API src

Found 129 results.

Küstenlinie deutsche Ostsee für WRRL/MSRL von 2017/2018

Die Küstenlinie der deutschen Ostseeküste, erstellt vom Landesamt für Umwelt (LfU) von Schleswig Holstein. Grundlage dafür waren MSRL- und WRRL-Shapefiles der Küsten- Übergangsgewässer. Der Dienst stellt Shapefiles der Küstenlinien für die Nordsee (ANS-DE) und die Ostsee (BAL-DE) aus den abgestimmten und an die EU gemeldeten Berichtsgeometrien für die gesamte deutsche Küste bereit. Hierfür wurden Shapes der MSRL und der WRRL (Küsten- und Übergangsgewässer) genutzt. Die Daten wurden im Dezember 2017 (Ostsee) / bzw. im Januar 2018 (Nordsee) erstellt.

Küstenstreifen an der Nordsee und auf Fehmarn mit herausragender Bedeutung als Nahrungs- u. Rastgebiet außerhalb von EU-Vogelschutzgebieten

Küstenstreifen Westküste, Fehmarn mit herausragender Bedeutung als Nahrungs- und Rastgebiet außerhalb von EG-Vogelschutzgebieten, sowie Helgoland

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt A01: Klima der Gegenwart und Vergangenheit: Untersuchung der Wasserverfügbarkeit in der Atacama Wüste (Chile) anhand kombinierter in-situ, boden- und satellitengestützter Beobachtungen

Ziel ist es ein Netzwerk meteorologischer Stationen in der Atacama zu etablieren. Diese Arbeit wird aktiv von unseren Partnern in Chile unterstützt. Gegenwärtig gibt es nur vereinzelt meteorologische Stationen am Küstenstreifen und fast keine im Kern der Atacama Wüste. Ein weiteres Ziel ist die bodengestützten Observationen mit Fernerkundungsdaten zu vereinen. Beide Datensätze werden als Test für die Zuverlässigkeit von Klimamodellen dienen, die das heutige Klima beschreiben. Auf Basis dieser Tests werden Klimamodelle für das Klima in der Vergangenheit entwickelt. Letztere würden mit Klimaproxydaten anderer Teilprojekte verifiziert werden.

Neue Strategien zur Anpassung an zukünftige physikalisch-ozeanografische Extremszenarien an deutschen Küsten, Vorhaben: Zeitreihendynamik aus Erdbeobachtungsdaten und Inventarisierung von Infrastruktur'

Hydrodynamische Wirksamkeit von künstlichen Riffen unter besonderer Berücksichtigung des Energietransfers im Wellenspektrum

Künstliche Riffe werden im Küstenschutz als der Küste vorgelagerte Strukturen und damit als aktive Küstenschutzmaßnahmen eingesetzt, die den Seegang im Küstenvorfeld beeinflussen. Dies führt dazu, dass die Bauwerke zum Schutz der Küstenlinie nicht mehr so massiv ausfallen müssen. Vorbild künstlicher Riffe sind die natürlichen Fels-, Korallen- und Sandriffe mit ihrer dem Seegang angepassten Form. Die vorhandenen Verfahren für die funktionelle Planung von Riffen geben meist nur eine Abschätzung für den Anteil der ankommenden Seegangsenergie, der das Riff passiert (Transmissionskoeffizient), bzw. von ihm reflektiert wird (Reflexionskoeffizient). Diese energetische Betrachtungsweise ist jedoch für die Beschreibung der Wellentransformation an Riffen nicht ausreichend, da der nachweislich stattfindende nicht-lineare Energietransfer im Spektrum nicht berücksichtigt wird, obwohl er für die Beurteilung der Schutzwirkung unerlässlich ist. Hauptziel der geplanten Arbeit soll es daher sein, die für diesen Energietransfer verantwortlichen hydrodynamischen Prozesse zu untersuchen und in ihrer Wirkung zu quantifizieren. Das dabei gewonnene Verständnis dieser Prozesse soll dazu dienen, Ansätze zur funktionellen Planung von künstlichen Riffen zu entwickeln und innovative Riffstrukturen zu entwerfen und zu optimieren.

Bestimmung einer Retracking-Fläche innerhalb eines Radargrammstapels zur Verbesserung von Satellitenaltimetrie über Küstenmeeren und Binnengewässern

Das sogenannte Retracking von Einzelwellenformen in der Satellitenaltimetrie über Küstenzonen und Binnengewässern hat seine Grenzen erreicht und bietet im Durchschnitt eine Genauigkeit im Dezimeterbereich. Durch die Analyse von Variationen der Rückstreuleistung entlang der Bin-Koordinate suchen die vorhandenen Retracking-Methoden nach einem Retracker-Offset in der Wellenform. Dies führt zu einer starken Abhängigkeit des Retrackingverfahrens von Messrauschen. Mit dem Start der operativen Sentinel-3-Serie sind wesentlich robustere Algorithmen erforderlich, um hochpräzise Wasserstandsschätzungen über Binnen- und Küstengewässern zu erhalten. Daher ist das Hauptziel dieses Forschungsprojekts, einen solchen robusten Algorithmus zu entwickeln und damit die altimetrische Wasserstandsbestimmung über Binnengewässern und Küstenregionen zu verbessern. Um ein robustes Wellenform-Retracker zu erhalten, ist es unser Ziel, das einen Stapel von benachbarten Wellenform erzeugen (das sogenannte Radargram) und schließlich einen Stapel von Radargrammen in der Zeit zu verwenden, den sogenannten Radargrammstapel, für den wir der raum-zeitlichen Variation der zurückgestreuten Leistung profitieren. Der Radargrammstapel erleichtert die Erkennung von Mustern wie Retracking-Gate, Off-Nadir-Muster (z.B. Parabel), oder Küstenlinien. Anstelle eines Retracking-Gates, als Punkt in einer einzelnen Wellenform, kann in einem Radargrammstapel eine Oberfläche, die sogenannte Retracker-Fläche/Mannigfaltigkeit, bestimmt werden. In diesem Forschungsprojekt wird zunächst die raumzeitliche Entwicklung von Satellitenaltimeterbeobachtungen über Wasserobjekten analysiert und werden Muster in Radargrammstapeln charakterisiert. Um ein Retracker-Fläche und die zugehörige Unsicherheit zu definieren, wird anschließend ein Conditional Random Fields (CRF)-Modell entwickelt. Das CRF-Modell profitiert von bedingten Modellen in den Querschnitten Bin-Raum, Bin-Zeit und Raum-Zeit. Anschließend wird eine maximale a-posteriori-Lösung gefunden, die die Retracking- Fläche ergibt. Zu diesem Zweck wird das Problem als Minimierung einer Energiefunktion formuliert, für die die Leistung verschiedener Klassen von Optimierungstechniken untersucht wird. Schließlich werden Wasserstandszeitreihen mit In-situ-Daten validiert und mit der Leistung bestehender Retrackers verglichen. Im Rahmen dieser Studie werden die Altimetrie-Daten aus den drei Missionen Jason-2&3 und Sentinel 3 verwendet. Zur Validierung werden mehrere Fallstudien ausgewählt. Die Idee des Wellenform-Retracking durch Analyse des raumzeitlichen Verhaltens in einer 3D-Datenstruktur wird in diesem Vorschlag zum ersten Mal formuliert und wurde in der Altimetrieforschung bisher nicht berücksichtigt. Dies eröffnet neue Wege für eine wesentlich genauere Abschätzung des Wasserspiegels für operative Missionen und für künftige Missionen über Binnen- und Küstengewässern.

Biogeochemische Prozesse in sandigen Strandsedimenten von Spiekeroog und Majorca

Wellen- und tidebeeinflusste sandige Strände machen einen Großteil der weltweiten Küstenlinie aus und spielen eine wichtige Rolle für Kohlenstoff-, Nährstoff- und Metallkreisläufe. Während Flut strömt Meerwasser in den Sedimentkörper, ebenso wird organisches Material eingetragen. Im Sediment wird dieses von Mikroorganismen abgebaut, sodass bei Ebbe an Nährstoffen angereichertes Wasser zurück in den Küstenozean strömt, wo die rezirkulierten Nährstoffe zur Primärproduktion genutzt werden. Durch mikrobielle Abbauprozesse entwickeln sich Redoxgradienten, die den Porenwasser-Chemismus prägen. Strände können sich außerdem in einer Mischzone zwischen süßem Grundwasser und Salzwasser befinden (subterranes Ästuar), sodass Salinitätsgradienten die Sediment-Porenwasser-Interaktion beeinflussen. Süßwasser ist zudem eine Quelle für terrestrische gelöste Stoffe. Um die globale Rolle von Strandsystemen in Bezug auf Kohlenstoff-, Nährstoff- und Metallzyklen verstehen zu können, ist es notwendig, biogeochemische Prozesse in Strandsedimenten detailliert und an verschiedenen Stränden weltweit zu untersuchen. Da in diesem Forschungsbereich nur wenige Studien existieren und insbesondere die Quellen- oder Senkenfunktion dieser Systeme bezüglich redoxsensitiver Metalle noch weitgehend unbekannt ist, wird dieses Projekt einen wichtigen Beitrag zur Aufklärung der Metallzyklen in solchen Systemen liefern. Wir planen, biogeochemische Prozesse in den subterranen Ästuaren von zwei kontrastierenden Strandsystemen auf den Inseln Spiekeroog (NW Deutschland, mesotidal, siliziklastisch) und Mallorca (Spanien, mikrotidal, carbonatisch) zu untersuchen. Es sollen Hauptionen, DOC, O2, H2S, Nährstoffe (N, P, C, Si) und Spurenmetalle (Mn, Fe, U, Mo, V, Re) sowie Fe-Isotopenverhältnisse im Strandporenwasser analysiert werden. Wir planen ebenfalls die Sedimentzusammensetzung zu charakterisieren, da diese die Porenwasserzusammensetzung maßgeblich beeinflusst. An beiden Standorten sollen Transekte zwischen Düne und Niedrigwasserlinie bis in 5 m (Spiekeroog) bzw. 2 m (Mallorca) Tiefe hochaufgelöst beprobt werden. Der Fokus des Projekts liegt darin, Redox- und Salinitätsgradienten zu identifizieren sowie deren Auswirkungen auf die Porenwasserzusammensetzung zu interpretieren. Hydrochemische Modellierung anhand der erhobenen Daten soll zu einem besseren Verständnis der Effekte der Mischung von Grundwässern unterschiedlicher Zusammensetzung beitragen. Es sollen quantitative Aussagen zur Quellen- oder Senkenfunktion der Strände bezüglich essentieller Nährstoffe und redoxsensitiver Metalle erarbeitet werden. Fe-Isotopenverhältnisse dienen dazu, das limitierte Wissen über den Fe-Kreislauf in subterranen Ästuaren zu erweitern und die Fe-Isotopensignatur des Porenwasserflusses aus diesen Systemen besser zu definieren. Weiterhin wird diese Studie eine solide Datenbasis für die Modellierung des Porenwasser-Austroms von einzelnen Elementspezies aus permeablen Sedimenten in den Küstenozean liefern.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Teilprojekt: Blue Urbanism für die Anpassung an Meeresspiegeländerung: Globale Trajektorien und spekulative Zukunftsentwürfe in Inselstaaten Südostasiens (BlueUrban)

Der Meeresspiegelanstieg wird üblicherweise als Problem von Risiko und Verwundbarkeit diskutiert, insbesondere in Bezug auf die Inselstaaten Südostasiens. Ein Ergebnis dieser Diskussionen ist die 'Aufrüstung' der urbanen Küstenlinien in der Region, die massive Investitionen für Infrastrukturmaßnahmen zum Schutz vor steigenden Überflutungsrisiken, Subsidenz und anderen damit verbundenen Gefahren nach sich zieht. Parallel dazu findet eine starke ökonomische Aufwertung der Küstengebiete statt, etwa durch die Erschließung für hochwertige Immobilienprojekte und andere Privatisierungsprozesse. Diese Entwicklungen zeigen eine gegensätzliche Realität der zukünftigen Entwicklung von städtischen Küsten auf. Das beantragte Projekt 'Towards Blue Urbanism for Sea Level Change Adaptation' erforscht dieses scheinbare Paradoxon, indem sowohl risikobezogene, als auch solche Lösungsansätze und Paradigmen der Anpassung an Meeresspiegeländerungen Gegenstand der Analyse werden, die stärker als Chance und positive Entwicklungsperspektive wahrgenommen und diskutiert werden. Den empirischen Kern bildet dabei die Fokussierung auf zwei Technologien der Anpassung, die in den letzten Jahren in verschiedenen räumlichen Kontexten an Bedeutung gewonnen haben: multifunktionelle Deiche und schwimmende Inseln und Häuser. Anhand dieser Lösungsansätze werden globale Trajektorien sowie diskursive Verschiebungen und Infragestellungen untersucht, die mit der Verbreitung solcher Technologien einhergehen. Das Forschungsprojekt verbindet dabei Schauplätze der Innovation mit Orten der Weiterverbreitung von Wissen, bis hin zu Orten der Umsetzung der Technologien in den drei Städten Jakarta, Singapur und Manila. Während diese verschiedenen Orte als 'diskursive Räume' konzipiert werden, legt das Projekt besonderes Augenmerk auf die Akteure und Akteurskonstellationen der Wissensdiffusion ('Diskursträger'), sowie die Modi und Bedingungen der Weiterverbreitung ('epistemic channels'). In diesen drei Dimensionen wird untersucht, inwiefern die Anpassung an den Meeresspiegel im 21. Jahrhundert zu einem gewinnträchtigen Investitionsbereich werden kann, der neue Formen des 'blue urbanism' ermöglicht. Auf konzeptioneller Ebene trägt das Projekt damit zu den aktuellen Diskussionen um Mikropolitiken in globalen Wissensnetzwerken bei, sowie zur Rolle von spekulativen Zukunftsentwürfen für die Anpassung urbaner Küstenregionen an Meeresspiegeländerungen.

Küstenlinie deutsche Nordsee für WRRL/MSRL von 2017/2018

Die Küstenlinie der deutschen Nordseeküste, erstellt vom Landesamt für Umwelt (LfU) von Schleswig Holstein. Grundlage dafür waren MSRL- und WRRL-Shapefiles der Küsten- Übergangsgewässer. Der Dienst stellt Shapefiles der Küstenlinien für die Nordsee (ANS-DE) und die Ostsee (BAL-DE) aus den abgestimmten und an die EU gemeldeten Berichtsgeometrien für die gesamte deutsche Küste bereit. Hierfür wurden Shapes der MSRL und der WRRL (Küsten- und Übergangsgewässer) genutzt. Die Daten wurden im Dezember 2017 (Ostsee) / bzw. im Januar 2018 (Nordsee) erstellt.

Geologische Übersichtskarte von Niedersachsen 1 : 500 000

Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.

1 2 3 4 511 12 13