Schutz der Meere: Wie kann er gelingen? Meeresumweltsymposium Das Meeresumweltsymposium (MUS) wird jährlich im Auftrag des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) vom Bundesamt für Seeschifffahrt und Hydrographie (BSH) unter Mitwirkung vom Umweltbundesamt und Bundesamt für Naturschutz organisiert. Die hybride Veranstaltung informiert Wissenschaftler*innen und Behördenvertreter*innen über ak… weiterlesen Meeresumweltsymposium Das Meeresumweltsymposium (MUS) wird jährlich im Auftrag des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) vom Bundesamt für Seeschifffahrt und Hydrographie (BSH) unter Mitwirkung vom Umweltbundesamt und Bundesamt für Naturschutz organisiert. Die hybride Veranstaltung informiert Wissenschaftler*innen und Behördenvertreter*innen über ak… weiterlesen Das UBA setzt sich für intakte Meere ein; sie sind heute wichtiger denn je. Sie wirken global als "Puffer" für Klimaveränderungen, beherbergen eine faszinierende Artenvielfalt, sind Nahrungs- und Rohstoffquellen, Siedlungs- und Erholungsräume sowie Transportwege. Gleichzeitig ist die Meeresumwelt von Nord- und Ostsee zu vielen menschlichen Aktivitäten ausgesetzt und daher in keinem guten Zustand. Die Meere und Ozeane sind für alles Leben auf der Erde entscheidend. Sie produzieren die Hälfte des globalen Sauerstoffs, beheimaten etwa 80 Prozent aller Tierarten und bedecken fast Dreiviertel der Erdoberfläche. Die Meere spielen eine Schlüsselrolle im Klimasystem , da sie über den natürlichen Gasaustausch etwa ein Drittel des vom Menschen verursachten Kohlendioxids ( CO2 ) aus der Atmosphäre aufnehmen. Gleichzeitig sind sie wichtige Komponenten des weltweiten Wasserkreislaufs und verteilen Wärme über ihre Strömungen. Aus der Ferne erscheinen die Meere endlos und unberührt. Doch bei näherer Betrachtung wird klar, dass gerade in Küstennähe Pflanzen und Tiere und ihre Lebensräume durch menschliche Nutzungen erheblich beeinträchtigt sind. Viele Schadstoffe und zu viele Nährstoffe aus Kommunen, Industrie und der Landwirtschaft gelangen über die Flüsse, direkte Einleitungen und den Luftweg in die Meere und haben schädliche Auswirkungen auf das Meeresökosystem. Aber auch auf der hohen See wirken sich menschliche Aktivitäten, wie der globale Schiffsverkehr , die industrielle Aquakultur, der Tiefseebergbau oder der Ausbau der Offshore-Energiegewinnung negativ auf die Meeresumwelt aus. Abfälle, vor allem aus Kunststoffen einschließlich Mikroplastik, sind allgegenwärtig. Unterwasserlärm stört und schädigt insbesondere Wale, Delfine und Fische. In der Vergangenheit wurden unsere heimischen Meere auch als Halde für Altmunition genutzt, deren giftige Sprengstoffe und chemischen Kampfstoffe inzwischen im Meerwasser, Sediment und in den Lebewesen nachweisbar sind. Hinzu kommt der fortschreitende Klimawandel und die damit einhergehende zunehmende Erwärmung und Versauerung , die als zusätzliche globale Effekte auf die Meeresökosysteme wirken, genauso wie technologische Eingriffe durch marines Geo-Engineering mit ungewissen Folgen für die Meeresumwelt. Seit Jahrzehnten werden Veränderungen regelmäßig dokumentiert , was zu einem umfassenden Wissen über menschliche Aktivitäten und deren Auswirkungen auf die Meere geführt hat. Auf Basis der erhobenen Daten wird der biologische , chemische und physikalische Zustand der Meeresumwelt auf lokaler, nationaler, regionaler und globaler Ebene bewertet. Es hat sich dabei gezeigt, dass ein schlechter Zustand der Meere und Küsten auch negative Auswirkungen auf deren Produktivität und andere, für die Menschheit wichtige, Funktionen hat. Dabei können intakte Meeres- und Küstenökosysteme eine wichtige Rolle sowohl beim Klimaschutz als auch für die Klimaanpassung spielen und wichtige Beiträge zum Wohlergehen der Menschen leisten, unter anderem im Sinne der Nahrungsversorgung, des Transports und der Erholung. Das trifft auch auf die Polarmeere zu, denen eine besondere Rolle im Klimasystem zukommt und die für die globale Meeresströmungen ein wichtiger „Motor“ sind. Das Umweltbundesamt arbeitet seit Jahrzehnten daran mit, den Zustand der Meere zu bestimmen und die Belastungen der Meere zu reduzieren und ist unter anderem auch Genehmigungs- und Überwachungsbehörde für wissenschaftliche Projekte des marinen Geo-Engineerings. Besonders relevant sind Konzepte und Maßnahmen für den Schutz der Meere im Rahmen der regionalen Meeresschutzübereinkommen für die Ostsee ( HELCOM ) und den Nordostatlantik einschließlich der Nordsee ( OSPAR ). Auf europäischer Ebene zielt zudem die Meeresstrategie-Rahmenrichtlinie (MSRL) auf die Erreichung eines guten Umweltzustands ab. Dafür stellen sich die Behörden des Bundes und der Küstenbundesländer gemeinsam den unterschiedlichen Herausforderungen und Regelungen („ Meeresgovernance “), um den Schutz der Meere zu verbessern und Nutzungen nachhaltiger zu gestalten. Eine besondere Herausforderung wird es zukünftig sein, die stetig wachsende "blaue Wirtschaft" mit dem Schutz der Meere in Einklang zu bringen, um das Gleichgewicht zwischen Nutzung und Schutz unter dem Einfluss des fortschreitenden Klimawandels zu wahren oder wiederherzustellen. Nachhaltigkeit , Vorsorgeprinzip und ein ganzheitlicher, ökosystemarer Ansatz müssen die Grundlage unseres Handelns sein, und die verschiedenen Nutzungen müssen kumulativ, also gesamtheitlich, bewertet und reguliert werden. Der Schutz der Meeresumwelt ist nicht zuletzt auch für die Menschheit lebensnotwendig und jede Anstrengung wert.
Grundlagen des Klimawandels Seit der Industrialisierung steigt die durchschnittliche globale Lufttemperatur in Bodennähe. Wissenschaftliche Forschungen belegen, dass wir Menschen für den raschen Temperaturanstieg der letzten 100 Jahre verantwortlich sind. Deshalb sprechen wir von einer anthropogenen – vom Menschen verursachten – Klimaänderung. Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle, Erdöl und Erdgas) und durch großflächige Entwaldung wird Kohlendioxid (CO 2 ) in der Atmosphäre angereichert. Land- und Viehwirtschaft verursachen Emissionen von Gasen wie Methan (CH 4 ) und Distickstoffmonoxid (Lachgas, N 2 O). Kohlendioxid, Methan und Lachgas gehören zu den treibhauswirksamen Gasen. Eine Ansammlung dieser Gase in der Atmosphäre führt in der Tendenz zu einer Erwärmung der unteren Luftschichten. Informationen zu den Ursachen von Klimaänderungen, zur Zunahme von Treibhausgasen in der Atmosphäre und zum Treibhauseffekt (natürlich und anthropogen ) finden Sie auf der Seite Klima und Treibhauseffekt . Wir stellen auf der Seite Weltklimarat den Zwischenstaatlichen Ausschuss für Klimaänderungen – IPCC (Intergovernmental Panel on Climate Change) kurz vor. Zudem gibt es eine Übersicht zu den Erkenntnissen der letzten IPCC-Sachstandsberichte. Diese Berichte widmen sich den wissenschaftlichen Grundlagen der anthropogenen (durch den Menschen verursachten) Klimaänderung , den beobachteten Klimaänderungen und -folgen, den Projektionen künftiger Klimaänderungen, den Maßnahmen zur Minderung der Emissionen treibhauswirksamer Gase sowie den Maßnahmen zur Anpassung an projizierte (für die Zukunft berechnete) Klimaänderungen. Seit dem vergangenen Jahrhundert erwärmt sich das Klima, wie wir aus Beobachtungs- und Messdaten wissen. Das globale Mittel der bodennahen Lufttemperatur stieg deutlich an, Gebirgsgletscher und Schneebedeckung haben im Mittel weltweit abgenommen und Extremereignisse wie Starkniederschläge und Hitzewellen werden häufiger. Mehr zu beobachteten Klimaänderungen erfahren Sie auf der Seite Beobachteter Klimawandel . Die Ausmaße und Auswirkungen der zukünftigen Klimaänderungen können nur durch Modellrechnungen nachgebildet werden, da vielfältige und komplexe Wechselwirkungen berücksichtigt werden müssen. Durch die Modellierung verschiedener denkbarer Szenarien lassen sich mögliche zu erwartende Klimaänderungen für das 21. Jahrhunderts ableiten. Auf der Seite Zu erwartende Klimaänderungen bis 2100 können Sie sich über mögliche Entwicklungen informieren. Die Themen Klimawandel und Klimaänderung sind sehr komplex und uns erreichen daher regelmäßig Fragen zu grundsätzlichen Hintergründen des Klimawandels. Auf der Seite Häufige Fragen zum Klimawandel haben wir unsere Antworten auf häufig gestellt Fragen (FAQs) für Sie zusammengestellt. Obwohl ein breiter wissenschaftlicher Konsens über die anthropogene Klimaänderung besteht, werden in der öffentlichen Diskussion immer wieder Zweifel gestreut. Über Bücher, Zeitschriften, Fernsehsendungen, das Internet und die sozialen Medien werden Informationen verbreitet, die veraltet, unvollständig, aus dem Zusammenhang gegriffen und/oder falsch sind. Auf der Seite Klimawandel-Skeptiker setzen wir uns zunächste grundsätzlich mit Klimawandel-Skepsis auseinander und nehmen auf der Unterseite Antworten des UBA auf populäre skeptische Argumente skeptische Thesen genauer unter die Lupe. Die meisten Menschen denken an eine allmähliche Erwärmung des Klimas, wenn sie den Begriff „anthropogene Klimaänderung” hören. Es ist jedoch auch möglich, dass besonders starke oder sogar abrupte Klimaänderungen einsetzen. Derartige Prozesse sind mit kritischen Schwellen im Klimasystem , sogenannten Kipp-Punkten, verbunden. Bereits geringe Änderungen im Klimasystem können bewirken, dass Kipp-Punkte erreicht werden, in deren Folge sich das Klima stark ändert. In unserem Hintergrundpapier Kipp-Punkte im Klimasystem erhalten Sie dazu ausführliche Informationen.
SRM soll die globale Erwärmung durch die Erhöhung der Albedo der Erde maskieren, zum Beispiel durch das Einbringen von Aerosolen in die Stratosphäre. Dies würde das gesamte Klimasystem verändern und damit weitreichende Auswirkungen auf alle Lebensbereiche haben. Die Risiken für Geopolitik, Klimaschutz , Ökosysteme, Gerechtigkeit, Ernährungssicherheit und Wasserverfügbarkeit werden in dieser Infografik dargestellt. Veröffentlicht in Poster.
Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024
Der vorliegende Bericht enthält eine umfassende Meta-Analyse zur Rolle von Lachgasquellen und -senken im globalen Klimasystem und bietet eine detaillierte Bilanzierung der weltweiten natürlichen und anthropogenen N 2 O-Emissionen. Anhand präziser Daten des „Global Carbon Project“ werden Herausforderungen und Ansätze zur Reduzierung dieser Emissionen und potenzielle Minderungsstrategien aufgezeigt. Gestützt auf aktuelle Forschungen und die Berichte des IPCC bietet diese Studie damit einen Einblick in die komplexe Dynamik von Lachgas als dritthäufigstem Treibhausgas in der Atmosphäre und zeigt auf, dass trotz der Zunahme der globalen N 2 O-Emissionen um fast 35% seit 1980, die konsequente Umsetzung von Minderungsmaßnahmen die Lachgasemissionen deutlich senken könnte und damit einen entscheidenden Beitrag zur Bekämpfung des Klimawandels geleistet werden könnte. Veröffentlicht in Texte | 46/2024.
Dieses Factsheet fasst die Ergebnisse und den Inhalt des Hintergrundpapiers zum Vorhaben „Kippunkte und kaskadische Kippdynamiken im Klimasystem – Erkenntnisse, Risiken sowie klima- und sicherheitspolitische Relevanz“ zusammen. Es bietet damit einen kompakten Überblick aller relevanten Aspekte von Kippelementen, -punkten und möglicher Kaskadeneffekte, die bei der Diskussion und Ausgestaltung nationaler, europäischer und internationaler Klimapolitik berücksichtigt werden müssten. Veröffentlicht in Fact Sheet.
Diese Publikation verdeutlicht die dramatischen Auswirkungen des fortschreitenden Klimawandels auf einzelne Komponenten des Erdsystems. Im Fokus stehen Kippelemente – sensible Bereiche, die bei Überschreitung kritischer Schwellen irreversible Veränderungen auslösen können. Von entscheidender Bedeutung sind der Grönländische und Westantarktische Eisschild, der Amazonas-Regenwald, die Ozeanische Zirkulation im Nordatlantik und Korallenriffe. Die Analyse betont, dass Selbstverstärkungsmechanismen zwischen diesen Elementen zu raschen, nicht umkehrbaren Veränderungen führen können. Politisches Handeln ist dringend geboten, da bisherige Klimaschutzmaßnahmen das Überschreiten dieser kritischen Punkte nicht ausreichend verhindern. Der Text unterstreicht die sicherheitspolitischen Implikationen und plädiert für eine internationale Zusammenarbeit, um diese Risiken auf globaler Ebene zu adressieren und zu bewältigen. Veröffentlicht in Climate Change | 08/2024.
Emissionen der Landnutzung, -änderung und Forstwirtschaft Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels Photosynthese gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere boreale Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), Aerosole oder Vorläufersubstanzen von Treibhausgasen aus der Atmosphäre entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, Landnutzungsänderung und Forstwirtschaft“ (kurz LULUCF ) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der Landnutzung entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische Biomasse, Totholz, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor LULUCF zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools Biomasse (69,6%), mineralische Böden (21,8 %) und Totholz (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich Landnutzung , Landnutzungsänderung und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, Dürre und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im LULUCF -Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und NMVOC ) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen Biomasse sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach Landnutzungsänderung sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich Landnutzung , Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die anthropogen bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes Treibhausgas in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. " Treibhausgas -Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: Emission aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den LULUCF -Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t CO2 -Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das BMUV hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft ( BMEL ) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die Treibhausgas -Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).
This factsheet summarizes the results and content of the background paper on the project "Tipping points and cascading tipping dynamics in the climate system - findings, risks and relevance for climate and security policy". It thus offers a compact overview of all relevant aspects of tipping elements, tipping points and possible cascading effects that need to be taken into account when discussing and designing national, European and international climate policy.
This fact sheet summarizes the results and content of the status report from the project “Meta-analysis - Global nitrous oxide/N₂O-sources: Inventories, trends, consideration in IPCC scenarios”. The properties of nitrous oxide (N₂O) as a greenhouse gas with an impact on the climate and the different methods for accounting of nitrous oxide sources and sinks will be briefly described. Additionally, the quantitative development of various anthropogenic and natural sources on a global and regional level is illustrated. Ultimately, options for reducing anthropogenic nitrous oxide emissions are identified.
Origin | Count |
---|---|
Bund | 464 |
Land | 13 |
Type | Count |
---|---|
Ereignis | 4 |
Förderprogramm | 419 |
Text | 41 |
unbekannt | 13 |
License | Count |
---|---|
geschlossen | 54 |
offen | 423 |
Language | Count |
---|---|
Deutsch | 421 |
Englisch | 136 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 5 |
Dokument | 25 |
Keine | 243 |
Unbekannt | 1 |
Webseite | 218 |
Topic | Count |
---|---|
Boden | 396 |
Lebewesen & Lebensräume | 381 |
Luft | 477 |
Mensch & Umwelt | 476 |
Wasser | 387 |
Weitere | 473 |