API src

Found 33 results.

Related terms

Allgemeine Umweltradioaktivität

Die flächenhafte vorsorgliche Überwachung der Umwelt auf Einträge von künstlicher Radioaktivität erfolgt im Rahmen des Routinemessprogramms (inkl. erweiterten Routinemessprogramm). Die Messdatenübermittlung und Berichterstattung erfolgen an den Bund im Rahmen des Integrierten Mess- und Informationssystems (IMIS). Im Rahmen eines Landesprogramms erfolgen Messungen z. B. in der Weißen Elster und im Rahmen des ARGE Elbe Programms.

Strahlenschutz

Strahlung ist eine Energieform, die sich als elektromagnetische Welle- oder als Teilchenstrom durch Raum und Materie ausbreitet. Die Strahlungsarten werden in 2 große Gruppen unterteilt, die sich durch ihre Energie unterscheiden. Strahlung, die bei der Durchdringung von Stoffen an Atomen und Molekülen Ionisationsvorgänge auslöst, wird als ionisierende Strahlung bezeichnet. Dazu gehören z.B. die Röntgen- und die Gammastrahlung. Als nichtionisierende Strahlung wird die Strahlung bezeichnet, bei der die Energie der Strahlung nicht ausreicht, Atome und Moleküle zu ionisieren. Dazu gehören z.B. Radio- und Mikrowellen, elektromagnetische Felder und das Licht. Ionisierende Strahlung ist sowohl Teil der Natur (Natürliche Radioaktivität) und somit Bestandteil der menschlichen Umwelt als auch das Resultat menschlicher Tätigkeit (Künstliche Radioaktivität).

Drehfilter-Messsystem zur Immissionsueberwachung von Aerosolen

Das Projekt "Drehfilter-Messsystem zur Immissionsueberwachung von Aerosolen" wird/wurde ausgeführt durch: Kernforschungsanlage Jülich GmbH, Abteilung Sicherheit und Strahlenschutz.Die Ueberwachung der Beta-Aktivitaet von Aerosolen, die von kerntechnischen Anlagen emittiert werden, ist fuer den Umweltschutz von grosser Bedeutung. Zur Messung der Beta-Aktivitaet sowohl im Normalbetrieb als auch im Stoerfall muss ein Messsystem einen Messbereich von etwa 8 Groessenordnungen umfassen. Um den Erforderungen der Ueberwachung zu entsprechen, sollte ein solches System preiswert in Herstellung und Betrieb sein und dem modernen Automatisierungsstandard entsprechen. Das Drehfiltersystem sammelt im 24 h-Zyklus Aerosolproben. Mit drei Detektoren werden die Beta-Aktivitaet der Aerosolprobe waehrend der Probenahme, das Abklingverhalten der Aktivitaet unmittelbar nach der Probenahem und die Aktivitaet langlebiger Nuklide nach Zerfall der kurzlebigen Isotope ermittelt. Die Messergebnisse werden rechnergestuetzt hinsichtlich der natuerlichen und kuenstlichen Radioaktivitaet analysiert. Die Analyse der Zerfallskurve ergibt bereits 3 h nach der Probenahme erste Hinweise auf langlebige kuenstliche Nuklide, die mit den bisher angewandten Verfahren erst nach 20 Tagen nachweisbar waren. Nach der Erprobung des Prototyps befindet sich zur Zedit ein Ueberwachungssystem im Aufbau, das aus mehreren Drehfiltermessstationen und einem Leitrechner zur zentralen Datenerfassung und -auswertung besteht.

Radioaktivitaet in der Umwelt - Schnellmessung natuerlicher und kuenstlicher Radionuklide in Luft, Feststoffen und Wasser, insbesondere Radonfolgeprodukte

Das Projekt "Radioaktivitaet in der Umwelt - Schnellmessung natuerlicher und kuenstlicher Radionuklide in Luft, Feststoffen und Wasser, insbesondere Radonfolgeprodukte" wird/wurde ausgeführt durch: Universität Regensburg, Naturwissenschaftliche Fakultät II Physik.

Ueberwachung der Umweltradioaktivitaet (kuenstlich und natuerlich) / Ueberwachung der Radioaktivitaet in Umgebung von Kernkraftwerken, Spitaelern und Industrien

Das Projekt "Ueberwachung der Umweltradioaktivitaet (kuenstlich und natuerlich) / Ueberwachung der Radioaktivitaet in Umgebung von Kernkraftwerken, Spitaelern und Industrien" wird/wurde ausgeführt durch: Universite Fribourg, Physikinstitut, Eidgenössische Kommission zur Überwachung der Radioaktivität, Labor Freiburg.Ueberwachung der Umweltradioaktivitaet in der Schweiz: Luft, Regen, Erdboden, Gras, Getreide, Milch, andere Lebensmittel, Fluss- und Grundwasser, Wasserpflanzen, Fische, Sedimente, Plankton etc; Umgebungsueberwachung bei Kernkraftwerken, und in der Umgebung von Industrien und Spitaelern die Radionuklide verarbeiten; Messungen der Ortsdosen und der Ortsdosisleistung; Aufbau und Betieb eines Netzes mit Fernuebertragung zur automatischen Messung der Ortsdosisleistung an 51 Stationen in der Schweiz (zusammen mit der SMA); Korrelation zwischen Variationen der Strahlendosis und meteorologischen Einfluessen; Berechnung der Strahlendosen der Bevoelkerung in der Umgebung von Kernkraftwerken; Messung von Radon in Wohnhaeusern und Berechnung der Strahlendosen der Bewohner (zusammen mit EIR); Ausarbeitung der Jahresberichte der KUER an den Bundesrat; Beurteilung der Messergebnisse aus der Sicht des Strahlenschutzes (Schweiz. Strahlenschutzverordnung und Internationale Empfehlungen); Bestimmung von Parametern und Test radiooekologischer Modelle fuer die Ausbreitung und den Transfer radioaktiver Stoffe in der Umwelt.

Umweltueberwachung auf Radioaktivitaet und ionisierende Strahlung

Das Projekt "Umweltueberwachung auf Radioaktivitaet und ionisierende Strahlung" wird/wurde ausgeführt durch: Fachverband für Strahlenschutz.Regelmaessiger Erfahrungsaustausch ueber Methoden und Ergebnisse der Umweltueberwachung auf Radioaktivitaet und ionisierende Strahlung im Normal- und Stoerfall in der BRD, Schweiz und Oesterreich. Erarbeitung und Nachfuehrung einer umfassenden Loseblattsammlung ueber alle praktischen Methoden der Probenahme, Probenaufbereitung, Messung, Auswertung und Interpretation. Durchfuehrung von Vergleichsmessungen und Qualitaetskontrollen. Studien und Datensammlung zu Teilgebieten der Umweltueberwachung, u.a. Umweltkontamination nach Tschernobyl. Ueberarbeitung von Richtlinien und Empfehlungen sowie Stellungsnahmen zu Gesetzgebungsentwuerfen zuhanden von Behoerden. Veranstaltungen von Seminaren und Fachtagungen, Redaktion von Tagungsberichten.

Atmosphaerenmischung, untersucht mit Argon-37

Das Projekt "Atmosphaerenmischung, untersucht mit Argon-37" wird/wurde ausgeführt durch: Universität Bern, Physikalisches Institut.Die Messung der atmosphaerischen Ar-37-Aktivitaet, welche heute natuerliche und kuenstliche Ursachen hat, soll fortgesetzt werden. Damit werden einerseits globale Durchmischungsprozesse in der Atmosphaere untersucht. Andererseits wird Information ueber lokale oder regionale Erhoehungen kuenstlichen Ursprungs gewonnen, vor allem wenn mit Kr-85 und Tritium-Messungen und mit anderen Daten verglichen wird.

Das Geoportal des BfS

Das Geoportal des BfS Das BfS -Geoportal ist eine interaktive Kartenanwendung. Mit dem BfS -Geoportal können Messdaten rund um den Strahlenschutz abgerufen werden: Zum Beispiel über künstliche Radionuklide ( Cäsium-137 ) in Nahrungs- oder Futtermitteln oder die im Regen gemessene Radioaktivität . Die Suchergebnisse lassen sich auf bestimmte Zeiträume oder Gegenden eingrenzen oder können im Überblick über Deutschland auf einer Landkarte dargestellt werden. Das Bundesamt für Strahlenschutz ( BfS ) stellt mit dem BfS -Geoportal ein eigenes Internetportal für die Suche und Darstellung raumbezogener Daten (Geodaten) und Webdienste (Geodatendienste) des BfS bereit. Geodaten sind alle Daten mit direktem oder indirektem Bezug zu einem bestimmten Standort oder geografischen Gebiet. Beispiele für Geodaten sind die Anzahl der Sonnenstunden an einer bestimmten Messstation oder die Stärke der Gamma- Strahlung an einer bestimmten ODL-Sonde . Geodaten lassen sich durch ihren Standort-Bezug in Karten darstellen. Ein Geodatenservice ermöglicht es, auf in einer Datenbank vorgehaltene Geodaten z.B. automatisiert über das Internet zuzugreifen. Was ist das BfS -Geoportal? Mit dem BfS -Geoportal können Kommunen, Unternehmen und Interessenverbände genauso wie interessierte Bürgerinnen und Bürger Messdaten rund um den Strahlenschutz abrufen: Zum Beispiel über künstliche Radionuklide (Cäsium-137) in Futtermitteln oder die aktuellen ODL-Stundenwerte . Die Suchergebnisse lassen sich auf bestimmte Zeiträume oder Gegenden eingrenzen oder können im Überblick über Deutschland auf einer Landkarte dargestellt werden. Welche Daten stellt das BfS in seinem Geoportal bereit? Das BfS stellt eigene Messdaten sowie weitere von Bundes-, Landes- und anderen Partnerbehörden bereit. Dies sind in der Mehrzahl Daten aus dem Integrierten Mess- und Informationssystem ( IMIS ). Am IMIS -Messprogramm zur kontinuierlichen Überwachung der Umwelt sind mehrere Messnetze und mehr als 60 Labore in Bund und Ländern beteiligt. Darüber hinaus lassen sich beispielweise Radon-222 -Konzentrationen in der Freiluft abrufen ( hier ) oder der aktuelle UV-Index anzeigen ( hier ). Die Daten sind thematisch unterteilt in Gamma-Ortsdosisleistung ( ODL ) Luft Niederschlag Bodenoberfläche Boden Wasser Nahrungsmittel Futtermittel Sonstige Umweltmedien Radon UV Sonstiges Über das BfS -Geoportal werden vom BfS Daten gemäß des Gesetzes zur Förderung der elektronischen Verwaltung (E-Government-Gesetz - EgovG) der Öffentlichkeit zur Verfügung gestellt. Umgangssprachlich wird dieses Gesetz auch 'Open-Data-Gesetz' genannt. Wie funktioniert das BfS -Geoportal? Das BfS-Geoportal Das BfS -Geoportal ist eine interaktive Kartenanwendung. Die gewünschten Daten können im BfS -Geoportal über das Menü (links im Geoportal) ausgewählt und in die Karte geladen werden. Die Legende (rechts im Geoportal) erklärt die Farbgebung der Daten in der Karte und stellt weitere Funktionen bereit. Die genauen Messwerte lassen sich an den einzelnen Datenpunkten in der Karte abrufen. In ergänzenden Diagrammen werden z.B. Zeitreihen angezeigt (soweit verfügbar). Eine "Hilfe"-Seite leitet bei der Benutzung des BfS -Geoportals an und informiert ausführlich über Bedienung und Funktionalität (Hilfe- Button am Ende des Menüs). Was sind Webdienste und welche Geodatendienste stellt das BfS bereit? Ein Web -Dienst ist eine standardisierte Abfrage und Antwort über das Internet, die von Computern automatisiert oder von Nutzern interaktiv durchgeführt werden kann. Werden Geoinformationen über Webdienste bereitgestellt, spricht man von Geodatendiensten. Auf welchen gesetzlichen Vorgaben basiert das BfS -Geoportal? Anlass zur Entwicklung des seit Ende 2013 verfügbaren BfS -Geoportals war die europäische INSPIRE -Richtlinie ( INfrastructure for SPatial InfoRmation in Europe , Richtlinie 2007/2/EG). Mit INSPIRE verfolgt die EU das Ziel, mithilfe einer gemeinsamen Geodateninfrastruktur in Europa die grenzübergreifende Nutzung von Geodaten zu erleichtern. Insbesondere sollen so umweltpolitische Entscheidungen und Maßnahmen in Europa unterstützt werden. Als Umsetzung der INSPIRE Richtlinie in Deutschland hat das "Gesetz über den Zugang zu digitalen Geodaten" (Geodatenzugangsgesetz, GeoZG) in den vergangenen Jahren die technischen Entwicklungen und Normierungen von Such-, Darstellungs- und Download -Diensten erheblich vorangetrieben. Unter anderem wurde es dadurch möglich, Nutzern zentral Zugriff auf Geodatendienste unterschiedlicher Quellen zu gewähren, wie dies zum Beispiel im BfS -Geoportal möglich ist. Wo finde ich weitere Geodaten? Unabhängig vom eigenen Geoportal stellt das BfS seine Daten und Webdienste über Geoportal.de bereit. Dieses Portal ist die zentrale Suchmaschine für die Geodateninfrastruktur in Deutschland. Geoportal.de ist ein Service von Bund, Ländern und Kommunen. Hier werden deutschlandweit verfügbare Informationen wie Straßenkarten, Luftbilder und fachliche Themenkarten von Energie über Bauleitplanung bis zu Naturschutz zusammengefasst, um einen umfassenden Überblick über frei verfügbare Geoinformationen in Deutschland zu bieten. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 22.10.2024

Radioaktivität messen

Radioaktivität messen Auch wenn ionisierende Strahlung nicht zu sehen, hören, fühlen oder schmecken ist, gibt es Methoden und Geräte, um sie zu messen. Je nach Art der Strahlung und Messaufgabe sind unterschiedliche Geräte erforderlich. Im Vergleich zu professionellen Messgeräten, wie sie das Bundesamt für Strahlenschutz nutzt, messen einfache Geräte für den Privatgebrauch oft ungenauer und weniger zuverlässig. Verschiedene Faktoren nehmen Einfluss auf die Güte von Messergebnissen und müssen bei der Auswertung von Messergebnissen beachtet werden. Was ist ionisierende Strahlung? Messverfahren Messgeräte Einflussfaktoren und Aussagekraft der Messergebnisse Professionelle Radioaktivitäts-Messungen Messwerte online einsehen Radioaktivitäts-Messwerte einordnen und bewerten Messgeräte zur Messung von Radioaktivität in der Umwelt " Radioaktivität " beschreibt ein physikalisches Naturphänomen: Können Atomkerne ohne äußere Einwirkung von selbst zerfallen und dabei energiereiche Strahlung ( ionisierende Strahlung ) aussenden, nennt man sie "radioaktiv". Natürliche Radioaktivität ist überall in der Umwelt anzutreffen, und niemand kann sich ihr entziehen. Von künstlicher Radioaktivität spricht man, wenn radioaktive Atomkerne zum Beispiel durch Kernspaltung oder Neutronenaktivierung künstlich erzeugt werden. Die beim radioaktiven Zerfall entstehende ionisierende Strahlung ist nicht zu sehen, zu hören, zu fühlen oder zu schmecken. Es gibt jedoch Methoden und Geräte, um sie zu messen. Was ist ionisierende Strahlung? Ionisierende Strahlung entsteht, wenn bestimmte Atomkerne radioaktiv zerfallen und dabei Alpha-, Beta-, Gamma- und/oder Neutronen - Strahlung abgeben. Ionisierende Strahlung kann aber auch technisch erzeugt werden. Das ist bei Röntgen-Strahlung der Fall. Trifft ionisierende Strahlung auf Atome oder Moleküle, kann sie diese "ionisieren". Ionisierung bedeutet: Elektronen werden aus der Hülle von Atomen beziehungsweise Molekülen "herausgeschlagen". Das zurückbleibende Atom oder Molekül ist dann (zumindest kurzzeitig) elektrisch positiv geladen. Elektrisch geladene Teilchen nennt man Ionen. Zerfallen Atomkerne, geben sie häufig – abhängig davon, um welche Atomkerne es sich handelt - Alpha- Strahlung in Form ausgestoßener Helium-Atomkerne oder Beta- Strahlung in Form von aus dem Atomkern ausgestoßenen Elektronen oder Positronen ab. Meist tritt zeitgleich mit der Alpha- oder Beta- Strahlung auch sehr kurzwellige und energiereiche Gamma- Strahlung auf. Dringt ionisierende Strahlung in menschliches Gewebe ein , kann sie Zellen im Gewebe schädigen . Während Alpha- Strahlung schon durch wenige Zentimeter Luft absorbiert wird und die menschliche Haut nicht durchdringen kann, durchdringt Beta- Strahlung die Luft bis zu einigen Metern und kann durch die menschliche Haut wenige Millimeter bis Zentimeter in den menschlichen Körper gelangen. Gamma- Strahlung und Neutronen - Strahlung durchdringen sehr leicht verschiedenste Materie. Maßeinheiten Messverfahren Da man ionisierende Strahlung nicht direkt beobachten kann, muss man geeignete Messverfahren verwenden, um die Art und Intensität der Strahlung zu ermitteln. Je nach Art der Strahlung (Alpha-, Beta- und Neutronen - Strahlung oder Röntgen- und Gamma- Strahlung ) sind unterschiedliche Messverfahren erforderlich. Das bedeutet, dass man nicht mit einem einzigen Verfahren alle durch den radioaktiven Zerfall entstehenden Strahlungsarten messen kann. Auch der Messzweck spielt eine wichtige Rolle. Soll zum Beispiel neben der Intensität der Strahlung auch die Art des radioaktiven Stoffes bestimmt werden, sind unterschiedliche Messverfahren notwendig. Physikalische Wechselwirkungen der Strahlung mit Materie Alle Verfahren zur Messung ionisierender Strahlung basieren auf physikalischen Wechselwirkungen der Strahlung mit Materie. Dabei wird Energie von der Strahlung auf das verwendete Detektormaterial übertragen, was je nach verwendetem Detektor zu verschiedenen Effekten führt, die dann gemessen und zum Beispiel per Anzeige auf einem Display sichtbar und/oder durch Knackgeräusche in einem Lautsprecher hörbar gemacht werden können. Messgeräte Die Messverfahren werden in unterschiedlichen Messgeräten eingesetzt, wie zum Beispiel Geiger-Müller-Zählern (umgangssprachlich "Geigerzähler"), Halbleiterdetektoren, Szintillationszählern und passiven Detektoren/Filmdosimetern: Geiger-Müller-Zähler Halbleiterdetektoren Szintillationszähler Passive Messgeräte Geiger-Müller-Zähler Geiger-Müller-Zähler Eine Sonde zur Messung der Gamma-Orts-Dosis-Leistung (ODL) mit zwei Geiger-Müller-Zählrohren für unterschiedliche Messbereiche. Geiger-Müller-Zähler nutzen den photoelektrischen Effekt, bei dem ionisierende Strahlung elektrisch geladene Teilchen im Messgerät freisetzt, die verstärkt und registriert werden können. Bei Geiger-Müller-Zählern befindet sich Gas in einem Metallrohr, dem so genannten Zählrohr, an das eine elektrische Spannung angelegt ist. Kommt das Gas im Zählrohr mit ionisierender Strahlung in Kontakt, entstehen im Gas elektrisch geladene Teilchen, die durch die angelegte Spannung beschleunigt und vervielfacht werden. Dadurch entsteht eine "Lawine" von geladenen Teilchen, die als elektrisches Signal (Strom) gemessen werden kann. Durch einen akustischen Verstärker, der im Messgerät mit verbaut sein kann, kann ein Geräusch (Ticken/Knacken) erzeugt und/oder durch das Umrechnen der Signale in Messeinheiten kann ein Messwert am Gerät abgelesen werden. Halbleiterdetektoren Halbleiterdetektoren Mit einem mobilen Halbleiterdetektor, der einen Reinstgermanium-Kristall als Detektormaterial verwendet, lässt sich Gamma-Strahlung messen. Bestimmte feste Materialien, so genannte Halbleiter, können zum Nachweis ionisierender Strahlung verwendet werden. Das Prinzip ähnelt dem in Geiger-Müller-Zählern verwendeten Effekt: In Halbleiterdetektoren entstehen durch den Kontakt mit ionisierender Strahlung elektrisch geladene Teilchen. Diese erzeugen ein elektrisches Signal, mit dessen Hilfe die Strahlung messbar gemacht wird. Zusätzlich zur Intensität der Strahlung kann dabei auch deren Energie bestimmt werden. Szintillationszähler Szintillationszähler Szintillationsdetektoren für die Messung von Gamma-Strahlung gibt es in unterschiedlichen Ausführungen auch für mobile Mess-Einsätze. In bestimmten Materialien, so genannten Szintillatoren, kann die ionisierende Strahlung optische Effekte wie zum Beispiel Lichtblitze verursachen. Diesen Lumineszenz-Effekt, bei dem ionisierende Strahlung bestimmte Stoffe zum Leuchten anregt, nutzt man in Szintillationszählern zum Nachweis von Strahlung , indem man die optischen Effekte direkt beobachtet oder mittels eines Lichtverstärkers und eines optischen Sensors messbar macht. Das abgegebene Licht wird als Signal erfasst und in einem Messwert am Gerät dargestellt. Wie mit Halbleiterdetektoren kann auch mit Szintillationszählern unter bestimmten Umständen zusätzlich zur Intensität der Strahlung die Energie der einfallenden Teilchen bzw. Gammastrahlung bestimmt werden. Passive Messgeräte Passive (Radon-)Messgeräte, Filmdosimeter Passive Messgeräte nutzen zum Beispiel Photoemulsions-Effekte als Messverfahren. Hier hinterlässt ionisierende Strahlung dunkle Spuren auf einer dünnen, lichtempfindlichen Schicht im Messgerät. In der Regel werden solche Messgeräte für einen bestimmten Messzeitraum an einem Ort aufgestellt wie zum Beispiel passive Radon -Messgeräte oder von einer Person mitgeführt wie zum Beispiel tragbare Filmdosimeter. Nach Ende des Messzeitraums werden die Detektoren im Labor ausgewertet, indem die von einfallenden Teilchen auf der lichtempfindlichen Schicht im Messgerät erzeugten Spuren ausgezählt werden. Die erhaltene Dosis wird bei diesem Messverfahren also im Nachhinein erfasst. Je nach Art und Intensität der Strahlung sind die hier genannten Messgeräte unterschiedlich gut zum Nachweis der jeweiligen Strahlungsart geeignet: So können Szintillationsmesssonden sehr viel geringere Aktivitäten oder Dosisleistungen messen als zum Beispiel ein Geiger-Müller-Zähler. Mögliche Rückschlüsse Auch wenn Messgeräte mit verschiedenen Arten von Detektoren bestückt sein und so verschiedene Messverfahren parallel nutzen können, ist es grundsätzlich nicht möglich, aus dem Ergebnis einer einzigen Messung einer bestimmten Strahlungsart Rückschlüsse auf die "Gesamt- Strahlung " an einem Ort zu ziehen. Unter bestimmten Voraussetzungen können jedoch Rückschlüsse auf das vorhandene radioaktive Material gezogen werden, die wiederum eine Einschätzung der "Gesamt- Strahlung " ermöglichen: Wird an einem Ort eine Messung durchgeführt, bei der nicht nur die Intensität , sondern auch die Energie der vorhandenen (Gamma-) Strahlung bestimmt wird, können damit unter Umständen die vorhandenen radioaktiven Stoffe identifiziert und deren Menge bestimmt werden. Dies ermöglicht dann Aussagen zur Gesamtstrahlung. Einflussfaktoren und Aussagekraft der Messergebnisse Qualifizierte Aussagen zu Radioaktivitäts-Messergebnissen sind nur von Fachleuten mit entsprechender professioneller Ausstattung möglich. Im Strahlenschutz werden üblicherweise höherwertige Messgeräte eingesetzt, welche geeicht sind und einer regelmäßigen Qualitätskontrolle und Kalibrierung unterliegen. Einflussfaktoren, die Fachleute bei Auswahl und Bewertung berücksichtigen, sind zum Beispiel die Eignung des Messgerätes für die Messaufgabe: Liefert das Messgerät für die zu ermittelnde Strahlungsart zuverlässige Ergebnisse, ist das Ansprechvermögen ausreichend? die Rahmenbedingungen der Messungen: Welche Aspekte müssen bei der Bewertung der Messergebnisse berücksichtigt werden? Welchen Einfluss haben die Messgeometrie, also der Abstand zum Messort und eine eventuell vorhandene Abschirmung ? Ein Vergleich von Messergebnissen ist nur möglich, wenn am selben Ort, in der gleichen Messgeometrie und mit einem vergleichbaren Messgerät gemessen wird. Aussagekraft von Messungen mit handelsüblichen, einfachen Geräten begrenzt Ein qualifiziertes, zuverlässiges und belastbares Messergebnis kann durch private Messungen in der Regel nicht erbracht werden, da die Aussagekraft von Messungen mit handelsüblichen, einfachen Geräten begrenzt ist. Private Messungen mit einfachen Messgeräten können maximal einen groben Anhaltspunkt geben. Die Gründe dafür sind vielfältig: In der Regel erfolgt keine kontinuierliche Kalibrierung und/oder Eichung der handelsüblichen, einfachen Geräte. Liegt eine Kalibrierung vor, ist sie meistens auf ein bestimmtes Radionuklid bezogen – das bedeutet, dass die Kalibrierung nur für eine spezielle Messaufgabe wie zum Beispiel die Detektion von Cäsium-137 gilt. Günstige Geiger-Müller-Zähler sind häufig nicht für alle Messsituationen geeignet, daher kann es gerade in niedrigeren Dosisbereichen zu Abweichungen der gemessenen Werte von den Werten teurer professioneller Geräte kommen. Bei der ungeübten Nutzung unbekannter Detektoren kann es leicht zu Bedienungsfehlern oder dem Einsatz von für die zu messende Strahlung ungeeigneten Messgeräten kommen – etwa, wenn Geräte für die zu ermittelnde Strahlungsart nicht geeignet sind oder die messbare Dosisleistung außerhalb des Messbereiches des Gerätes liegt. Handelsübliche, einfache Geräte sind oft anfällig für äußere Einflüsse wie zum Beispiel Temperaturschwankungen, Luftfeuchtigkeit oder elektromagnetische Felder. Die Messwerte privater Messungen mit einfachen Messgeräten lassen sich nur dann sinnvoll beurteilen, wenn Vergleichswerte vorliegen. Das bedeutet, dass zuvor mit demselben Messgerät bei gleichen äußeren Einflüssen und gleichen Messabständen eine Messung des "normalen" Hintergrundwertes durchgeführt wurde, mit dem man die neu ermittelten Messwerte vergleichen kann. Da eine Messung aller Strahlungsarten in der Regel nicht über ein einziges Messgerät erfolgen kann, sind Messungen mit einem einzigen Messgerät fast immer unvollständig. Hinweise und Empfehlungen Das Bundesamt für Strahlenschutz ( BfS ) kann keine Empfehlung für spezielle Messgeräte oder Anbieter aussprechen. Das BfS empfiehlt jedoch, bei Überlegungen zur Anschaffung eines Messgerätes verschiedene Aspekte zu berücksichtigen: So sollte der Messbereich des Messgerätes nach unten bis etwa 0,1 Mikrosievert pro Stunde reichen, da dies in etwa der natürlichen Umgebungsstrahlung entspricht. Zudem ist eine Anzeige der Dosisleistung in Mikrosievert pro Stunde sinnvoll, da man damit die Ergebnisse einfacher miteinander und mit Grenzwerten vergleichen kann. Zu beachten ist aber auch, dass die Qualität der verwendeten Komponenten und das Know-how des Herstellers eine Rolle spielen. Daher messen günstige Geräte oft nicht so genau und zuverlässig. So sind Geiger-Müller-Zähler für den privaten Gebrauch oft deutlich günstiger in der Anschaffung als professionelle Geräte, weil sie im Gegensatz zu diesen meist weder geeicht noch eichfähig sind. Professionelle Radioaktivitäts-Messungen Insgesamt wird die Umwelt in Deutschland engmaschig auf Radioaktivität überwacht. Dabei sind für verschiedene Umweltbereiche verschiedene Institutionen zuständig: Auf Bundesebene messen neben dem BfS zum Beispiel der Deutsche Wetterdienst ( DWD ), das Thünen Institut , die Bundesanstalt für Gewässerkunde ( BfG ), das Bundesamt für Seeschifffahrt und Hydrographie ( BSH ) sowie das Max-Rubner-Institut ( MRI ). Zusätzlich gibt es Messstellen der Bundesländer; und auch die Betreiber von Anlagen, in denen mit radioaktiven Stoffen umgegangen wird, betreiben Radioaktivitäts-Messstellen. Das BfS ist zudem an internationalen Messnetzen beteiligt bzw. beteiligt sich an internationalen Datenplattformen . Messungen des BfS https://odlinfo.bfs.de informiert über Radioaktivitätsmesswerte in Deutschland Das BfS misst Radioaktivität mithilfe vieler verschiedener Messverfahren und entsprechend ausgerüsteter Labore und Messgeräte. Beispiele sind das aus rund 1.700 über Deutschland verteilten Messsonden bestehende ODL -Messnetz , das routinemäßig die natürliche Strahlenbelastung misst – rund um die Uhr an 365 Tagen im Jahr, In-situ-Messungen mittels mobiler Germanium-Gammaspektrometer, Aerogamma-Messungen mit hubschraubergestützten Messsystemen in Zusammenarbeit mit der Bundespolizei, hochempfindliche Messeinrichtungen zur Spurenanalyse zum Beispiel in der BfS -Messstation auf dem Schauinsland bei Freiburg, die geringste Spuren radioaktiver Stoffe in der Luft detektieren können ( Spurenanalyse ), Labore zur Analyse von Radionukliden in verschiedenen Medien , die ionisierende Strahlung zum Beispiel in Wasser, Boden, Luft und Lebensmitteln bestimmen können. Die notwendigen Messgeräte zur Messung von Alpha-, Beta-, Gamma- und Neutronen - Strahlung sind in verschiedenen Ausführungen im BfS vorhanden und unterliegen regelmäßigem Qualitätsmanagement durch Kalibrierung und Eichung. So sichert zum Beispiel ein durch die Deutsche Akkreditierungsstelle (DAkkS) akkreditiertes Radon-Kalibrierlaboratorium des BfS die Qualität von Messungen von Radon - und Radon -Folgeprodukten. Messwerte online einsehen Das BfS-Geoportal Qualifizierte Radioaktivitäts-Messwerte stellen das BfS und andere Institutionen online bereit: Das ODL-Messnetz des BfS mit seiner wichtigen Frühwarnfunktion, um erhöhte Strahlung durch radioaktive Stoffe in der Luft in Deutschland schnell zu erkennen, stellt seine Messwerte unter https://odlinfo.bfs.de rund um die Uhr online bereit. Im Falle der Ausbreitung einer radioaktiven Schadstoffwolke könnten diese nahezu in Echtzeit verfolgt werden – eine wesentliche Voraussetzung, um kurzfristig gezielte Maßnahmen zum Schutz der Bevölkerung einzuleiten. Im BfS -Geoportal stellt das BfS nicht nur eigene Messdaten, sondern auch Messdaten von Bundes-, Landes- und anderen Partnerbehörden bereit. Dies sind in der Mehrzahl Daten aus dem Integrierten Mess- und Informationssystem ( IMIS ). Messwerte der Ortsdosisleistung aus den Mitgliedsstaaten der Europäischen Union ( EU ) veröffentlicht das Joint Research Centre (JRC) der EU gesammelt. Auch Citizen Science Netzwerke wie zum Beispiel SAFECAST stellen Messwerte online bereit – die Werte sind nicht qualitätsgesichert, können jedoch grobe Anhaltspunkte liefern, ob etwa Radioaktivitäts-Messwerte aktuell steigende oder fallende Tendenzen haben. Verschiedene rückblickende Berichte über Umweltradioaktivität und Strahlenbelastung ergänzen die aktuellen, online verfügbaren Messwerte: Neben der Veröffentlichung eigener Berichte unterstützt das BfS auch das Bundesumweltministerium bei dessen nationalen und internationalen Berichtspflichten . Radioaktivitäts-Messwerte einordnen und bewerten Es kommt in unserer natürlichen Umgebung jederzeit zu radioaktiven Zerfällen und entsprechend zur Aufnahme radioaktiver Dosen. Diese natürlich vorkommende Radioaktivität ist kaum beeinflussbar. Beeinflussbar - und damit durch Grenzwerte regulierbar - ist dagegen die (künstliche) Strahlenbelastung durch technische Anlagen. Vergleichswerte Strahlung aus natürlich und zivilisatorisch bedingten Strahlenquellen ist jeder Mensch ausgesetzt. Der natürliche Strahlungshintergrund liegt in Deutschland je nach Region zwischen 0,6 Millisievert pro Jahr in der norddeutschen Tiefebene und mehr als 1,2 Millisievert pro Jahr in den Mittelgebirgen. Auch aus dem Weltall erreicht uns ionisierende Strahlung - in Form von kosmischer Strahlung . Auf Meereshöhe entspricht diese Strahlung etwa 0,3 Millisievert pro Jahr, doch schon in der Flughöhe von Flugzeugen in etwa zehn Kilometern Höhe ist die kosmische Äquivalenzdosisleistung etwa einhundert Mal so groß. Die gesamte natürliche Strahlenexposition in Deutschland oder genauer die effektive Dosis einer Einzelperson in Deutschland beträgt durchschnittlich 2,1 Millisievert im Jahr. Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von 1 Millisievert bis zu 10 Millisievert . Die Strahlenbelastung bei der medizinischen Diagnostik ist besonders bei aufwändigen Röntgenuntersuchungen hoch. Eine einzige Computertomographie kann etwa so viel Strahlenbelastung erzeugen wie die natürliche Strahlenbelastung in 10 bis 50 Jahren. Was bedeutet ein Anstieg von Radioaktivitäts-Messwerten? Radioaktivitäts-Messwerte unterliegen oft natürlich bedingten Schwankungen Grundsätzlich kann ein Anstieg von Messwerten einen Anstieg der Strahlungsintensität bedeuten. Allerdings unterliegen Radioaktivitäts-Messwerte oft natürlichen Schwankungen: Bei aktuellen Messwerten zum Beispiel von Sonden des ODL -Messnetzes können kurzzeitige Erhöhungen der Ortsdosisleistung um das Doppelte bis Dreifache der normalen Werte auftreten. Solche Erhöhungen der Strahlungsintensität können durch unterschiedliche Wettereinflüsse wie etwa Regen oder Wind entstehen und bedeuten keine Gefahr . Ab welchen Messwerten wird es gefährlich? Folgen akuter Strahlenbelastungen Während es bei der langsamen und langfristigen Aufnahme geringer Strahlendosen schwierig ist, genaue Ursache-Wirkung-Beziehungen herzustellen, sind die Effekte bei schweren radiologischen Unfällen mit großer Aufnahme von Strahlung bekannt und gut untersucht. So sind bei der kurzzeitigen Aufnahme einer einmaligen Dosis von wenigen tausend Millisievert ionisierender Strahlung schwere Schädigungen des Gewebes bis hin zum Tod unausweichlich. Eine derartig hohe Dosis kann allerdings nur in radiologischen Ausnahmesituationen mit massiven Freisetzungen von Radioaktivität in unmittelbarer Nähe betroffener Personen oder bei Bestrahlungseinrichtungen erreicht werden. So war es zum Beispiel für das Betriebspersonal und die Feuerwehrleute in der Anfangsphase der Reaktorkatastrophe in Tschornobyl . Im gesetzlichen Regelwerk wie etwa der EU -Vorschrift 96/29/EURATOM und im deutschen Strahlenschutzgesetz sind strenge Grenzwerte für den Umgang mit Radioaktivität und für die Bevölkerung festgelegt: Erwachsene, die durch ihre berufliche Tätigkeit ionisierender Strahlung ausgesetzt sind , dürfen in fünf Jahren nicht mehr als 100 Millisievert aufnehmen, wobei in einem einzelnen Jahr nicht mehr als 50 Millisievert erreicht werden dürfen. Das entspricht etwa dem 20-fachen der natürlichen Strahlenbelastung. Für alle anderen Personen gilt, dass durch technische Anlagen oder künstlich eingebrachte radioaktive Stoffe pro Jahr maximal 1 Millisievert Äquivalenzdosis aufgenommen werden dürfen. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 30.08.2024

Radioaktivität in der Umwelt Natürliche Strahlenexposition Bergbaubedingte Radioaktivität Strahlenexposition durch künstliche radioaktive Stoffe (Zivilisatorische Strahlenexposition)

Die natürliche Strahlenexposition des Menschen resultiert aus der Summe der Wirkungen der kosmischen Strahlung, der Strahlung der natürlichen Radionuklide in der Umwelt des Menschen und sowie der Strahlung der natürlichen Radionuklide, die sich im Körper jedes Menschen befinden. Im Jahr 2004 betrug in Deutschland die effektive Dosis, die durch die kosmische Strahlung hervorgerufen wird, im Mittel 0,3 mSv/a (Millisievert/Jahr). Die Dosis durch kosmische Strahlung ist abhängig von der geographischen Breite sowie der Höhe über dem Meeresspiegel. Die mittlere effektive Dosis der Bevölkerung durch den terrestrischen Anteil an der natürlichen Strahlenexposition beträgt etwa 0,4 mSv/a. Die Intensität der Strahlung kann auf Grund von geologisch-mineralogischen Verhältnissen von Ort zu Ort verschieden sein. Das natürlich vorkommende radioaktive Edelgas Radon, das aus dem Untergrund in die Häuser eindringen kann, ist für eine Dosis von 1,1 mSv/a verantwortlich. Der menschliche Organismus nimmt während des gesamten Lebens natürliche radioaktive Stoffe durch die Nahrung, die Atmung und über die Haut auf. Das Aktivitätsinventar für einen Menschen wird mit ca. 7.500 Bq angegeben. Daraus ergibt sich einen Strahlendosis von etwa 0,3 mSv/a. In der Summe beträgt die mittlere effektive Jahresdosis eines Menschen durch natürliche Strahlung ca. 2,1 mSv. Insgesamt ergibt sich durch die natürliche und zivilisatorische Strahlenexposition eine mittlere effektive Jahresdosis für die Bevölkerung von ca. 4,0 mSv. Dieser Wert ist gegenüber den Vorjahren unverändert. Mit dem Anteil der zusätzlichen zivilisatorischen Strahlenexposition zur ohnehin natürlich vorhandenen in dieser Größenordnung geht keine gesundheitliche Gefährdung einher. Nähere Angaben hierzu finden sich in den jährlich veröffentlichten Berichten der Bundesregierung über Umweltradioaktivität und Strahlenschutz, herausgegeben vom Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz . Untersuchungen zu bergbaubedingter Umweltradioaktivität gab es in Sachsen-Anhalt in den Regionen Mansfelder Land und Sangerhäuser Mulde. Bund und Land untersuchten Flächen au- ßerhalb des ehemaligen Mansfeld-Kombinates, die durch Kupfer- gewinnung bergbaulich beeinflusst waren. Rund drei Millionen Euro stellte der Bund dafür zur Verfügung. Die Resultate der Untersuchungen befinden sich in der Daten- bank ALASKA, deren Abschlussversion seit 2001 vorliegt. Die Datenbank enthält Eintragungen über 2970 bergbauliche Objekte aus den genannten Gebieten. Die Ergebnisse zeigen, dass der Kupferbergbau in Sachsen-An- halt zu keiner großflächigen radioaktiven Belastung der Umwelt geführt hat. Über 90 Prozent der untersuchten bergbaulichen Objekte weisen Radioaktivitätswerte im natürlichen Bereich auf. Sofortmaßnahmen waren aber nur in einem Fall, der Aschehalde am Maschinendenkmal in Hettstedt, erforderlich. Diese Halde wurde 1994 auf Veranlassung des Umweltministeriums einge- zäunt. In Mansfeld erfolgte die Sanierung einer Kupferschlacke- halde. Die Arbeiten wurden im Frühjahr 2005 abgeschlossen. Von den verbliebenen radioaktiv kontaminierten Flächen konnte eine Vielzahl aufgrund geringer Exposition durch bereits vorhan- dene Abdeckungen oder geringe Größe als Quelle von Gefährdun- gen für die Bevölkerung zunächst ausgeschlossen werden. Auf den Betriebsflächen des ehemaligen Mansfeld Kombinats, die in einem gesonderten Programm untersucht wurden, führten Sanierungen zu einer erheblichen Reduzierung der radioaktiven Kontaminationen. Betriebsflächen mit erhöhter Radioaktivität sind nicht frei zugänglich. Radioaktive Nuklide können als umschlossene bzw. in offener Form eingesetzt werden. Bei den umschlossenen Strahlenquellen handelt es sich um Nuklide, die in eine dichte, meist metallische Kapselung eingeschlossen werden. Anwendung finden umschlossene Strahlenquellen u. a. in der Werkstoffprüfung, bei Großbestrahlungsanlagen und in der Medizin. Bei offenen radioaktiven Stoffen liegt das Nuklid meist in Form einer chemischen Verbindung (z. B. Salz, Oxid, organische Verbindung) vor und kommt in fester, flüssiger und gasförmiger Form unmittelbar zur Anwendung. Offene radioaktive Stoffe werden u. a. in der Nuklearmedizin, als Radiopharmaka und in der Forschung (z. B. Biochemie) verwendet. Für Anwender von radioaktiven Stoffen bzw. Betreiber von Anlagen, die radioaktive Stoffe enthalten, besteht die Verpflichtung der geordneten Entsorgung des radioaktiven Materials und der kontaminierten Gegenstände. Unvermeidbare Ableitungen radioaktiver Stoffe in die Umwelt, z. B. bei der nuklearmedizinischen Anwendung von Radioisotopen oder bei kerntechnischen Anlagen, unterliegen den in der Strahlenschutzverordnung festgeschriebenen Bestimmungen und Grenzwerten. Kontrollen erfolgen durch die zuständigen staatlichen Aufsichtsbehörden. Aus Gründen des Strahlenschutzes verwenden die nuklearmedizinischen Einrichtungen heute fast ausschließlich kurzlebige Isotope, wie Iod-131 und Technetium-99m. 2004 betrug die mittlere zivilisatorische Strahlenexposition der Bevölkerung der Bundesrepublik 1,9 mSv/a, in der Hauptsache durch medizinische An­wendung von Radionukliden und die Anwendung von Röntgenstrahlen bedingt. Andere Faktoren, wie der Fallout von Kernwaffenversuchen, die Folgen des Reaktorunfalls von Tschernobyl, die Emis­sionen kerntechnischer Anlagen, Technik und Forschung so­wie beruflich bedingte Strahlenexpositionen tragen nur un­wesentlich zur Strahlenbelastung des Menschen bei.

1 2 3 4