Dieser Datenbestand stellt die Schulstandorte der Stadt Jena sowie deren Schulformen dar.
Dieser Datenbestand stellt die Standorte der Kindertagesstätten der Stadt Jena dar.
Die Ausweisung von Kartier- bzw. Legendeneinheiten der Bodengeologischen Karte von Thüringen im Maßstab 1 : 100.000 (BGK 100) folgt einem Bodenformenkonzept als wesentliches Gliederungselement, welches Substratsystematik (Systematik des bodenbildenden Substrats als Pendant zur Bodensystematik) und Bodentypologie (bzw. Bodensystematik) gleichermaßen berücksichtigt und als Bodenform in einem Begriff zusammenfasst (z. B. Löß-Schwarzerde). Die Kartiereinheiten stellen somit Flächeneinheiten komplexer Bodenformen-Gesellschaften dar, um sowohl dem Kartenmaßstab 1:100.000 als auch den vielfältigen Bodenverhältnissen Thüringens gerecht zu werden. weiterführende Literatur: MICHEL, C. (2004): 30 Jahre „Bodengeologische Karte von Thüringen“. – Beitr. Geol. Thüringen, N.F. 11: 147 – 166; Jena. RAU, D., SCHRAMM, H. & WUNDERLICH, J. (1995): Die Leitbodenformen Thüringens. – Geowiss. Mitt. Thüringen, Beiheft 3, 1. Aufl.; Weimar. RAU, D., SCHRAMM, H. & WUNDERLICH, J. (2000): Die Leitbodenformen Thüringens. – Geowiss. Mitt. Thüringen, Beiheft 3, 2. überarb. u. erw. Aufl.; Weimar.
The SUMATRA cruise SO189 Leg 1, aboard the RV SONNE, was carried out off Sumatra between 3rd August and 3rd September 2006, with mobilisation in Penang, Malaysia and demobilisation in Jakarta, Indonesia, respectively. The survey was dedicated to marine geophysical measurements and acquired multichannel seismic data (MCS) using a 240 channel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, sub-seabed data using the hull mounted high resolution PARASOUND profiler together with gravity (G) and magnetic (M) data were also acquired. Along two lines with a total length of ~ 390 km refraction/wide-angle seismic experiments were carried out. During the survey a total of 4,375 line kilometres of MCS, M and G data were acquired and an additional 990 km with M and G alone. The 41 MCS lines cover as close grid three fore-arc basins. Five lines extend nearly orthogonal to the subduction front and, thus, cover the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the forearm basins offshore Sumatra. The survey was planned using the bathymetry from the HMS SCOTT, RV NATSUSHIMA, RV MARION DUFRESNE and RV SONNE cruises carried out in 2004, 2005 and 2006. The main scientific objective of the project SUMATRA is to determine or estimate the hydrocarbon (HC) system (source rocks, HC generation, HC migration and reservoir rocks) of the Sumatra fore-arc region (mainly the fore-arc basins). Cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub-basin. Carbonate build-ups were found in the northern sub-basin only on the very shallow shelf in the north-east. The maximum thickness was determined to be ~ 3 s TWT. In the southern sub-basin carbonate build-ups (which were already identified on some lines of the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55 km the maximum sediment thickness exceeds 5 s TWT. The largest fore-arc basin is the Siberut Basin. It extends from the equator to ~ 5°S over 550 km and has a maximum width of 140 km between the island of Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8 s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. The geometry of this major fault changes significantly along strike. In some areas it is traceable as one single fold whereas in other areas it spreads in up to three different branches indicating splay faults originating from a main fault. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. The morphology of the Sunda Trench and its sedimentary cover varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~ 3.5 s TWT. The seafloor dips increase southwards, but sediment thickness decreases to ~ 2.5 s TWT off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults with a maximum displacement of 0.6 s TWT. Along strike the deformation front between Nias and Siberut displays several incipient folds. As offshore northern Sumatra, both landward (BGR06-228) and seaward verging folds (BGR06-227) are developed at the deformation front. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. In contrary to first thoughts during the expedition SO186-2 SEACAUSE, landward verging folds are not limited to the area off Aceh. Two refraction lines were acquired parallel to the subduction front at 2°30'N and 1°30'S approximately 40 - 50 km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set consists now of over 38,000 line km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (~ 6°30'N/95°E) to Mid Java( ~8°30'S/110°E). Gravity modelling in parallel with refraction seismic data interpretation was carried along two lines during the cruise. The preliminary results show that the incoming oceanic plate is unusual thin both in the north off Simeulue (6 km) and in the south off Nias (5 km).
Within the framework of the research project SINDBAD (Seismic and Geoacoustic Investigations Along the Sunda-Banda Arc Transition) marine geophysical investigations have been carried out with RV SONNE from October 9th, 2006, to November 9th, 2006, off the eastern Sunda Arc and at the transition to the Banda Arc in Indonesia. The research cruise SO190 Leg 1 started in Jakarta, Indonesia and ended in Darwin, Australia. During this cruise, multichannel seismics (MCS), magnetics (M), and gravimetry (G) measurements have been carried out. Simultaneously, SIMRAD (multibeam echosounder) and PARASOUND (sediment echosounder) data have been collected using RV SONNEs onboard systems. During the expedition, a total of 4,933 km of profiles with MCS, M, and G have been acquired. Six of the 20 profiles are long overview profiles perpendicular to the deformation front and cover the entire forearc from the forearc basin across the outer arc high, the deformation front onto the oceanic lithosphere. Additional profiles have been acquired along strike in the Lombok forearc basin and in the Savu Basin. The main goal of the project SINDBAD is to investigate the relation between the variability of the lower plate and the tectonic evolution of the overriding plate (formation of an outer arc high, development of forearc basins, and accretion and erosion processes of the overriding plate). The "raw materials" – seafloor sediments, oceanic crust (at the Banda Arc also continental crust) and mantle lithosphere – are carried into the subduction system at the trench. The influence of these "raw materials" on the overriding plate is controlled by a number of factors: e.g. the convergence rate, the obliqueness of convergence and the physical and chemical properties of the lower plate (e.g. its age, its sediment-cover and –thickness, its fluid content and the composition of the crust). Forearc basins are today attracting increased attention because of their hydrocarbon potential. The forearc basins of the eastern Sunda Arc are still frontier areas which are almost unexplored. An additional goal of this project is therefore the assessment of the hydrocarbon potential of the Lombok Basin. In contrast to the Sumatra subduction zone, only a small amount of pelagic sediment is carried into the subduction system offshore East Java, Bali, Lombok, Sumbawa and Sumba. This results e.g. in a less pronounced development of the outer arc high, which is subaerial off Sumatra, but entirely below the sea surface in the eastern Sunda Arc. The Roo Rise, which is subducting off East Java, is a morphological high that lies about 1500 m higher than the Argo Abyssal Plain which is subducting further to the east. Despite of these pronounced differences, the deformation front in both areas shows similarities. While the foot of the slope shows lower dip than the upper slope, both areas are characterized by landward dipping thrust sheets. In both areas the outer arc high is characterized by active faults (the recent activity is indicated by deformed basin sediments on the outer arc high) and therefore no indications for a static backstop have been found. The accretionary character of the deformation front is clearly indicated in both areas, while subrosion in association with the subsidence of the Lombok Basin can not be excluded based on the preliminary interpretations. The trench in both areas is devoid of sediments, which indicates erosional processes caused by currents along the trench strike. However, a depocenter for these sediments could not be localized yet. While a forearc basin is not clearly developed off East Java, the Lombok forearc basin with water depths of more than 4000 m extends from off Bali to off Sumbawa. On the southern slope of the basin prograding sedimentary sequences indicate uplift, probably caused by the subducting Roo Rise or a growth of the outer arc high. Additionally, carbonate platforms on the acoustic basement indicate phases of rapid subsidence of the basin. The sediment thickness reaches a total of about 3.5 sec TWT. A few seismic "bright spots", but no bottom simulating reflectors (BSRs) have been identified in the basin. The profiles striking along the basin axis indicate paleo-depocenters in the western part of the profile, while the recent depocenter is located in the eastern part of the basin. On the northern flank of the Lombok basin, indications for submarine volcanism (recent activity is unknown) are indicated by a seamount reaching above the seafloor associated with a clear magnetic anomaly. East of the Lombok Basin the island of Sumba is located, which is regarded as a microcontinent that has been attached to the island arc during the Late Oligocene. Sumbas geographical location in front of the island arc is usually characterized by the location of a forearc basin and correlates with the seaward displacement of the deformation front (Roti Basin) at the transition from ocean/island arc subduction of the Sunda Arc to continent/island arc collision of the Banda Arc. An uplift of about 0.5 cm/a is reported for Sumba, associated with the underplating of the continental Scott Plateau. The uplift is especially evident in the MCS data. To the east of the Lombok Basin depocenter, a transition zone with deep reaching faults is observed, associated with eastward dipping sedimentary and basement structures. This transition zone is also indicated by anomalies in the magnetic and gravity data, the latter indicating isostatic undercompensation. On the western flank of Sumba, deformed sedimentary sequences indicate gravitational gliding in association with the uplift of Sumba. East of Sumba, two profiles into the Savu Basin have been acquired. Here the uplift of Sumba is indicated by the erosion of sedimentary sequences which have been deposited in the basin followed by uplift and subsequent erosion. Further indications of "inversion structures" are given by a reactivated thrust fault that in the past has served as the southern boundary of the Savu Basin und indicates recent activity by associated deformed basin sediments. The oceanic crust of the Argo Abyssal Plain and the Roo Rise is characterized by thin sediments. On a connection profile between two long profiles on the Argo Abyssal Plain a basin with about 1.4 sec TWT of sediment has been observed, that, indicated by a magnetic anomaly, can be correlated with an age jump of about 15 Ma, thereby indicating a paleo plate boundary.
During RV SONNE cruise 137 from 21st November to 28th December 1998 Geoscientific Investigations on the active Convergence Zone between the east Eurasian and Indo-Australian Plate (GINCO I) were carried out along the Sunda Arc, off Sumatra, Java and the Sunda Strait. The studies were headed by the BGR in close cooperation with German and Indonesian research institutions. A total amount of 5,500 km of magnetic, gravity and swath bathymetric profiles were recorded of which multi-channel seismic data exceeded 4,100 km. The scientific objectives were: (1) investigation of the structure and age of the accretionary wedges, outer arc highs and fore-arc basins off Sumatra and Java with special emphasis on the evolution of the Sunda Strait and the Krakatau area (2) differences in tectonic deformation between oblique (Sumatra) versus frontal (Java) subduction (3) search for oceanic crustal splinters in the accretionary wedges (4) definition of seismic sequences, thicknesses and ages of the fore-arc basin sediments as a pre-requisite for later on hydrocarbon assessments (5) identification and regional occurrence of bottom simulating reflectors (BSR) indicating gas hydrates. From the GINCO I project there is evidence for the existence of two accretionary wedges along the Sunda Arc: wedge I is of assumed Paleogene age and wedge II of Neogene to Recent age. The first inner wedge I is composed of tectonic flakes which are correlated from SE Sumatra across the southern Sunda Strait to NW Java. This implies a very similar plate tectonic regime at the time of the flake development during the Upper Oligocene to Lower Miocene and without marked differences in plate convergence direction from Java to Sumatra. Wedge I shows backthrusting along the northern transition toward the fore-arc basin. Today, wedge I forms the outer arc high and the backstop for the younger, outer wedge II. Magnetic, gravity and seismic results show, that within both wedges, there are no indications for an oceanic crustal splinter as hitherto postulated. Both wedges are underlain by oceanic crust of the subducting Indo-Australian slab which could be correlated from the trench off Sumatra up to 135 km to the northeast and up to 65 km from the trench off Java. Since the top of the oceanic crust differs considerably in reflectivity and surface relief we distinguished two types in the seismic records. One type is characterized by strong top reflections and a smooth surface and underlies accretionary wedge II and the southwest part of the wedge I (outer arc high) off Sumatra and Java. The second type has a low reflectivity and a rougher relief and underlies the tectonic flakes of accretionary wedge I (outer arc high) between the southwestern tip of Sumatra, the SundaStrait and NW Java. The missing outer arc high off the southern entrance of the Sunda Strait is explained by Neogene transtension in combination with arc-parallel strike-slip movements. The NW-SE running, transpressional Mentawai strike-slip fault zone (MFZ) was correlated from the SE Sumatra fore-arc basin to the NW Java fore-arc basin. Off the Sunda Strait northward bending branches of the MFZ are connected with the Sumatra Fault zone (SFZ). It is speculated that the SFZ originally was attached to the Cimandiri-Pelabuhan-Ratu strike-slip faults and shifted from the volcanic arc position into the fore-arc basin area due to clockwise rotation of Sumatra with respect to Java as well as due to increasingly oblique plate convergence since the late Lower Miocene. We explain the transtension of the western Sunda Strait (Semangka graben) and the transpression with inversion of the eastern Sunda Strait, along the newly detected Krakatau Basin, by this rotation. Seismostratigraphic interpretation revealed 5 main sequences (A - E), tentatively dated as Paleogene to Recent in age. The oldest seismic sequence A of assumed Eocene to Oligocene age is bounded at the top by a major erosional unconformity that was identified on all GINCO seismic profiles. The seaward diverging seismic pattern of sequence A is interpreted as a correlative sequence to the prograding Paleogene deltaic sediments encountered by wells offshore central and northern Sumatra. This is opposed to previous interpretation which assumed seaward dipping reflector sequences of basaltic origin erupted along the former Mesozoic passive margin of Sumatra. According to constructed time structure maps, the main NW-SE running depocentres of the post-Paleogene sediments are arc-parallel off Sumatra and Java with thicknesses of 3 s (TWT) and 5 s (TWT), respectively. The main depocentres of the Semangka graben and of the Krakatau Basin of the Sunda Strait strike north-south and have infills of 2 s - 5 s (TWT). Bottom simulating reflectors (BSR) occur within the upper sequences C - D along the flanks of the fore-arc basins and along doming structures but could not be detected in basin centres. Empiric relations of heat flow values and depths of BSR were determined indicating that with increasing waterdepth and decreasing heat flow the depths of the BSR increase.
Dieser Datenbestand stellt die Schulstandorte der Stadt Jena sowie deren Schulformen dar.
Klimawandel lässt Krill knapp werden – Wie reagieren die Pinguine? Was der Eisbär für den Nordpol ist, ist der Pinguin für den Südpol. Alle 18 existierenden Pinguinarten sind fast nur auf der Südhalbkugel zu finden – sieben Arten leben in der Antarktis und auf subantarktischen Inseln. Eisbären und Pinguine haben – abgesehen von ihrem kalten Lebensraum – eine weitere Gemeinsamkeit: Sie sind durch den Klimawandel bedroht. Mehrere Forschungsergebnisse deuten auf zum Teil dramatische Einbußen bei Pinguinbeständen hin. Schuld ist der klimabedingte Rückgang des Meereises, der wiederum zu geringeren Krillbeständen geführt hat. Krill, das sind kleine Leuchtgarnelen, ist die Hauptnahrungsquelle von Pinguinen. Und wo der Krill verschwindet, verschwinden nach und nach auch die Pinguine. Am 25. April wird international der Weltpinguintag begangen. Seinen Ursprung hat der Gedenktag einem kuriosen Umstand zu verdanken: Wissenschaftler auf der amerikanischen McMurdo-Station in der Antarktis bemerkten, dass jedes Jahr am 25. April die Adéliepinguine nach ihrer Brutsaison ihre Kolonie verlassen und zu ihren Winterwanderungen auf See aufbrechen. Der Tag wurde für die Forscher zu einem eigenen Feiertag, der sich nach und nach weltweit etablierte. Der globale Klimawandel macht den Pinguinen der Antarktis teilweise stark zu schaffen. Durch eine Vielzahl an Einzelbeobachtungen haben Forscher festgestellt, dass sich Pinguinpopulationen verschiedener Arten seit einigen Jahren großräumig verschieben. Hauptnahrung vieler Pinguine, Fische und Wale in der Antarktis ist Krill, eine wenige Zentimeter große Leuchtgarnele. Der Rückzug des Meereises hat mancherorts zu geringeren Krillbeständen geführt und wo die Nahrung verschwindet, verschwinden nach und nach auch die Pinguine. Jedoch wissen wir nach wie vor zu wenig über die aktuelle Verbreitung verschiedener Pinguinarten und das Phänomen der Verschiebung von Pinguinpopulationen auf dem riesigen Süd-Kontinent. Die Antarktis ist mit etwa 14 Millionen Quadratkilometern anderthalb mal so groß wie Europa und teilweise sehr schwer zugänglich. Daher müssen wissenschaftlich fundierte Methoden entwickelt werden, um die Verbreitung der einzelnen Arten in diesem riesigen Gebiet effektiv zu untersuchen. Dies geschieht mit Hilfe von Satellitenaufnahmen. Anhand der hoch aufgelösten Bilder können Pinguinkolonien entdeckt und deren Größe ermittelt werden. So gelang es 2012 britischen Forschern, erstmalig den Weltbestand der Kaiserpinguine zuverlässig abzuschätzen. Diese größte Pinguinart brütet ausschließlich in der Antarktis und vorgelagerten Inseln auf vereisten Flächen und kann mit Satellitenaufnahmen vergleichsweise gut entdeckt werden. Pinguine, die auf felsigem Boden brüten, sind nicht leicht zu finden. Hier greifen die Forscher darauf zurück, auf den Satellitenbildern nach den Ausscheidungen der Tiere (Guano), die den Boden der Kolonie großflächig bedecken, zu suchen. Mit diesem Trick ist es möglich, eine Vorstellung von der Größe der auf den Bildern identifizierten Kolonien zu bekommen. Dabei ist es jedoch erforderlich, die eigenen Annahmen durch stichprobenhaftes Zählen der Pinguine vor Ort zu überprüfen, wofür mittlerweile auch kleine Drohnen eingesetzt werden. Ein vom Umweltbundesamt in Auftrag gegebenes Forschungsprojekt der Firma ThINK aus Jena arbeitet derzeit an entsprechenden Fragestellungen. Langfristiges Ziel ist es, methodische Grundlagen für ein internationales Pinguinmonitoring zu entwickeln. Die Antarktis ist, im Gegensatz zur Arktis, ein von Wasser umgebener Kontinent. Bedeckt von einem riesigen Eispanzer war die Antarktis jahrhundertelang fast unberührt. Seit mehr als einem Jahrhundert finden vor Ort vielfältige, menschliche Aktivitäten statt. Nach der Zeit der Entdecker und Walfänger waren es vor allem die Forscher, die ein außerordentliches Interesse an dem weißen Kontinent zeigten. Um territoriale Zwistigkeiten und militärische Nutzung zu unterbinden, wurde 1959 der sogenannte Antarktis-Vertrag geschlossen. So soll die Antarktis „im Interesse der gesamten Menschheit“ für alle Zeiten ausschließlich für friedliche Zwecke genutzt werden. Mit dem Umweltschutzprotokoll (USP) zum Antarktisvertrag, das 1998 in Kraft trat, verpflichten sich die Vertragsparteien zu einem umfassenden Schutz der antarktischen Umwelt und dem Verbot von Tätigkeiten im Zusammenhang mit kommerziellem Rohstoffabbau. Das Umweltschutzprotokoll-Ausführungsgesetz (AUG) setzt das USP in deutsches Recht um und überträgt dessen Vollzug und Überwachung dem Umweltbundesamt ( UBA ).
Dieser Datenbestand stellt die Standorte der Kindertagesstätten der Stadt Jena dar.
Aktualisierung und Anpassung der LAWA-Arbeitshilfe zur Umsetzung der EG-Wasserrahmenrichtlinie, Teil 3, Kapitel II.1.2 -Grundwasser- beschlossen auf der 158. LAWA-Vollversammlung am 18./19. September 2019 in Jena Ständiger Ausschuss „Grundwasser ...
Origin | Count |
---|---|
Bund | 852 |
Kommune | 20 |
Land | 126 |
Type | Count |
---|---|
Ereignis | 6 |
Förderprogramm | 754 |
Messwerte | 28 |
Software | 6 |
Taxon | 8 |
Text | 93 |
Umweltprüfung | 2 |
unbekannt | 96 |
License | Count |
---|---|
closed | 163 |
open | 813 |
unknown | 12 |
Language | Count |
---|---|
Deutsch | 964 |
Englisch | 127 |
unbekannt | 21 |
Resource type | Count |
---|---|
Archiv | 12 |
Bild | 1 |
Datei | 32 |
Dokument | 50 |
Keine | 556 |
Unbekannt | 1 |
Webdienst | 3 |
Webseite | 388 |
Topic | Count |
---|---|
Boden | 639 |
Lebewesen & Lebensräume | 716 |
Luft | 492 |
Mensch & Umwelt | 977 |
Wasser | 544 |
Weitere | 988 |