Im Rahmen des Kölner Hitzeportals wird eine digitale Stadtkarte bereitgestellt, in die Bürger*innen ihre „Kühlen Orte“ eintragen können, welche einen angenehmen Aufenthalt bei sommerlicher Hitze bieten.
Im Rahmen des Kölner Hitzeportals wird eine digitale Stadtkarte bereitgestellt, in die Bürger*innen ihre „Kühlen Orte“ eintragen können, welche einen angenehmen Aufenthalt bei sommerlicher Hitze bieten.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
Das Projekt "Basistechnologien Forschertandem: CORENZ-Cofaktor-Regeneration in zellfreien Enzymsystemen, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule Biberach, Institut für Angewandte Biotechnologie.Biokatalytische Prozesse, die Enzyme nutzen um chemische Reaktionen effizient und ressourcenschonend zu betreiben, stellen einen wichtigen Teil der Biotechnologie dar, und werden bereits vielseitig z.B. für die Herstellung chemischer Produkte oder in der Lebensmittelindustrie eingesetzt. An vielen enzymkatalysierten Reaktionen sind außer den Enzymen und den umzusetzenden Substraten, jedoch zusätzliche Cofaktoren (Coenzyme) beteiligt, meist um die Reaktion mit Energie in Form von ATP und/oder Reduktionskraft z.B. durch NAD(P)H zu versorgen. Diese Coenzyme, die oft teuer und chemisch kompliziert sind, werden in den Reaktionen verbraucht und müssen daher ständig neu zugesetzt werden, was den Betrieb erschwert und die ökonomische Bilanz verschlechtert. Zielsetzung des Projekts CORENZ ist es, diese Cofaktoren innerhalb eines zellfreien enzymatischen Systems zu regenerieren und dadurch Enzymsysteme nachhaltig und kostengünstiger in geschlossenen Kreisläufen betreiben zu können. Als Modelsystem wird die enzymatische Umsetzung von Acetat und CO2 zu Malat unter Verbrauch von ATP, Ferredoxin und NADPH untersucht. In letzter Zeit werden zellfreie enzymatische Verfahren vermehrt untersucht um das klimaschädliche Treibhausgas CO2 als Rohstoff für die Herstellung von chemischen Produkten zu nutzen. Durch das gewählte Reaktionsystem kann CO2 in einer organischen Dicarbonsäure fixiert werden, welche eine wichtige Plattformchemikalie für die chemische Industrie darstellt.
Das Projekt "BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion, Teil ICT" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Chemische Technologie.
Das Projekt "Teil ICT^BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion, BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Hamburg, Fachbereich Biologie, Institut für Pflanzenwissenschaften und Mikrobiologie, Abteilung Mikrobiologie und Biotechnologie.
Das Projekt "Teil ICT^BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion^BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion, BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe Biologie, Institut für Biologie III.
Das Projekt "BioEnergie 2021: Bioraffinerie 2021: Energie aus Biomasse - Neue Wege zur integrierten Bioraffinerie^Teilprojekt 8, Teilprojekt 9" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften.Konstruktion von Hefen zur C5-Zuckervergärung zur Produktion von Bioethanol und Malat/Fumarat Zur Produktion von Lignozellulose-Ethanol sollen rekombinante Pentose-vergärende Hefen für den industriellen Einsatz konstruiert werden. Hierfür soll das bestehende Know-how auf so genannte Industriehefestämme übertragen werden, welche sich durch eine deutlich höhere Robustheit, Stabilität und Produktivität gegenüber Laborstämmen auszeichnen. Die neuen Hefestämme sollen unter industriellen Bedingungen getestet und durch evolutive Strategien an diese weiter angepasst werden. Neben der Produktion von Bioethanol soll die Produktion von Malat und Fumarat als aus Biomasse herstellbare Funktionsbausteine ('Building Blocks') für chemische Synthesen entwickelt werden. Dazu sollen rekombinante Hefestämme hergestellt werden, die anstelle von Ethanol diese beiden Dicarbonsäuren produzieren. Dazu werden die Hefen mittel der Methoden des Metabolic und Evolutionary Engineerings genetisch modifiziert. Die Produktion von Malat bzw. Fumarat soll mit der Verwertung von Pentosezuckern und der Fermentation von lignocellulosischen Hydrolysaten kombiniert werden.