Das Projekt "The effect of synoptic-scale wave breaking on cross tropopause transport and trace gas distribution" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. The tropopause and the so-called tropopause inversion layer (TIL), which is a layer of high static stability act as a partly permeable barrier to trace gas exchange between the troposphere and the stratosphere. The tropopause region is of particular importance for climate. The processes which lead to the formation of the TIL and their role for stratosphere-troposphere-exchange (STE) and the chemical composition of the tropopause region are incompletely understood. Experiments with idealized models show that synoptic scale wave breaking in baroclinic life cycles leads to TIL formation. The dynamical conditions during such an event are favorable for STE and an irreversible constituent exchange across the tropopause. This project will constitute a novel approach to identify the effect of synoptic-scale wave breaking and TIL formation on STE combining idealized models and observations with statistical methods. For this purpose we will apply: (i) the same analysis methods for idealized models containing artificial tracers and trace gas observations (ii) aquaplanet simulations with a full chemical scheme and the physics of a global model, to identify the global effect of baroclinic life cycles on TIL formation and the related trace gas distribution.
Das Projekt "Combined airborne lidar measurments of moisture transport and cirrus properties: HALO-LIDAR" wird vom Umweltbundesamt gefördert und von Ludwig-Maximilians-Universität München, Meteorologisches Institut durchgeführt. Humidity in and around cirrus clouds: Radiative effects of cirrus clouds are a major uncertainty in determining the climate cloud feedback. The variability of cirrus on different spatial scales is another major issue which complicates modelling of their radiative properties. Aerosol and water vapour measurements were performed with the DLR lidar system WALES in 2010 during the first mission with the new German research aircraft HALO. ECMWF temperature analyses are used to derive relative humidity inside and outside of cirrus clouds from the lidar water vapour observations. Comparisons with in situ measurements of humidity on the research aircraft Falcon flying inside the cirrus clouds confirm the high accuracy of the WALES system. The study shows the advantages of lidar cross sections to provide additional information about the vertical structure of the complex humidity field, also allowing for simultaneous statistical analyses in different cloud layers. Combined with accurate temperature measurements, the lidar observations have a great potential for detailed statistical cirrus cloud and related humidity studies. Future HALO missions will benefit from the findings and techniques developed here. HSRL aerosol classification: To better understand the effects of aerosols on the climate system it is important to obtain highly accurate information on the aerosol optical properties (e.g., extinction coefficient, single scattering albedo and phase function) as well as on their temporal and spatial distribution. The high spectral resolution lidar (HSRL) method based on an iodine absorption filter and a frequency doubled pulsed Nd:YAG laser, developed at DLR, has the capability to directly measure the extinction and backscatter coefficients of aerosols and clouds. Airborne HSRL data from four different field experiments are used in the frame of this project to build up an aerosol classification. The method is based on HSRL measurements of a set of intensive aerosol properties, in particular the lidar ratio, the particle linear depolarization ratio and the color ratio of backscatter. Applied to the HSRL measurements on ESA's EarthCARE mission it will provide the climate relevant properties extinction coefficient and aerosol optical depth, together with the global, verticallyresolved distribution of aerosols and clouds. Statistical characterization of humidity variability: The distribution of water vapour in the atmosphere shows variability on all spatial scales. An accurate representation of cloud processes in climate models with limited resolution relies on a statistical description of the unresolved structures. A compact description that can describe intermittent variability on many scales is multifractal scaling based on structure functions of different orders. This analysis method was applied to airborne water vapour lidar measurements from a number of field campaigns in midlatitude, polar and subtropical latitudes. The humidity was found to be charact
Das Projekt "Einfluss organischer Aerosole auf Luftqualität und Klima" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Chemie (Otto-Hahn-Institut) durchgeführt. Organische Aerosole (OA) sind wichtige Bestandteile atmosphärischer Partikel. Je nach Region können sie zwischen 20 und 90% der gesamten Submikron-Partikelmasse betragen. Dennoch sind organische Aerosolquellen, atmosphärische Prozesse und Ableitung sehr ungewiss. Vorrangiges Ziel dieses Antrages ist es, die Auswirkungen organischer Aerosole auf Luftqualität und Klima zu untersuchen. Dazu soll die Darstellung des Aerosolaufbaus und die Weiterentwicklung in einem globalen Klima-Chemie-Modell verbessert werden. Das geplante Vorhaben basiert auf einem rechnerisch effizienten Modul zur Beschreibung der Zusammensetzung und Entwicklung atmosphärischer Aerosole in der Atmosphäre (ORACLE), ein Teil des ECHAM5/MESSy (EMAC) Klima-Chemie-Modells. ORACLE wird unter Berücksichtigung aller auf Labor- und Feldmessungen basierenden neuesten Erkenntnissen und Entwicklungen aktualisiert werden, um den zunehmend oxidierenden, weniger flüchtigen und stärker hygroskopischen Charakter des organischen Aerosols während der atmosphärischen Alterung mittels Nachverfolgung ihrer beiden wichtigsten Parameter, Sättigungskonzentration und Sauerstoffgehalt, genauer darzustellen. Dieses Modellsystem soll eingesetzt werden, um die Unsicherheit hinsichtlich der Einflüsse organischer Aerosole auf die globale Luftqualität und den Strahlungsantrieb zu verringern, und zwar durch: i) Quantifizierung des relativen Beitrags der Bildung sekundärer organischer Aerosole (SOA) sowie Emissionen primärer organischer Aerosole (POA) auf den Gesamthaushalt organischer Aerosole in unterschiedlichen Umgebungen; ii) Quantifizierung des Beitrags von Biomasseverbrennung und Schadstoffemissionen sowie chemische Alterung und weiträumige Übertragung auf den Gesamthaushalt organischer Aerosole; iii) Ermittlung, inwieweit SOA Konzentrationen durch biogene und anthropogene Emissionen sowie photochemische Alterungsprozesse beeinträchtigt werden; iv) Untersuchung der Weiterentwicklung von SOA-Bildung aus natürlichen Quellen durch deren Interaktion mit anthropogenen Emissionen; v) Abschätzung der Auswirkungen photochemischer Alterungsprozesse auf die physikalisch-chemischen Eigenschaften organischer Aerosole (z.B. Hygroskopizität, Volatilität) und vi) Einschätzung der indirekten Auswirkungen organischer Aerosole auf das Klima. Vor allem aber wird der vorliegende Antrag der kommenden Generation von Chemie-Klimamodellen eine realistische Beschreibung der chemischen Entwicklung organischer Aerosole in der Atmosphäre liefern, was für die Reduzierung der Aerosol-Unsicherheiten in der Luftqualität und bei Klimasimulationen von wesentlicher Bedeutung ist. Es ist auch davon auszugehen, dass das Forschungsvorhaben wertvolle Informationen zu den Quellen und der Produktion von OA weltweit liefert, was derzeitige CCMs nicht leisten können und welche von Politikern zur Entwicklung zukünftiger wirksamer Emissionsminderungsstrategien genutzt werden können.
Das Projekt "Zuverlässigkeit und Haftung im Kontext von Climate Engineering: Eine integrierte Betrachtung (CELARIT)" wird vom Umweltbundesamt gefördert und von Universität Bielefeld, Fakultät für Geschichtswissenschaft, Philosophie und Theologie, Abteilung Philosophie durchgeführt. In Anbetracht der potentiell katastrophalen Nebeneffekte von Climate Engineering (CE) wird generell ein passgenaues Haftungsregimes als Voraussetzung für einen international anerkannten und legitimen Einsatz für erforderlich gehalten. Diesbezüglich ergeben sich jedoch zwei grundsätzliche Fragen: Zum einen bedarf der Klärung, ob ein Haftungsregime als Mittel der Zuordnung und Verteilung von Risiken gewollt und realisierbar ist; zum anderen ist zu untersuchen, wie mit der Tatsache umzugehen ist, dass die Einschätzung der durch CE hervorgerufenen Klimaeffekte nur auf numerischen Klimamodellen, nicht aber auf empirischen Daten beruht. Obwohl das Thema der Haftung für CE-induzierte Schäden in der Literatur zunehmend Beachtung gefunden hat, wurde diesen Fragen bislang noch nicht systematisch Aufmerksamkeit geschenkt. Auch ist ungeklärt, wie Urteile über die Robustheit und Verlässlichkeit konkurrierender Modelle, die Auswirkungen eines CE-Einsatzes simulieren, getroffen werden können. Noch nicht beleuchtet worden ist schließlich, ob und wie die Entscheidung darüber, wie Beweise zu beurteilen sind, das Verhalten der Streitparteien (Staaten) beeinflusst, insbesondere im Hinblick auf die Frage, wann und ggf. wie CE eingesetzt wird. Angesichts dieser Forschungslücken kommt in vorliegendem Projekt, anders als in traditionellen Haftungsregimen, der Verlässlichkeit und Robustheit von Modellen zentrale Bedeutung zu. Vor diesem Hintergrund wird CELARIT (1) der Frage nachgehen, wie konkurrierende Modelle vor Gericht oder einem anderen zuständigen Gremium beurteilt, verglichen und bewertet werden können, und mit welchen Abstrichen erhöhte Robustheit und Verlässlichkeit einhergehen; (2) untersuchen, ob und ggf. nach welchen Kriterien ein Modell vor Gericht als zulässige Methode der Beweiserbringung herangezogen werden kann; und (3) erarbeiten, wie ein Schaden in einer Situation festgestellt werden kann, in der der kontrafaktische Zustand, welcher zur Ermittlung des Schadens herangezogen wird (eine Welt ohne CE oder sogar ohne Klimawandel), keiner Beobachtung zugänglich, sondern selbst Ergebnis eines numerischen Modells ist. Schließlich (4) wird das Problem in einem größeren Zusammenhang betrachtet. Es wird untersucht, wie Modelle trotz ihrer beschränkten Verlässlichkeit genutzt werden können, um mit CE zusammenhängende Maßnahmen zu steuern, und wie wissenschaftliche Politikberatung angemessen mit Unsicherheit und Nichtwissen umgehen kann. CELARIT bringt die Projektpartner von CEIBRAL (Klimamodellierer, Ökonomen, Juristen und Philosophen) erneut zusammen, geht jedoch insoweit einen großen Schritt über CEIBRAL hinaus, als eine methodische Neuorientierung in Richtung einer integrierten Untersuchung unternommen wird, und zwar von Anfang an disziplinübergreifend hinsichtlich sämtlicher Forschungsfragen.
Das Projekt "Erforschung der Möglichkeiten der Bildspektrometrie als Methode der Umweltanalytik in der Erdbeobachtung" wird vom Umweltbundesamt gefördert und von Universität Zürich, Geographisches Institut durchgeführt. Vegetation & Ecosystems: Within the vegetation research statistical and special hyperspectral analysis procedures are used to develop new methods to predict canopy biochemistry, such as nitrogen and carbon concentration or water content. Biochemical processes are all related to the foliar chemistry of vegetation and thus to the carbon and nitrogen cycles. Hence, biochemical information products contribute to many environmental applications. For instance ecosystem models can be parameterized with the generated products that can help to better understand CO2 fluxes and net primary production (NPP) in the framework of the Kyoto Protocol. Traditional measurement of forest canopy level biochemistry is time-consuming, expensive and spatially constrained. Remote sensing allows for repeatable and continuous prediction of biochemical information over a wide spatial scale and thus facilitates the understanding of ecosystem functions. For the retrieval of biochemistry products to be used for environmental applications, the transfer of the developed methods from airborne hyperspectral to spaceborne data is fundamental. This transfer involves spectral and spatial up-scaling. Additionally, spaceborne reflectance data contain angular effects due to the sensor field of view and observation geometry, which can finally influence biochemistry estimates. However, multi-angular reflectance data contain added information about vegetation structure. Since correct biochemistry mapping is linked to accurate vegetation structure, forest biochemistry products may be improved with multi-angular data. Our goals in the field of biochemistry prediction are to transfer the developed airborne-based methods to spaceborne data and to evaluate different methods for up-scaling. Water resources: The SNF project targets at the key aim of the joint EU, ESA GMES initiative to establish operational services for the assessment of water resources in terms of quality, quantity and usage. It has been defined as a major challenge in the scope of GMES activities and it is of crucial importance in most developing countries and at a global level (EC, 2005). RSL is developing new methodology (semi-empirical and analytical methods) for the retrieval of water constituents in order to establish scientific algorithm development activities with special emphasis on APEX retrieval algorithms for water constituent s retrieval and the discrimination of macro phytes and algae types. Thanks to the unique performance, the APEX instrument will facilitate the observation of regional scale features (e.g., Harmful Algae Blooms) and enable the study of complex waters with unprecedented accuracy. The development of remote sensing algorithms to retrieve phytoplankton species and physiology is a challenging endeavor of high importance to assess biological activities in the water and therefore water quality by better means. (abridged text)
Das Projekt "Biochemie der Peroxidasine" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Chemie durchgeführt. Enzyme der Peroxidase-Cyclooxygenase Superfamilie katalysieren biochemische Reaktionen, die in unzähligen biologischen Prozessen eine wichtige Rolle spielen, z.B. bei der unspezifischen Immunabwehr, der Synthese der Schilddrüsenhormone oder der Bildung und Modifizierung der extrazellulären Matrix. Sie sind zudem auch bei der Pathogenese von chronischen entzündlichen Erkrankungen beteiligt. In der Subfamilie 2 dieser Superfamilie findet man Multidomänen-Oxidoreduktasen, sog. Peroxidasine (Pxds). Hierbei handelt es sich um glykosylierte und sekretierte Häm-Peroxidasen, die zusätzlich zur katalytischen Domäne sog. Leucin-reiche Wiederholungssequenzen, Immunoglobulin C-ähnliche Domänen sowie von Willebrandfaktor C enthalten. Diese Strukturmotive finden sich in vielen extrazellulären Molekülen, die mit anderen Proteinen in Wechselwirkung treten. Ursprünglich wurde Peroxidasin in Basalmembranen von Drosophila entdeckt. Spätere Arbeiten zeigten, dass diese Enzyme auch in Wirbeltieren vorkommen und eine Rolle bei der unspezifischen Immunabwehr, der Gewebsbildung, Ausbreitung von Tumoren und oxidativen Prozessen eine Rolle spielen. Kürzlich wurde gezeigt, dass dieses Metallprotein mit Hilfe von Hypohalogeniten im Kollegen IV für die Bildung von kovalenten Kohlenstoff-Stickstoffbindungen verantwortlich ist, ein Prozess, der sowohl bei der Gewebsbildung als auch bei zahlreichen Kranksheitsbildern eine wichtige Rolle spielt. Trotz der physiologischen Bedeutung dieser neuen Proteinfamilie ist das biochemische Wissen sehr bescheiden. In diesem Projekt sollen daher, basierend auf umfangreichen phylogenetischen Voranalysen und der bereits erfolgreich durchgeführten rekombinanten Produktion von humanem Peroxidasin 1 in tierischen Zellkulturen, die Struktur-Funktionsbeziehungen von vier Peroxidasinen unterschiedlicher Entwicklungsstufe und Sequenz analysiert werden: Peroxidasin 1 von Caenorhabditis elegans, Pxd von Drosophila melanogaster als auch die beiden humanen Peroxidasine 1 & 2. Basierend auf der rekombinanten Produktion der vier Modell-Proteine in voller Kettenlänge bzw. von verkürzten Varianten unterschiedlicher Domänenzusammensetzung werden umfangreiche bio-chemische/biophysikalische Analysen durchgeführt: (i) UV-vis-, Fluoreszenz- CD-, Lichtstreuung-, RR- und ESR-Spektroskopie, (ii) Stopped-flow-Spektroskopie und Polarographie, (iii) MS und Röntgenkristallographie, (v) Spektroelektrochemie und (vi) Kalorimetrie. Mit Hilfe dieser Methoden sollen Struktur und Aktivität der Peroxidasine aufgeklärt werden wie z.B. (i) oligomere Struktur und Architektur des aktiven Zentrums, (ii) Interaktion der Domänen und Mechanismen der Proteinentfaltung, (iii) Chemie der prosthetischen Gruppe inklusive Oxidations- und Spinzustände, Häm-Liganden und posttranslationale Modifizierungen, (iv) Spezifität, Zugänglichkeit, und Bindungorte von Substraten als auch chemische Natur der Reaktionsprodukte (v) Chemie, Reaktivität und Relevanz von Redox-Intermediaten und (vi) die Ro