year) are less than 7 m-2 for a U-value of 0.2 W m-2 K-1. NANOINSULATE will demonstrate its developments at construction sites across Europe. A Lifecycle Assessment, together with a safety and service-life costing analysis, will be undertaken to prove economic viability. NANOINSULATE demonstrates strong relevance to the objectives and expected impacts of both the specific call text of the Public-Private Partnership Energy-efficient Buildings topic New nanotechnology-based high performance insulation systems for energy efficiency within the 2010 NMP Work Programme and the wider NMP & Energy Thematic Priorities. Prime Contractor: Kingsplan Research and Developments Ltd.; Kingscourt; Irland.
Das Projekt "Schaumextrusion von modifiziertem Biokunststoff Polylactid (PLA)" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Polymere Werkstoffe durchgeführt. Um die Schäumbarkeit von Polylactid zu verbessern, soll dessen Schmelzefestigkeit erhöht werden. Dazu werden verschiedene chemische Modifikationen mittels Reaktivextrusion eingebracht.
Das Projekt "Design OptiMisation for efficient electric vehicles based on a USer-centric approach (DOMUS)" wird vom Umweltbundesamt gefördert und von Idiada Automotive Technology SA durchgeführt. The DOMUS project aims to change radically the way in which vehicle passenger compartments and their respective comfort control systems are designed so as to optimise energy use and efficiency while keeping user comfort and safety needs central. Although a more thorough understanding of thermal comfort over recent years has led to significant increases in energy efficiency through better insulation and natural ventilation, substantial room for improvement still exists. With Electric Vehicles (EVs) in particular, which are emerging as the most sustainable option for both satisfying the future mobility needs in Europe and reducing the impact on the environment, inefficiencies must be minimized due to their detrimental effect on the range. Starting with activities to gain a better understanding of comfort, combined with the development of numerical models which represent both the thermal and acoustic characteristics of the passenger compartment, DOMUS aims to create a validated framework for virtual assessment and optimization of the energy used. In parallel, innovative solutions for glazing, seats, insulation and radiant panels, will be developed along with controllers to optimize their performance individually and when operating in combination, the optimal configuration of which will be derived through numerical simulation. The aim is that the combined approach of innovating at a component level together with optimising the overall configuration will deliver at least the targeted 25% improvement in EV range without compromising passenger comfort and safety. Furthermore, the project will demonstrate the key elements of the new approach in a real prototype vehicle. As such DOMUS aims to create a revolutionary approach to the design of vehicles from a user-centric perspective for optimal efficiency, the application of which will be key to increasing range and hence customer acceptance and market penetration of EVs in Europe and around the world in the coming years.
Das Projekt "Recycling of hard-to-treat, post-consumer textile wastes and conversion to insulation material for construction industry using a novel conversion technology (Insuwaste)" wird vom Umweltbundesamt gefördert und von James Robinson Fibres Limited durchgeführt.
Das Projekt "Alternative Gases for dielectric insulation" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule ETH Zürich, High Voltage Laboratory durchgeführt. Introduction: The United Nations Framework Convention on Climate Change classified SF6 as greenhouse gas, and the Annex I countries are obliged to publish the inventory of SF6 and to reduce emissions. However, survey data show an increasing concentration of SF6 (1), and recent evaluations demonstrate that only 30 Prozent of SF6 emissions are reported (2). Novel regulations and technical development must aim at decreasing SF6 emissions below the natural decomposition rate. For dielectric insulation applications, i.e. in situations where discharges are exceptional, it might be possible to replace SF6 by a different gas or gas mixture. No alternative gas is established, despite an extensive study of the dielectric strength of electron attaching gases in the past (3), (4). As many of the well investigated gases are covered by the Kyoto protocol, new options must be provided by fundamental research. In the present research project, the dielectric strength of alternative gases will be evaluated. There is general agreement, that mixtures of two or more gases are most suitable for replacing SF6 in dielectric insulation applications. Due to 'synergistic effects' the dielectric strength of a mixture can be higher than of pure gases (5), or at least the dielectric strength of a mixture can be higher than the linear combination of the strength of the constituents (6). Various types of synergistic effects have so far been described on the basis of the electron velocity distribution function or on the basis of ion-neutral collisions. Methods: The methods developed for investigating electron attaching gases may be classified to three groups: Phenomenological, macroscopic and microscopic methods. The research strategy of the project at hand is a combination of two established methods. In a Pulsed Townsend Discharge (PTD) experiment the macroscopic parameters of electron-ion swarms in attaching gases are measured. Synergistic effects in gas mixtures will be investigated microscopically by Monte Carlo (MC) simulations. The PTD is a traditional method and considerable experience has been gained at the HVL during the years 1980-1990 (7,8). The group of de Urquijo (Mexico) lately used a PTD for studying the alternative gas CF3I (9). In figure 1 the principle of the PTD setup is given. The swarm parameters are obtained from a fit of the analytical expression of the displacement current to the recorded current. Refer to (10) for more details on our swarm parameter experiment SParX. Recently satisfying agreement was achieved between MC simulations and data from PTD experiments (11, 12). The critical issue of these simulations is the availability of a consistent set of cross sections of electron-neutral and ion-neutral collisions. In the present study the output of SParX serves for calibrating the cross sections and the simulations. usw.
Origin | Count |
---|---|
Bund | 8 |
Type | Count |
---|---|
Förderprogramm | 7 |
unbekannt | 1 |
License | Count |
---|---|
open | 7 |
unknown | 1 |
Language | Count |
---|---|
Deutsch | 7 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 6 |
Webseite | 2 |
Topic | Count |
---|---|
Boden | 7 |
Lebewesen & Lebensräume | 6 |
Luft | 7 |
Mensch & Umwelt | 8 |
Wasser | 5 |
Weitere | 8 |