API src

Found 82 results.

Related terms

Finland and the Paris Agreement

Das Projekt "Finland and the Paris Agreement" wird vom Umweltbundesamt gefördert und von Climate Analytics gGmbH durchgeführt. This project looks at the implications of the Paris Agreement, especially of the 2°C temperature limit and the 1.5°C aspirational goal, for greenhouse gas emission mitigation in Finland. his project investigates the implications of the Paris Agreement, especially the implications of its long-term temperature goals, for greenhouse gas emission mitigation in the European Union and Finland. Inferring the consequences of a global temperature limit on a region or country requires splitting the mitigation efforts required to meet that limit to the country/regional level. The project involves a set of analyses based on Integrated Assessment Modelling results and fairness indicators, such as historical responsibility for global climate change, or capability to contribute to global emission reduction efforts. It utilises Climate Analytics' well established equity tool to better understand what is the mitigation needed and expected from Finland and the EU domestically and with investments overseas. The analysis focuses on the following elements: - Identify GHG emission targets to limit global warming well below 2°C and to limit global mean warming to 1.5°C. - Discuss probabilistic uncertainty introduced by climate sensitivity estimates in the analysis - Analyse GHG concentration in the atmosphere for each scenario, taking into account uncertainties in the global carbon cycle and atmospheric chemistry. - Analyse the remaining global emission budget to reach the 2°C and 1.5°C limits - Provide scenarios on how to allocate the remaining emission budget over time. - Calculate emission reduction targets for Finland and the EU - Estimate finance needs flowing from EU and Finland to fund mitigation in the rest of the world. This project is funded by Sitra, a Finnish public fund tasked with promoting Finland's sustainable development, economic growth and international competitiveness and co-operation. One of Sitra's key areas of focus is resource-wise and carbon-neutral society.

Fire - climate feedback in the Earth System

Das Projekt "Fire - climate feedback in the Earth System" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Fires are an integral Earth System process, which is controlled by climate and at the same time impacts climate in multiple ways. As such fires form a feedback mechanism in the Earth System, which might amplify or dampen climate change. At present this feedback is not well understood nor is it represented in current generation Earth System models used to study climate change. The proposed research project aims to quantify the fire-climate feedback by incorporating the integral role of fires into an Earth System Model (ESM). Together with improved observational based process understanding the project will analyze how fires have developed throughout Earth history and how single fire driven processes contribute to the overall fire climate impact. A mechanistic terrestrial biosphere fire model will be implemented into the ESM and fire mediated climate relevant processes will be coupled between the different ESM compartments, including the atmosphere, ocean and cryosphere. This cross-disciplinary research project will foster the understanding of past climate change and will hopefully allow a better assessment of human induced future climate change by further constraining the climate sensitivity of the Earth system.

Sub project: What ends an Interglacial? Feedbacks between tropical rainfall, Atlantic climate and ice sheets during the Last Interglacial (EndLIG)

Das Projekt "Sub project: What ends an Interglacial? Feedbacks between tropical rainfall, Atlantic climate and ice sheets during the Last Interglacial (EndLIG)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachbereich 5 Geowissenschaften, Fachgebiet Geosystem Modellierung durchgeführt. When and how the present interglacial will end remains an open question. With a relatively wellknown climate, the Last Interglacial (LIG) and following glacial inception can shed some light on the climate mechanisms leading to the establishment of a new ice age. Two key questions arise from the chain of climate events known to end the LIG: (1) Did the interglacial North Atlantic warmth, prolonged by an active thermohaline circulation (THC), favor or delay the growth of northern ice sheets? (2) Did reorganizations in South American moisture contribute to prolong the North Atlantic warmth by maintaining a salty North Atlantic and active THC at the end of the LIG, as suggested by tropical moisture feedbacks observed during glacial times? To address these questions, we propose here to combine new paleoclimate reconstructions with climate model experiments. First, we will reconstruct the detailed evolution of the South American rainbelt during the last glacial inception, by applying complementary proxies on a transect of marine sediment cores. Second, we will assess the impact of tropical hydrologic changes on tropical Atlantic sea surface salinities (SSS) and the Atlantic THC, by comparing tropical Atlantic SSS and deep-water properties with model sensitivity experiments where we will vary the tropical freshwater forcing. Finally, we will perform a transient climate/ice-sheet model run for the last glacial inception, and a sensitivity study, in which different ocean heat fluxes will be imposed to investigate the effect of prolonged North Atlantic warmth on ice sheet growth.

Modeling the role of the last ice age for the present and future sea-level contribution from Antarctica (SPP-ANTARCTICA)

Das Projekt "Modeling the role of the last ice age for the present and future sea-level contribution from Antarctica (SPP-ANTARCTICA)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The project will encompass the numerical simulation of at least four glacial cycles of the Antarctic sheet-shelf system using the Parallel Ice Sheet Model (PISM). The objective of the research plan is to determine the role of the past development of the Antarctic Ice Sheet for its sea-level contribution of the past and future century. To this end we investigate the influence of past climate evolution, especially the last deglaciation, on its present dynamic state: The ongoing changes in terms of mass balance, disregarding anthropogenic climate change, during the 20th and 21st centuries are influenced by the history of the advance and retreat of the ice during the last glacial cycles. Instead of aiming at a best-guess simulation, we will work on providing an ensemble of model simulations that incorporates uncertainties from climate boundary conditions and internal process-modeling and ice parameter choices. Apart from answering the above mentioned research question concerning the influence of the history of the ice sheet on its present day dynamics, we will also take an important step towards a new generation of projections of future ice discharge from Antarctica: It is important to know how much sea-level contribution, if any, is not caused by anthropogenic climate change. The program encompasses the development and short-term testing of physical improvements to the model that are needed in order to perform four glacial cycles (4GC) simulations and to provide a comprehensive ensemble. The currently implemented climate boundary conditions, both for the upper surface of the ice sheet and the underside of the ice shelves in contact with the ocean, will be examined and expanded to be suitable for 4GC-simulations. Process-based model components, concerning the numerical representation of the transition zone between ice sheet and ice shelf will be evaluated and improved. High-resolution nested simulation approaches will be developed for PISM in order to better resolve these crucial zones in order the further close the gap between finite differences models like PISM using shallow approximations of the stress balance and higher-order models. Sensitivity tests within 4GC-simulations will shed light on how the above mentioned new methods, climate boundary conditions in general and internal model parameters, influence the 4GC-simulation and ultimately the modeled present day state. An ensemble selection process will take place, excluding those parameter and climate-boundary combinations that are not conform to available geologic data for the past and observations of the present day state of the Antarctic ice sheet. This can be thought of as a blind selection of the dynamic present-day state of the ice sheet. By that dynamic state we mean the responsiveness of the modeled ice sheet to external forcing, which can vary drastically among a set of modeled ice sheets that are quite similar with respect to vertical and horizontal ice extent. (abridged text)

Teilprojekt 2, (Modul B)

Das Projekt "Teilprojekt 2, (Modul B)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Das Projekt LiCoS wird den Einfluss meteorologischer und chemischer Prozesse auf Klimavorhersagen auf Zeitskalen von Jahren bis Jahrzehnten untersuchen. Dazu werden Modellalgorithmen des Strahlungsantriebes und der kleinskaligen Wechselwirkungen - d.h. solche verbunden mit der Wirkung von Aerosolen, Wolken und Ozon - weiterentwickelt. Ziel ist es, ein verbessertes Verständnis des Einflusses der Modellformulierung von Wolkenprozessen, Aerosolen und chemischen Prozessen auf die Vorhersagbarkeit des Klimas zu erhalten. Die gewonnenen Erkenntnisse werden in das MiKlip System zur Vorhersage dekadischer Klimaveränderungen in enger Absprache mit den anderen Projekten und Modulen einfließen. Entwicklung/Optimierung des Strahlungsantriebes und der kleinskaligen Wechselwirkungen, die mit der Wirkung von Aerosolen, Wolken und Ozon verbunden sind. Durchführung und Evaluierung von Sensivitätsstudien und Szenarien im Hinblick auf die Klimasensitivität als Folge der atmosphärischen Zusammensetzung, des Solarzyklus und des stratosphärischen Ozons. Analyse der Vorhersagbarkeit der Luftqualität in Abhängigkeit von der Modellauflösung. Integration der Modellkomponenten in das MPIM Klimamodell.

ROMIC II: Rolle der mittleren Atmosphäre bezogen auf das Klima

Das Projekt "ROMIC II: Rolle der mittleren Atmosphäre bezogen auf das Klima" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Stratosphärisches Ozon wird in der Zukunft (wie auch in der Vergangenheit) von Veränderungen sowohl der anthropogenen Halogenemissionen als auch der Brewer-Dobson-Zirkulation (BDC) beeinflusst werden. Im vorgeschlagenen Projekt wollen wir Effekte dieser Ozonänderungen auf a) die troposphärische Tropopausenregion und Klimasensitivität (Teilprojekt SOCTOC-TTL) und auf b) die Oxidationskapazität der Troposphäre und damit auf Treibhausgase und das Klima (Teilprojekt SOCTOC-CHEM) untersuchen. Wesentliche Motivation für SOCTOC-TTL ist, dass Modellstudien zu sehr unterschiedlichen Ergebnissen bezüglich des Effekts von Ozonänderungen in der unteren Stratosphäre auf die Klimasensitivität kommen. Derartige Ozonänderungen sind bei globaler Erwärmung durch eine Beschleunigung der BDC zu erwarten. Wesentliche Motivation für SOCTOC-CHEM ist, dass in der Wissenschaft Dissens besteht, ob Änderungen der Emissionen von Methan oder der troposphärischen OH-Konzentration zum beobachteten Abflachen des Methantrends geführt haben. OH würde auch via UV-Strahlung durch stratosphärische Ozonänderungen beeinflusst. Um die bestehenden Unsicherheiten beider Effekte stratosphärischen Ozons zu verringern, planen wir die Anwendung einer Hierarchie numerischer Modelle. Es sollen Experimente mit 1D und 3D-RCE Modellen, sowie mit dem globalen ICON-GCM durchgeführt und analysiert werden. Die Simulationen sind jeweils ohne Ozonchemie, mit einfacher linearisierter Chemie und mit einem interaktiv gekoppelten komplexen Chemie-Modul für verschiedene Klimazustände geplant. Neben den wissenschaftlichen Zielen beabsichtigen wir das atmosphärische Zirkulationsmodell ICON und seine interaktive Kopplung an Chemie-Mechanismen weiterzuentwickeln. Dabei werden wir ICON über das ART-Modul sowohl an einen komplexen Chemie-Mechanismus als auch an eine simple linearisierte Ozonchemie koppeln. Dieses ist mit dem Ziel verbunden die Nützlichkeit des Linearisierungsansatzes für Klimastudien zu evaluieren.

Modeling the Greenland ice sheet response to climate change on different timescales

Das Projekt "Modeling the Greenland ice sheet response to climate change on different timescales" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The Greenland ice sheet could potentially contribute up to 7 m to sea level rise in the coming millennia due to anthropogenic global warming. As temperatures increase, the ice sheet experiences more surface melt and will eventually no longer be able to sustain its current size. It is generally believed that if the global Earth's temperature will exceed a certain threshold value, the Greenland ice sheet will eventually melt completely. However, the magnitude of global warming which will lead to crossing this threshold is not well known. The sensitivity of the ice sheet to climate change on long timescales will largely depend on surface mass balance change. In this project, a novel approach will be developed for modeling the surface mass balance of the Greenland ice sheet by using a regional climate model of intermediate complexity coupled to an ice sheet model via a physically-based surface energy and mass balance interface. Such an approach will allow us to perform a large ensemble of long-term simulations of the Greenland ice sheet under different climate change scenarios to refine estimates of the Greenland ice sheet sensitivity to climate change and the critical climate thresholds leading to its complete melting. With this project, we will contribute to a better understanding of the Greenland Ice Sheet contribution to future sea level rise and to the assessment of the probability of irreversible changes in the Earth system.

Teilprojekt 7

Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Gewässerkunde durchgeführt. Die Ausschreibung 'Wasser-Extremereignisse' zielt auf die Umsetzung der SDGs der UN ab, um Auswirkungen von 'Wasser-Extremereignissen' auf die aquatische Umwelt und den Menschen zu begrenzen. Das Vorhaben 'SpreeWasser:N' zielt auf die Entwicklung neuer Handlungsoptionen zur verbesserten Wasserspeicherung und innovativer Werkzeuge für ein integriertes Wassermanagement in Brandenburg, das, zusammen mit Sachsen-Anhalt, das höchste Wasserdefizit und Dürrerisiko Deutschlands aufweist. Das Vorhaben entwickelt interdisziplinäre Ansätze für die Bewirtschaftung knapper Wasserressourcen in einer von Wassermangel und Dürre, aber auch temporärem winterlichen Starkregen, bedrohten Region. Es werden konkurrierende Nutzungsinteressen identifiziert und diese in einem integrierten Wasserbewirtschaftungskonzept gegeneinander abgewogen. 'SpreeWasser:N' entwickelt innovative Monitoring-, Vorhersage- und Kommunikationswerkzeuge zum Risikomanagement und Strategien zur Minderung negativer Folgen von Wasserextremereignissen. Das Vorhaben ermöglicht die web-basierte Warnung der Landwirte vor Trockenperioden und die Online-Steuerung von Entwässerungs-Drainagen in 'quasi-Echtzeit'. Es bindet lokale Akteure und Stakeholder ein und berücksichtigt spezifische Belange der Region. Es erarbeitet Vorschläge für eine Anpassung des WHG und der Landeswassergesetze mit dem Ziel, zukünftig eine Priorisierung von Wassernutzungen besser umsetzen zu können und Methoden der Wasserspeicherung unter Berücksichtigung konkurrierender Gesetzgebungen zu ermöglichen. In Teilprojekt 7 wird ein Wirkmodell entwickelt, dass die Auswirkungen von Klima- und Abflussveränderungen sowie unterschiedlicher Managementszenarien auf die Gewässergüte der Unteren Spree simuliert. Diese Simulationen sowie weitreichende Analysen der Klimasensitivität der Gewässergüte dienen als Basis für eine multikriteriell begründete ökologische Mindestwasserbemessung der Spree, die in die Priorisierung im Rahmen des Gesamtprojekt einfließen.

Simulation and understanding of the major transitions in Quaternary climate dynamics (Q-DYNAMICS)

Das Projekt "Simulation and understanding of the major transitions in Quaternary climate dynamics (Q-DYNAMICS)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Understanding climate variability during the past 3 million years remains a scientific challenge. Paleoclimate records provide rich information about Quaternary climate cycles and reveal several pronounced changes in the regimes of climate variability. The mechanisms of these transitions are still not properly understood. Although a number of hypotheses have been proposed, testing of these hypotheses is hampered by the lack of an appropriate modeling tool. We propose to study the nature of these regime changes with a new Earth system model of intermediate complexity, which will be developed based on the existent and comprehensively tested model CLIMBER-2. Although the new model will have higher spatial resolution than CLIMBER-2, it will be still be computationally efficient to enable us to perform experiments at million-year time scales. Using an ensemble of model realizations obtained by a perturbed physics approach, we will perform a set of transient experiments to test existing hypotheses concerning the mechanisms of the Pliocene-Pleistocene Transition (ca. 2.7 Ma), Mid-Pliocene Revolution (between 1.2 and 0.8 Ma) and Mid-Brunhes Event (ca. 430 ka). The final goal is to reproduce these transitions using orbital forcing as the only prescribed forcing while atmospheric composition, evolution of terrestrial sediment layer and aeloian dust transport and deposition will be simulated by the model. With this we expect to make a substantial progress in understanding the non-linear dynamics of the principal components of the Earth system, such as ice sheets, ocean circulation and carbon cycle, as well as the role of various climate feedbacks. We will also assess a possibility of using the available plaeoclimate information about climate variability over the past 3 million years to provide better constraints on Earth system sensitivity and stability to external forcings and internal perturbations.

Assessment of Uncertainty in Climate Change Projections (ASSERT)

Das Projekt "Assessment of Uncertainty in Climate Change Projections (ASSERT)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. ASSERT aims to provide global warming projections that are robust under climate model uncertainty, thereby working at the interface of climate modelling and Integrated Assessment of climatic change under uncertainty . In practical terms, ASSERT constrains model parameter uncertainty by running huge ensembles of perturbed parameter physics. The focus hereby is on climate sensitivity (CS), a key model characteristic of high importance both to the modelling as well as to the Integrating Assessment (of climatic change) community. Recent studies of CS uncertainty has left the community with a very broad range for CS that would make Integrated Assessment of climatic change a formidable task: societies would have to take into account too many possibilities (degrees of global warming) to adjust to. A key objective of ASSERT is to reduce uncertainty in CS by accounting for various climatic archives, especially paleo-data from the LGM (Last Glacial Maximum, 21 kyrs BP) and regional temperature changes of 20th Century warming. Results gained in ASSERT will be used for project PRIMAP for a probabilistic assessment of emission paths.

1 2 3 4 57 8 9