API src

Found 47 results.

Related terms

Indikator Klimasensitive Vogelarten

Der Indikator klimasensitive Vogelarten zeigt die Bestandsentwicklung von Vogelarten unter dem Einfluss klimatischer Veränderungen. Als Grundlage zur Erfassung des Indikators dienen die landesweit repräsentativen Brutvogeldaten aus der Ökologischen Flächenstichprobe (ÖFS), das Basisjahr ist 2006. Dabei werden 30 Arten, die relativ hohe durchschnittliche Temperaturwerte (über 13 °C) von Arealen bevorzugen, in einer Gruppe zusammengefasst. Hierzu zählen beispielsweise der Grünspecht, der Pirol oder der Steinkauz. Eine weitere Gruppe wird von 20 Arten gebildet, die eher in Arealen mit kühleren Bedingungen vorkommen (unter 11 °C). Innerhalb dieser Gruppe befinden sich zum Beispiel das Wintergoldhähnchen, der Tannenhäher oder die Weidenmeise. Daneben wird eine Gruppe mit Arten, die einen mittleren STI-Wert aufweisen, identifiziert (beispielsweise Kohlmeise, Buchfink, Amsel und Mönchsgrasmücke).

How is the stratospheric water vapour affected by climate change, and which processes are responsible? (SHARPI-WV)

Das Projekt "How is the stratospheric water vapour affected by climate change, and which processes are responsible? (SHARPI-WV)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Abteilung Dynamik der mittleren Atmosphäre durchgeführt. Observational data sets of water vapour (H2O) and HDO from MIPAS and H2O from SCIAMACHY will be extended and further improved in data quality. An 'all-satellite' data set containing data of SAGE, HALOE, SMR, MLS, MIPAS and SCIAMACHY and covering 30 years from 1984 to 2014 will be generated by appropriate data merging. The MIPAS and SCIAMACHY data record will be analysed regarding the anomalies of the time series (tape recorder, monsoon systems), potential trends, and correlations to other atmospheric quantities like tropical tropopause temperature, with some focus on the HDO data record. Similar analysis will be performed with improved transient and sensitivity model runs available within SHARP. H2O modelling will be included in the Lagrangian version of EMAC, and case process studies will be performed to analyse the H2O transport into the stratosphere. The modelled H2O fields will be compared to H2O data sets made available from MIPAS. For ECHAM5/MESSy, a higher resolved version not producing the cold and dry bias in the tropopause will be sought for. The CMIP5 simulations of MPI-M will be analysed regarding water vapour, and internal variability will be compared to climate change signals. The role of methane for the stratospheric water vapour budget will be re-assessed in the light of recent changes in methane growth, both from the observational and model data side.

Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)

Das Projekt "Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Geowissenschaften, Institut für Meereskunde durchgeführt. Labrador Sea Water (LSW) formed in the Labrador Sea constitutes the lightest contribution to North Atlantic Deep Water (NADW), a conglomerate of water masses that form the cold return flow of the Atlantic meridional overturning circulation (MOC). Climate variability can be modulated by changes in the MOC strength; such changes are thought to be linked to variations in LSW formation. The Deep Western Boundary Current (DWBC) is the main southward pathway for newly formed LSW. Topographic obstacles at the southern exit of the Labrador Sea split the DWBC into an upper branch carrying LSW through Flemish Pass (1200m sill depth) and a branch carrying all NADW components along the continental slope around Flemish Cap. Up to now, transports through Flemish Pass and their contribution to the MOC are still uncertain, the importance of the pass for the export of LSW and its associated variability are yet unknown. In this project the transports through Flemish Pass will be quantified, and mechanisms driving and governing the variability of the flow will be investigated. The project focuses on the following questions: What is the magnitude of transports for waters passing through Flemish Pass and their associated variability? Which processes drive the variability? What is the relevance of the deep water export through Flemish Pass for the MOC, especially when compared to the DWBC export? Are both deep water export pathways (through Flemish Pass or around Flemish Cap) coupled? What processes govern the inflow of deep water into Flemish Pass? To answers these questions, ship-based measurements and time series from moored instruments in the Flemish Pass will be analyzed in conjunction with output from two state-of-the-art Ocean models run at high-resolution.

Hotspot Ecosystem Research on the Margins of European Seas (HERMES)

Das Projekt "Hotspot Ecosystem Research on the Margins of European Seas (HERMES)" wird vom Umweltbundesamt gefördert und von IFM-GEOMAR Leibniz-Institut für Meereswissenschaften durchgeführt. HERMES is designed to gain new insights into the biodiversity, structure, function and dynamics of ecosystems along Europe's deep-ocean margin. It represents the first major attempt to understand European deep-water ecosystems and their environment in an integrated way by bringing together expertise in biodiversity, geology, sedimentology, physical oceanography, microbiology and biogeochemistry, so that the generic relationship between biodiversity and ecosystem functioning can be understood. Study sites will extend from the Arctic to the Black Sea and include open slopes, where landslides and deep-ocean circulation affect ecosystem development, and biodiversity hotspots, such as cold seeps, coldwater coral mounds, canyons and anoxic environments, where the geosphere and hydrosphere influence the biosphere through escape of fluids, presence of gas hydrates and deep-water currents. These important systems require urgent study because of their possible biological fragility, unique genetic resources, global relevance to carbon cycling and possible susceptibility to global change and man-made disturbances. Past changes, including catastrophic events, will be assessed using sediment archives. We will make estimates of the flow rates of methane from the geosphere and calculate how much is utilised by benthic communities, leaving the residual contribution to reach the atmosphere as a greenhouse gas. HERMES will enable forecasting of biodiversity change in relation to natural and man-made environmental changes by developing the first comprehensive pan-European margin Geographic Information System. This will provide a framework for integrating science, environmental modelling and socio-economic indicators in ecosystem management. The results will underpin the development of a comprehensive European Ocean and Seas Integrated Governance Policy enabling risk assessment, management, conservation and rehabilitation options for margin ecosystems. Prime Contractor: Natural Environment Research Council; Athens; United Kingdom.

Zirkulation von Fluiden und Gas an Kalten und Heißen Quellen entlang der Sandwich Mikroplatte

Das Projekt "Zirkulation von Fluiden und Gas an Kalten und Heißen Quellen entlang der Sandwich Mikroplatte" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. We request financial support to perform multidisciplinary studies on hydrothermal vents and cold seeps at the Sandwich plate during RV POLARSTERN cruise ANT XXIX/4 from 22 March to 16 April 2013 (Scotia l). During this field campaign we plan to obtain geophysical, geological, and video-seafloor observation data from potential venting location in order to explore those fluid and gas emission sites and to perform a first geological and geochemical sampling. Cold seeps and hot vents are very rare in Antarctica and locations associated to the Sandwich plate are of high interest. This is because of its tectonic and geographic position between the World Ocean and Antarctica, the relevance in biogeography of the chemosynthetic organisms, the unique geochemical and geological settings within the ocean-to-ocean collision zone and its frontier character in the polar deep sea. Hydrothermal activity is indicated for two Segments of East-Scotia Ridge (E2 and E9), however, tectonically-induced seepage is yet unknown in the Sandwich fore-arc area, as it is a common phenomenon in other subduction-related compression zones. A subsequent POLARSTERN cruise (Scotia II), which is not scheduled up to now, plans to perform more detailed AUV- and ROV-work at the seep and vent sites. The cruise Scotia II will strongly relay on the results of ANT XXIX/6. A post-doctoral scientific position is applied for in order to comprehensively analyse and Interpret the data obtained from seeps and vents during ANT XXIX/4.

Meridional Overturning Exchange with the Nordic Seas (MOEN) - WP4: Modelling

Das Projekt "Meridional Overturning Exchange with the Nordic Seas (MOEN) - WP4: Modelling" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Backgrond: The mild climate of north western Europe is, to a large extent, governed by the influx of warm Atlantic water to the Nordic Seas. Model simulations predict that this influx and the return of flow of cold deep water to the Atlantic may weaken as a consequence of global warming. MOEN will assess the effect of anthropogenic climate change on the Meridional Overturning Circulation by monitoring the flux exchanges between the North Atlantic and the Nordic Seas and by assessing its present and past variability in relation to the atmospheric and thermohaline forcing. This information will be used to improve predictions of regional and global climate changes. MOEN is a self-contained project of the intercontinental Arctic-Subarctic Ocean Flux (ASOF) Array for European Climate project, which aims at monitoring and understanding the oceanic fluxes of heat, salt and freshwater at high northern latitudes and their effect on global ocean circulation and climate. MOEN will contribute to a better long-term observing system to monitor the exchanges between the North Atlantic and the Nordic Seas from direct and continuous measurements in order to allow an assessment of the effect of anthropogenic climate change on the Meridional Overturning Circulation. This we will be done by measuring and modelling fluxes and characteristics of total Atlantic inflow to the Nordic Seas and of the Iceland-Scotland component of the overflow from the Nordic Seas to the Atlantic. General objectives: To contribute to a better long-term observing system to monitor the exchanges between the North Atlantic and the Nordic Seas. To assess the effect of anthropogenic climate change on the Meridional Overturning Circulation. Modelling objectives (WP4, IfM): To model the flow field, the temperature and salinity distribution and the heat fluxes for an area focused on the Iceland-Faroe Ridge, the Faroe Bank and Faroe-Shetland Channel and Wyville-Thomson Ridge. To model long term variations of the locally induced and far field circulation and T/S distribution in order to understand climate variations.

Molecular adaptability to abiotic key factors in cold-adapted fish

Das Projekt "Molecular adaptability to abiotic key factors in cold-adapted fish" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt.

Teilvorhaben: Entwicklung und Optimierung PCM-Speicher

Das Projekt "Teilvorhaben: Entwicklung und Optimierung PCM-Speicher" wird vom Umweltbundesamt gefördert und von ESDA Technologie GmbH durchgeführt. Ziel des Projektes ist es, ein innovatives Gesamtkonzept zur kombinierten regenerativen Versorgung von Gebäuden mit Wärme, Kälte, Strom und Frischluft zu entwickeln und im realen Einsatz zu evaluieren. Im Fokus steht dabei eine möglichst umfassende und effiziente Nutzung zur Verfügung stehender regenerativer Umweltenergie und die Verknüpfung mit LowEx-Systemen zur Gebäudekühlung, Heizung und Lüftung. Im Rahmen von RENBuild wird ein Gewerke übergreifendes Gesamtsystem entwickelt, dessen optimierte Komponenten eine möglichst hohe Energieeffizienz bei gleichzeitiger Nutzung regenerativer Energien erlauben. Kernstück des Systems ist ein PVT-Kollektor, der gleichzeitig Strom, Wärme und Kälte rein regenerativ erzeugt. Tagsüber wird Solarenergie in Strom und Wärme umgewandelt, während nachts Umweltkälte - im Wesentlichen durch langwelligen Strahlungsaustausch mit dem kalten Nachthimmel - genutzt wird. Die dabei erreichten Temperaturen liegen auf moderaten Niveaus, können jedoch sehr effizient in Niedertemperaturheiz- und -kühlsystemen wie z.B. Heiz-/Kühldecken oder Fußbodenheizung/-kühlung genutzt werden. Eine Wärmepumpe kann die Temperaturen - sofern notwendig - weiter anheben bzw. absenken. Entsprechend angepasste und optimierte Wärme- und Kältespeicher sorgen für die Überbrückung der Fehlzeiten zwischen Erzeugung und Bedarf. Die Einbindung einer Lüftungsanlage mit Wärmerückgewinnung komplettiert das Gesamtsystem. Eine intelligente Steuerung erlaubt das effiziente Zusammenspiel der Komponenten. Die Steuerung ist dabei auf eine möglichst hohe Eigennutzung ausgelegt. Die Speicher erlauben jedoch auch netzdienliche Funktionen wie z.B. power-to-heat oder power-to-cold. Die Integration der PVT-Kollektoren erfolgt gebäudeintegriert im Dach oder in der Fassade. Letzteres erlaubt bei Gebäuden mit zu geringer Dachfläche (z.B. mehrgeschossige Bürogebäude) eine Vergrößerung der aktiv nutzbaren Fläche.

WIR! - Physics for Food - Transfer, Procedures & Permissions (TPP); Teilprojekt 3: CAP-Demonstrator zur kontinuierlichen Plasmabehandlung der Leitkulturen Gerste, Raps und Lupine

Das Projekt "WIR! - Physics for Food - Transfer, Procedures & Permissions (TPP); Teilprojekt 3: CAP-Demonstrator zur kontinuierlichen Plasmabehandlung der Leitkulturen Gerste, Raps und Lupine" wird vom Umweltbundesamt gefördert und von TIGRES GmbH durchgeführt. Im Teilvorhaben TIGRES des Gesamtvorhabens 'WIR! - Physics for Food - Transfer, Procedures & Permissions' wird eine innovative physikalische Methode zur Dekontamination der Leitkulturen Gerste, Raps und Lupine entwickelt. Das Ziel ist es umweltbelastende, chemische Behandlungen durch eine schonende physikalische Behandlung mit kaltem atmosphärischem Plasma zu ersetzen. Dazu wird die TIGRES GmbH in Zusammenarbeit mit der Autosoft Günther Tausch GmbH einen CAP-Demonstrator (Cold Atmospheric Plasma) entwickeln und herstellen.

Transport und Zusammensetzung der UTLS der Südhemisphäre (SOUTHTRAC)

Das Projekt "Transport und Zusammensetzung der UTLS der Südhemisphäre (SOUTHTRAC)" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Änderungen der Verteilung von Spurengasen wie Wasserdampf und Ozon in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflussen den Strahlungsantrieb und das Klima sowie die Oberflächentemperaturen und haben eine Schlüsselbedeutung für das Verständnis des Klimawandels. Auf Grund der hohen Sensitivität des atmosphärischen Strahlungsantriebs gegenüber Änderungen der Konzentrationen dieser Substanzen gerade in der kalten Tropopausenregion haben kleine Änderungen z.B. des Wasserdampfgehaltes der unteren Stratosphäre eine große Wirkung auf die Variabilität der Oberflächentemperatur. Überdies sind Prognosen des zukünftigen Wasserdampf- und Ozongehaltes des UTLS nach wie vor mit großen Unsicherheiten behaftet, was exakte Vorhersagen des Strahlungsantriebs vor dem Hintergrund des wieder zunehmenden stratosphärischen Ozons und der damit verbundenen Prozesse erschwert. Mehrere Studien haben gezeigt, dass Klima-Chemie-Modelle sogar unterschiedliche Vorzeichen des Strahlungsantriebes durch die Ozonzunahme zeigen, da gerade im Bereich der Tropopause große Unsicherheiten bezüglich der simulierten Zusammensetzung, insbesondere des Ozons und Wasserdampfs auftreten. Aufgrund des unterschiedlichen Wellenantriebs in beiden Hemisphären und auch aufgrund des stark unterschiedlichen Polarwirbel, werden große Unterschiede des Transports und der Zusammensetzung zwischen der UTLS der Nord- und der Südhemisphäre erwartet. Trotz der Bedeutung der globalen UTLS wurden bisher kaum Studien zu Transportprozessen und Zusammensetzung sowie der Dynamik der südlichen UTLS durchgeführt. Frühere Kampagnen hatten die antarktische Ozonzerstörung und Vortexprozesse oder die Tropen oder die troposphärische Zusammensetzung zum Ziel. Außerdem beeinflusst die Südhemisphäre im Winter die globale stratosphärische Zirkulation, da die Anden dann ein globales Maximum der Schwerewellenaktivität bilden. Die Ausbreitung dieser Wellen und ihr Einfluss auf die Zirkulation sind noch nicht vollständig verstanden. Deshalb schlagen wir eine HALO Kampagne vor um die UTLS der Südhemisphäre zu untersuchen. Spezifische Aspekte, die hierbei im Fokus stehen, sind: (1) Austauschprozesse an der südhemisphärischen Tropopause (2) Schwerewellen in der Südhemisphäre (3) Einfluss von Biomassenverbrennung auf die südhemisphärische UTLS (4) Einfluss des antarktischen Polarwirbels auf die UTLS

1 2 3 4 5