Die Steglitzer Grundschule informiert und schult ihre Schützlinge in Sachen Umwelt- und Klimaschutz auf vielfältige Art und Weise. Im Unterricht werden immer wieder Bezüge zu aktuellen Erkenntnissen und Ansätzen für mehr Nachhaltigkeit hergestellt. In Arbeitsgruppen (AGs), während der Projektwochen und bei Ausflügen können die Kinder ganz praktisch selber einen Beitrag zum Klimaschutz leisten. Ökovielfalt im Schulgarten Umweltschutz beginnt vor der eigenen Tür! Diesem Motto folgend gestalten die Schülerinnen und Schüler den Vorgarten der Grundschule im Sinne der Artenvielfalt. Wer bei dem Wort Vorgarten an eine kleine, langweilige Fläche denkt, wird bei einem Besuch der Grundschule am Stadtpark Steglitz schnell eines Besseren belehrt. Der Vorgarten beherbergt nicht nur ein kleines Hühnerhaus für vier gefiederte Bewohner, sondern ebenfalls zahlreiche Beete, deren Ertrag bei jeder Ernte überrascht. Die Kinder der Grundschule pflanzen Kartoffeln, Rote Beete, Sonnenblumen, Tomaten, Karotten und Radieschen an. Zur Förderung der Biodiversität ist im kontrollierten Maße auch der Wildwuchs von Löwenzahn, Brennnessel und weiteren Pflanzen eingeplant. Auf dem Schulgelände befinden sich darüber hinaus mehrere bienenfreundlich bepflanzte Hochbeete. Ein grünes Klassenzimmer ist zudem in Planung. Auf dem nahe gelegenen Markusplatz unterhalten die Grundschülerinnen und Schüler ebenfalls einige Beete. An der Grundschule am Stadtpark Steglitz werden die Kinder früh für den verantwortungsvollen Umgang mit Abfall und Müll sensibilisiert. In Upcycling-Workshops basteln die Schülerinnen und Schüler mit Verpackungen und geben ihnen so ein zweites Leben – und lernen dabei ganz nebenbei, wie nützlich vermeintlicher Abfall noch sein kann. So zieren etwa selbstgebaute Uhren aus Plastikabfall die Wände der Klassenräume. Weiterhin arbeitet die Grundschule an der konsequenten Umsetzung der Mülltrennung. Die Teilnehmerinnen und Teilnehmer des Wahlpflichtkurses Klima und Umwelt verkaufen jeden Mittwoch schulintern zudem Schulmaterialien wie Notizblöcke und Papier in Recycling-Qualität. Dieses Projekt wurde im Wettbewerb Berliner Klimaschulen mit einem Preisgeld ausgezeichnet. Dieses wird für die nachhaltige Entwicklung des Vorgartens eingesetzt. Schon früh lernen die Kinder an der Grundschule am Stadtpark Steglitz, welchen Einfluss die Wahl der eigenen Lebensmittel auf die Natur und Umwelt hat. Mit Unterstützung von Studentinnen und Studenten der FU-Berlin fanden sie beispielsweise heraus, aus welchen Regionen der Welt bestimmte Obst- und Gemüsesorten stammen und welche Entfernungen diese dementsprechend zurücklegen müssen, bis sie auf dem heimischen Teller landen. Bei einem regelmäßig stattfindenden Klimafrühstück beschäftigen sich einzelne Schulklassen mit den Aspekten der Saisonalität, Regionalität, Verpackungen und des Fleischkonsum. Das Schulessen wird von Luna Vollwert-Catering geliefert. Das Unternehmen achtet auf die Verarbeitung regionaler und saisonaler Produkte in Bio-Qualität. In regelmäßigen Abständen heißt es für die Schülerinnen und Schüler: Raus in die Welt! – oder zumindest in die Stadt. Bei den Exkursionen und Ausflügen erhalten die Kinder einen vielfältigen Einblick in die Bandbreite des Umwelt- und Klimaschutzes. So lernten sie in der Vergangenheit bereits, wie es mit dem Berliner Abfall bei der BSR weitergeht, knobelten sich durch ein interaktives Pflanzenlabyrinth und führten eigene Müllsammelaktionen in der Stadt durch. Ökologisches Schulessen | Abfallvermeidung | Abfalltrennung | Umweltfreundliches Schulmaterial | Recycling | Upcycling | Schulgarten | Biodiversität | Grünes Klassenzimmer | Umweltfreundlicher Schulweg | Schulprogramm | Projekte Rund 520 Schülerinnen und Schüler besuchen die öffentliche Grundschule in Steglitz. Knapp 50 Lehrkräfte betreuen die Kinder an der offenen Ganztagsschule. Die Grundschule am Stadtpark Steglitz wird als Lebensraum für Kinder und Lehrende verstanden. Besonderer Fokus liegt daher auf eine gesunde Lebensweise im Schulalltag, einem gleichberechtigten und respektvollen Umgang miteinander und dem gemeinsamen Lernen. Kulturelle, persönliche und religiöse Unterschiede werden an der Grundschule mit Respekt und Neugierde begrüßt. Preisgeld beim Wettbewerb Berliner Klimaschulen Bild: Goodluz/Depositphotos.com Weitere engagierte Schulen in Steglitz-Zehlendorf Übersicht: Diese Schulen in Steglitz-Zehlendorf engagieren sich besonders im Klima- und Umweltschutz. Weitere Informationen Bild: Goodluz/Depositphotos.com Handlungsfelder Ressourcenschutz, Nachhaltigkeit, Klimabildung: In diesen Bereichen engagieren sich Schülerinnen und Schüler aller Altersgruppen für nachhaltige Verbesserungen im Klimaschutz. Weitere Informationen
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2021-2050 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt den mittleren potenzielle Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2021-2050 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2071-2100 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Der potenzielle Zusatzwasserbedarf wird auf Basis der digitalen nutzungsdifferenzierten Bodenkarte von Niedersachsen 1 : 50 000 (BK50) berechnet. Dabei werden nur Flächen berücksichtigt, deren Nutzung in der BK50 als „Acker“ ausgewiesen ist. Unter Zusatzwasserbedarf wird die mittlere Beregnungsmenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung eines Bodenwassergehaltes von mindestens 40 % der nutzbaren Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Beregnungsmenge als Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Berechnung des 30-jährigen potenziellen Zusatzwasserbedarfs wird auf Basis von bereitgestellten Niederschlags- und Verdunstungsdaten des DWD durchgeführt. Die 30-jährigen Mittelwerte wurden aus den täglichen Daten ermittelt. Der Niederschlag basiert auf dem korrigierten REGNIE-Produkt (Stand 25.05.2021). Die Verdunstung wurde vom DWD mit dem Standard-Verfahren nach FAO zur Ermittlung der Grasreferenzverdunstung an Klimastationsdaten berechnet und anschließend in die Fläche auf ein 1 km Raster interpoliert (Stand 10.12.2021). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG DEUTSCHER WETTERDIENST (DWD), 2017: Abteilung Hydrometeorologie: REGNIE (REGionalisierte NIEederschläge): Verfahrensbeschreibung & Nutzeranleitung, DWD internal report, Offenbach 2017.
Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2071-2100 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Origin | Count |
---|---|
Bund | 617 |
Land | 148 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Ereignis | 2 |
Förderprogramm | 525 |
Kartendienst | 1 |
Messwerte | 13 |
Taxon | 1 |
Text | 94 |
Umweltprüfung | 12 |
unbekannt | 96 |
License | Count |
---|---|
geschlossen | 105 |
offen | 606 |
unbekannt | 35 |
Language | Count |
---|---|
Deutsch | 715 |
Englisch | 87 |
Resource type | Count |
---|---|
Archiv | 33 |
Bild | 4 |
Datei | 65 |
Dokument | 45 |
Keine | 460 |
Unbekannt | 2 |
Webdienst | 35 |
Webseite | 210 |
Topic | Count |
---|---|
Boden | 500 |
Lebewesen & Lebensräume | 746 |
Luft | 363 |
Mensch & Umwelt | 743 |
Wasser | 360 |
Weitere | 674 |