Das Unternehmen Lindner NORIT GmbH & Co. KG produziert am Standort Dettelbach, als Teil der Lindner Group, Gipsfaserplatten. Diese Gipsfaserplatten werden auf einer Fläche von 58.000 Quadratmeter für den Einsatz als Doppel- und Hohlraumboden, als Trockenestrich und als Trockenbauplatte für viele Sonderanwendungen produziert und durch Fräsen und die Applikation von Belägen veredelt. Gips ist im Bau- und Sanierungswesen ein massenrelevantes Material, vor allem im sogenannten Trockenbau. Derzeit werden 40 Prozent des Gipsbedarfs in Deutschland (9 Mio. Tonnen pro Jahr) durch Naturgips gedeckt und 60 Prozent durch sog. REA-Gips aus der Rauchgasentschwefelung von Kohlekraftwerken. Mit dem Ausstieg aus der Kohleverstromung wird dieser Anteil in den nächsten Jahren stark zurückgehen. Umso wichtiger wird das Recycling von gipshaltigen Baustoffen im Produktions- und Rückbaubereich. Für das Recycling von Gips stehen im Allgemeinen gipshaltige Abfälle aus dem Rückbau, der Verarbeitung auf Baustellen (Ausschuss und Verschnittreste) und aus der Produktion zur Verfügung. Das sind Gipskartonplatten, Gipsfaserplatten und sonstige gipshaltige Abfälle (Vollgipsplatten, gipsbasierte Estriche etc.). Nach dem bisherigen Stand der Technik werden Gipskartonplatten in Trockenaufbereitungsanlagen verarbeitet. In diesen Anlagen wird der Karton vom Gips getrennt und der Gips zerkleinert. Die separierten Kartonanteile sind aufgrund der Gipsanhaftungen nicht sinnvoll verwertbar. Der separierte und zerkleinerte Gips ist nach üblicher trockener Kalzinierung zu Stuckgips aufgrund des hohen Wasseranspruches nur in untergeordneten Mengenanteilen z. B. in Gipskartonplattenanlagen verwertbar. Gipsfaserplatten sind in diesen trockenen Gipskartonaufbereitungsanlagen bislang nicht verwertbar. Mit dem von der Lindner NORIT GmbH & Co. KG innovativen nasstechnischen Verfahren können dagegen auch Gipskartonplatten vollständig, d. h. Gips und Karton zu 100 Prozent, der relevante Materialstrom der Gipsfaserplatten und weitere komplexer zusammengesetzte gipshaltige Abfälle – unter anderem auch Nassabfälle wie Gips-Sedimentationsschlämme aus der Abwasseraufbereitung oder Gipsstäube aus der Produktion – sehr energiearm aufbereitet und thermisch reaktiviert werden. Ein großer Vorteil ist der hohe Anteil an gipshaltigen Abfallstoffen am gesamten Rohstoffmix, der mit diesem Verfahren z. B. bei der Produktion von Gipsfaserplatten möglich ist. Ziel des Projektes ist, mittels der geplanten, großtechnischen Demonstrationsanlage jährlich bis zu 51.350 Tonnen an recycelbaren Gipsabfällen in den Produktionskreislauf zurückzuführen. Durch die Rückführung dieser Abfälle in den Produktionsprozess können rund 44.000 Tonnen abbindefähiger Gips aus gipshaltigen Abfällen zurückgewonnen und damit die gleiche Menge an Primärrohstoff eingespart werden. Die anlagenbedingte Treibhausgasminderung wird bei der Gesamtmenge an recycelten Rohstoffen mit jährlich ca. 5.270 Tonnen CO 2 -Äquivalenten angesetzt. Die Übertragbarkeit der angestrebten Technik ist für alle Anlagen zum Recycling von Gipskartonplatten, Gipsfaserplatten und Vollgipsplatten sowie den in der Produktion anfallenden Gipsstäuben und den in der Abwasserbehandlung anfallenden Gipssedimenten gegeben – sowohl für die Verarbeitung von Produktionsabfällen, als auch von Materialien aus dem Rückbau von Gebäuden. Branche: Glas und Keramik, Verarbeitung von Steinen und Erden Umweltbereich: Ressourcen Fördernehmer: Lindner NORIT GmbH & Co. KG Bundesland: Bayern Laufzeit: seit 2022 Status: Laufend
Drei Veranstaltungen des Berliner Programms ImpulsKlimaschutz bilden die aktuellen energie- und klimapolitischen Diskussionen auf Landesebene ab. Die ENERGIETAGE 2025 finden vom 5. bis 7. Mai 2025 digital und vom 26. bis 28. Mai 2025 in Präsenz in Berlin statt und bilden auch die energie- und klimapolitischen Diskurse der Bundesebene ab. Weitere Informationen Berliner ENERGIETAGE 2025 – Programm und Anmeldung Jetzt bewerben für renommierten Klimaschutzpartnerpreis Berlin Haben Sie ein Klimaschutzprojekt in Berlin realisiert oder geplant? Unternehmen, Bürger und öffentliche Einrichtungen können sich mit Projekten zu Klimaschutz, Klimaanpassung, Ressourcenschonung und Nachhaltigkeit auf www.klimaschutzpartner-berlin.de bis zum 25. April 2025 bewerben. Nutzen Sie die Chance, am 27. Mai auf den Berliner Energietagen sichtbar zu werden und an einem exklusiven Treffen mit den Partnern teilzunehmen. Werden Sie „Klimaschutzpartner des Jahres 2025“ und sichern Sie sich den mit 1.000 Euro dotierten Publikumspreis! Bild: SenMVKU Wärmewende im Land Berlin Klimaschutz braucht eine Wärmewende! Berlin treibt den Kohleausstieg und eine gesamtstädtische Wärmeplanung voran. Der Einsatz erneuerbarer Energien zum Wärmeenergiebedarf ist zwingend notwendig. Weitere Informationen Bild: SenUMVK / travelwitness - Fotolia.com Klimaschutzpolitik in Berlin Der Berliner Senat verfolgt das Ziel, Berlin bis zum Jahr 2045 zu einer klimaneutralen Stadt zu entwickeln, und strebt an, die Kohlendioxidemissionen um 95 Prozent bezogen auf das Basisjahr 1990 zu reduzieren. Weitere Informationen Bild: Nadine Kunath Klimaschutz in der Umsetzung Berlin wird sich in den nächsten Jahrzehnten zu einer klimaneutralen Stadt entwickeln, eine wichtige Grundlage ist dabei das Berliner Energie- und Klimaschutzprogramm, aber auch die öffentliche Hand engagiert sich als Vorreiter im Bereich des Klimaschutzes. Weitere Informationen Bild: alexeynovikov / Depositphotos.com Anpassung an den Klimawandel Um den Auswirkungen des Klimawandels vorausschauend zu begegnen, hat Berlin ein Klimafolgenmonitoring eingerichtet und ein wissenschaftlich fundiertes Programm zur Klimaanpassung beschlossen. Weitere Informationen Bild: SenUVK Förderung im Rahmen der BEK-Umsetzung Zur Unterstützung der Strategien und Maßnahmen im Klimaschutz sind mehrere Förderprogramme bereits vorhanden, weitere in Bearbeitung. Weitere Informationen Bild: gena96 - Fotolia.com Publikationen Zur Unterstützung der Strategien und Maßnahmen im Klimaschutz sind mehrere Förderprogramme bereits vorhanden, weitere in Bearbeitung. Weitere Informationen
Bild: SenMVKU, Geoportal Berlin Erste Ergebnisse der Wärmeplanung (2024) Berlin legt erste Ergebnisse der Wärmeplanung vor. Eine Karte mit Adresssuchfunktion zeigt Gebiete der dezentralen Wärmeversorgung auf. Weitere Informationen Bild: SenMVKU Häufige Fragen und Antworten Wichtige Fragen und Antworten zur Berliner Wärmwende, zum Wärmeplanungsprozess und zu Zuständigkeiten können Sie hier im Überblick nachlesen. Weitere Informationen Bild: SenMVKU Gesamtstädtische Wärmeplanung für das Land Berlin Ein wichtiger Baustein bei der Umsetzung der Wärmewende ist die gesamtstädtische Wärmeplanung, die aktuell von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt erarbeitet wird. Weitere Informationen Bild: Gerrit Hause – Innovation City Management GmbH Neue Wärmenetze in Bestandsquartieren – Ein Online-Handbuch Die Wärmewende im Gebäudebereich bildet den größten Hebel der Energiewende. Wärmenetze spielen eine Schlüsselrolle bei dem effizienten Umstieg auf Erneuerbare Energie und Abwärme. Hier finden Sie Informationen zu den organisatorischen, technischen und wirtschaftlichen Aspekten, die bei der Gestaltung, Planung und Umsetzung eines Nahwärmenetzes im Land Berlin eine Rolle spielen. Weitere Informationen Bild: SenMVKU Wärmestrategie für das Land Berlin Berlin will das Ziel der Klimaneutralität bis spätestens 2045 erreichen. Eine wesentliche Schlüsselrolle dafür spielt die Wärmewende. Mit welchen Umsetzungsschritten und Instrumenten die Wärmewende zügig gelingt, wird im Rahmen einer Wärmestrategie erarbeitet. Weitere Informationen Bild: Vattenfall, Sabine Wenzel Machbarkeitsstudie „Kohleausstieg und nachhaltige Fernwärmeversorgung Berlin 2030“ Berlin will spätestens 2045 klimaneutral sein. Dafür muss die bisher überwiegend auf fossilen Brennstoffen basierende Energieversorgung im Land umgestellt werden. Weitere Informationen Bild: Jürgen Fälchle/fotolia.com, vovan/fotolia.com Erneuerbare-Energien-Wärmegesetz (EEWärmeG) und EEWärmeG-Durchführungsverordnung (EEWärmeG-DV Bln) Durch das GEG werden EnEG, EnEV und EEWärmeG in einem Gesetz zusammengeführt. Es wird ein einheitliches, aufeinander abgestimmtes Regelwerk für die energetischen Anforderungen an Neubauten, an Bestandsgebäude und an den Einsatz erneuerbarer Energien zur Wärme- und Kälteversorgung von Gebäuden geschaffen. Weitere Informationen
Willingmann bei offiziellem Auftakt für Forschungsvorhaben DiP 105 Mio. Euro für Strukturwandel-Projekt zur Stärkung der Bioökonomie im Landessüden Der Süden Sachsen-Anhalts soll sich zur Modellregion für nachhaltige Bioökonomie entwickeln. Dieses Ziel verfolgt das Verbundvorhaben „Digitalisierung pflanzlicher Wertschöpfungsketten“ (DiP), das vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Strukturwandels in zwei Runden mit bis zu 105 Millionen Euro gefördert wird. Über den Stand der 19 Projekte der ersten Förderphase informierten sich Sachsen-Anhalts Wissenschaftsminister Prof. Dr. Armin Willingmann und BMBF-Staatssekretär Dr. Karl Eugen Huthmacher heute bei der offiziellen Auftaktveranstaltung. Die Martin-Luther-Universität Halle-Wittenberg (MLU) koordiniert das voraussichtlich bis 2032 laufende Vorhaben mit mehr als 40 Partnern aus Wissenschaft und Wirtschaft. Wie sehen Ackerbau und Agrarwirtschaft in Sachsen-Anhalt künftig aus? Welche Feldfrüchte wachsen auf den hochwertigen, aber immer trockeneren Böden? Welche bislang ungenutzten, nachhaltigen Potenziale gibt es in der Bioökonomie? Und: Welche Chancen bieten digitale Technologien, den Strukturwandel in der Region zu gestalten? Mit diesen und weiteren Fragen beschäftigen sich die aktuell 19 Projekte des DiP-Verbunds. Im Fokus stehen dabei forschungsbasierte, innovative Ansätze für regionale Wertschöpfungsketten in Landwirtschaft, Ernährungswirtschaft, grüner Chemie und Gesundheitswirtschaft. Willingmann betont: „Das Kürzel DiP steht für ein weiteres Leuchtturmprojekt, mit dem wir den Strukturwandel im Zuge des Kohleausstiegs gestalten und Sachsen-Anhalt zudem bei einem absoluten Zukunftsthema nach vorn bringen. Das Vorhaben vereint Notwendigkeit und Chancen: Durch den fortschreitenden Klimawandel mit all seinen Auswirkungen braucht insbesondere die Landwirtschaft kluge Lösungen. Gleichzeitig bietet der weitere Ausbau der Bioökonomie mit Fokus auf Digitalisierung auch große wirtschaftliche Potenziale für unser Land. Gerade aufgrund seiner leistungsstarken Forschungslandschaft rund um Kulturpflanzen ist Sachsen-Anhalt der ideale Standort, um mit DiP Zukunftschancen wachsen zu lassen.“ Huthmacher ergänzt: „Durch den Kohleausstieg stehen Regionen wie das Mitteldeutsche Revier vor großen Herausforderungen. Deshalb fördern wir genau dort den Aufbau der ‚Modellregion Bioökonomie‘ in den nächsten Jahren mit bis zu 105 Millionen Euro aus dem Investitionsgesetz Kohleregionen des Bundes. Dabei setzen wir auf die Stärken der Region: Spitzenforschung, eine leistungsfähige Agrarwirtschaft und eine starke chemische Industrie. Die gezielte Förderung im Bereich der ‚Digitalisierung pflanzlicher Wertschöpfungsketten‘ soll innovative Technologien hervorbringen und zugleich die regionale Wirtschaft stärken und vor Ort attraktive Arbeitsplätze schaffen. Das stärkt langfristig die wirtschaftliche Entwicklung und kommt direkt bei den Menschen vor Ort an.“ „Der DiP-Ansatz fußt auf jahrzehntelanger Spitzenforschung rund um die Züchtung und den Anbau von Kulturpflanzen und um die Pflanzenbiochemie, zu denen in Sachsen-Anhalt vielfältige Kompetenzen gebündelt sind. Die Potenziale pflanzlicher Wertschöpfung sind enorm und können durch die Digitalisierung in der Züchtung, auf dem Acker oder in der Entwicklung biotechnologischer Prozesse noch verstärkt werden“, unterstreicht DiP-Sprecher Prof. Dr. Klaus Pillen von der MLU und fügt hinzu: „In der Region finden wir beste Voraussetzungen sowie führende Wirtschaftspartner, um bestehende Wertschöpfungsketten beispielgebend zu erweitern und neue aufzubauen.“ Drei Forschungs-Leuchttürme im Fokus Die Arbeit der Projekte orientiert sich an drei sogenannten Leuchttürmen: Im ersten Leuchtturm dreht sich alles um Wertschöpfungsketten landwirtschaftlicher Kulturpflanzen. Die Projekte arbeiten an klimaresistenten Kulturpflanzen, zum Beispiel Weizen und Zuckerrüben. Erforscht werden zum Beispiel neue Verwertungsoptionen für Pflanzenreste und Wertstoffe als klimaneutraler Ersatz für erdölbasierte Produkte. Der zweite Leuchtturm nimmt nachhaltige und klimaresiliente Pflanzenanbausysteme in den Blick. In Kooperation mit Landwirten, Kommunen und weiteren Unternehmen geht es zum Beispiel darum, mit Hilfe von künstlicher Intelligenz und Drohnen innovative Lösungen für die Agrarwirtschaft in der Region zu entwickeln. So sollen zum Beispiel Wasser effizienter genutzt, die Bodengesundheit gefördert und der Einsatz von Düngemitteln reduziert werden. Die Projekte im dritten Leuchtturm arbeiten zu neuen Wertschöpfungsketten für sogenannte Sonderkulturen. Dazu zählen in Sachsen-Anhalt vor allem Kräuter- und Arzneipflanzen sowie Obstbäume und -sträucher. Erprobt und entwickelt werden sollen Nutzungsmöglichkeiten für klimaresistente Kräuter- und Arzneipflanzen sowie für Reststoffe aus der Verarbeitung von Obst und Feldfrüchten. Diese haben große Potenziale für die Lebensmittel-, Pharma- und Kosmetikindustrie. Das BMBF fördert den DiP-Verbund im Rahmen der Nationalen Bioökonomiestrategie sowie im Rahmen der Umsetzung des Strukturstärkungsgesetzes Kohleregionen im Mitteldeutschen Revier in Sachsen-Anhalt. Das Land hatte in seinem Strukturentwicklungsprogramm die Bioökonomie und die Digitalisierung als wesentliche Treiber identifiziert. Die Projekte von DiP greifen beide Felder auf und kombinieren sie mit dem Ziel, die Grundlagen für eine Transformation hin zu einer klimaneutralen und nachhaltigen regionalen Wirtschaft mit hochwertigen, attraktiven Arbeitsplätzen zu legen. Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Bei der Jahrestagung des Verbands kommunaler Unternehmen (VKU) in Berlin hat Sachsen-Anhalts Energieminister Prof. Dr. Armin Willingmann am heutigen Dienstag das Sondierungspapier von Union und SPD begrüßt. „Auch wenn Koalitionsverhandlungen noch geführt und eine Regierung gebildet werden muss, steht für mich außer Frage, dass Entlastungen bei den Strompreisen auf die Agenda für die ersten 100 Tage gehören“, betonte Willingmann. „Energie muss für Verbraucherinnen und Verbraucher sowie für die Industrie bezahlbar bleiben. Deshalb begrüße ich die Maßnahmen im Sondierungspapier, Stromsteuer und Netzentgelte zu senken. Ebenso wichtig ist der Bau neuer Kraftwerke.“ Neben Willingmann waren als Redner beim VKU-Verbandstag der stellvertretende CDU-Bundesvorsitzende Andreas Jung in Vertretung für CDU-Chef Friedrich Merz und Bundesumweltministerin Steffi Lemke geladen. Im Sondierungspapier haben sich Union und SPD auf eine schnelle Entlastung von fünf Cent pro Kilowattstunde verständigt. Hierfür soll die Stromsteuer von aktuell 2,05 Cent auf das europäische Mindestmaß von 0,05 Cent pro Kilowattstunde gesenkt werden. Zudem sollen die Übertragungsnetzentgelte halbiert werden. „Gerade die Netzentgelte waren für Verbraucherinnen und Verbraucher in Sachsen-Anhalt in den vergangenen Jahren eine erhebliche Belastung. Deshalb setze ich mich schon seit Jahren für eine Senkung der Entgelte ein. Es ist gut, dass hier jetzt endlich Bewegung hineinkommt“, so Willingmann. Ursprünglich hatte der Bund schon früher eine Senkung geplant, wollte 5,5 Milliarden Euro für das Jahr 2024 bereitstellen. Durch das Bundesverfassungsgerichtsurteil zu Sondervermögen im November 2023 fehlten dem Bund dafür jedoch dafür die notwendigen Mittel. Eile hält der Minister auch beim Thema Kraftwerksstrategie für geboten. Union und SPD haben sich im Sondierungspapier darauf verständigt, dass 20 Gigawatt Gaskraftwerksleistung bis 2030 ausgeschrieben werden sollen. „Es steht außer Frage, dass wir Gaskraftwerke als Brückentechnologie in den nächsten Jahren benötigen. Allerdings ist inzwischen viel Zeit bei der Entwicklung der Kraftwerksstrategie verstrichen. Die neue Strategie darf jetzt nicht noch monatelang verhandelt werden. Wir brauchen hier zügig einen Beschluss, da sonst der Zeitplan für den Kohleausstieg bis 2038 ins Wanken geraten könnte“, warnte Willingmann. „Zu begrüßen ist der Hinweis im Sondierungspapier, dass die Kraftwerke vorrangig an bereits bestehenden Standorten entstehen sollen, denn das bietet auch für Standorte in Sachsen-Anhalt Perspektiven.“ Bekenntnis zur Wasserstoffwirtschaft im Sondierungspapier Willingmann begrüßt im Weiteren, dass im Sondierungspapier ein Bekenntnis zum Aufbau der Wasserstoffwirtschaft enthalten ist. „Nachdem Friedrich Merz zeitweise an der Zukunft der Wasserstoffwirtschaft gezweifelt hat, ist es nunmehr ein gutes Signal, dass die für Sachsen-Anhalt bedeutsame Zukunftsbranche ausdrücklich im Papier zu den strategischen Industrien gezählt wird, die weiter gestärkt werden sollen“, erklärte der Minister. „Das klare Bekenntnis ist auch eine Ermutigung für Unternehmen, Wasserstoffprojekte jetzt weiter entschlossen voranzutreiben.“ Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Weltneuheit – made in Sachsen-Anhalt! Das 2009 gegründete Unternehmen Skeleton Materials wird im Chemiepark Bitterfeld-Wolfen die weltweit erste Fabrik zur industriellen Produktion von „Curved Graphene“ errichten. Das neuartige Material ermöglicht deutlich leistungsstärkere Energiespeicher und ist in der Herstellung zudem erheblich umweltschonender als herkömmliches Graphit, das derzeit fast ausschließlich aus chinesischen Raffinerien stammt. Das Energieministerium unterstützt die innovative Investition mit 18,3 Millionen Euro. Den Förderbescheid hat Minister Prof. Dr. Armin Willingmann am heutigen Montag an den Geschäftsführer von Skeleton Materials, Dr. Linus Froböse, überreicht. Insgesamt will das Unternehmen nach eigenen Angaben rund 42 Millionen Euro investieren und zunächst etwa 35 neue Arbeitsplätze schaffen. Willingmann betonte: „Energiespeicher sind eine Schlüsseltechnologie für die Energiewende. Wer hier technologisch die Nase vorn hat, setzt Maßstäbe für die eigene Wettbewerbsfähigkeit und darüber hinaus für unseren notwendigen Weg hin zur Klimaneutralität. Ich freue mich außerordentlich, dass künftig auch in vielen Hochleistungs-Energiespeichern ein Stück Sachsen-Anhalt steckt. Damit stärken wir unsere Zugkraft als Land der Zukunftstechnologien.“ Dr. Linus Froböse fügte hinzu: „Investitionen in Materialentwicklung waren bei Skeleton schon immer ein zentraler Schwerpunkt: Die Skalierung der Produktion von ‚Curved Graphene‘ im industriellen Maßstab ist das Ergebnis von zwei Jahrzehnten Entwicklung. Die Förderung durch das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt zeigt, dass Deutschland und Europa bereit sind, unsere eigene Industrie sowie die europäische Rohstoff- und Energieunabhängigkeit voranzutreiben. Unsere Skalierung der Produktion wird es uns ermöglichen, Kunden in Schlüsselindustrien weltweit zu bedienen, einschließlich in den Bereichen Netzstabilität und KI-Rechenzentren, während wir gleichzeitig Industrie und Arbeitsplätze vor Ort ausbauen.” Für moderne Lithium-Ionen-Batterien und andere Energiespeicher werden auch Kohlenstoff-Rohmaterialien benötigt. Derzeit wird vor allem Graphit genutzt, das weit überwiegend aus Raffinerien in China stammt. Im Vergleich dazu ermöglicht das von Skeleton Materials entwickelte und patentierte „Curved Graphene“ nach Unternehmensangaben die Produktion von Energiespeichern mit deutlich höherer Leistungsdichte – und ist daher vor allem für die Anwendung in Sektoren interessant, die vergleichsweise schwer zu dekarbonisieren sind. Diese Hochleistungs-Energiespeicher – so genannte Superkondensatoren – kommen in verschiedenen Bereichen zum Einsatz, von der Automobilindustrie über die Energieversorgung bis hin zum Schwerlasttransport oder der Satellitentechnologie. Die Besonderheit von „Curved Graphene“ besteht darin, dass die glatte Oberfläche des Kohlenstoffs gekrümmt wird – ähnlich einem zerknüllten Blatt Papier. Dies erhöht sowohl die Leistung als auch Lebensdauer der Superkondensatoren. Gleichzeitig entstehen bei der Produktion von „Curved Graphene“ im Vergleich zu Graphit gut zehnmal weniger CO2-Äquivalente sowie keine schädlichen Abgase wie etwa Kohlenstoffmonoxid und Stickoxide. Hinzu kommt: Vier der fünf Ausgangsstoffe für die Herstellung von „Curved Graphene“ kommen direkt aus dem Chemiepark Bitterfeld-Wolfen, das fünfte aus Europa. Dadurch gibt es keine Abhängigkeit von Lieferanten außerhalb Europas. Skeleton ist auf die Produktion von Superkondensatoren mit erhöhter Energiedichte auf Basis von karbid-basiertem Kohlenstoff spezialisiert. Für die Entwicklung von „Curved Graphene“ erhielten drei Skeleton-Forscher 2022 den „European Inventor Award“. 2019 wurde das Unternehmen zudem mit dem „Hugo-Junkers-Preis für Forschung und Innovation aus Sachsen-Anhalt“ ausgezeichnet. Die Förderung stammt aus dem Programm „Ressourceneffizienz KMU“ und wird aus dem Europäischen „Fonds für einen gerechten Übergang“ (Just Transition Fund – JTF) finanziert. Damit soll der Strukturwandel in den vom Braunkohleausstieg betroffenen Regionen weiter vorangebracht werden. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Threads, Bluesky, Mastodon und X (ehemals Twitter). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950 Fax: +49 391 567-1964 E-Mail: PR@mule.sachsen-anhalt.de
Die EnBW Energie Baden-Württemberg AG (EnBW) plant am Kraftwerksstandort Altbach/Deizisau, Industriestraße 11, 73776 Altbach, infolge des beschlossenen Kohleausstiegs die Errichtung und den Betrieb eines erdgasbefeuerten Gas- und Dampfturbinenkraftwerks (GuD-Kraftwerk, Bezeichnung: HKW 3) zur Erzeugung von Strom und Fernwärme in Kraft-Wärme-Kopplung sowie eine mit Erdgas befeuerte Heißwasserkesselanlage (HWKA) bestehend aus drei Heißwasserkesseln (Projektname: „Fuel-Switch Altbach“). Ziel des Projekts ist es, die Fernwärmeversorgung CO2-ärmer und zukunftssicher zu gestalten sowie weiterhin zur Netzstabilität beizutragen. Die Inbetriebnahme ist für 2026 vorgesehen. Das GuD-Kraftwerk hat eine Feuerungswärmeleistung (FWL) von max. 1.140 MW und wird primär mit Erdgas der öffentlichen Gasversorgung betrieben, wobei es bereits perspektivisch für die Mitverbrennung von Wasserstoff ausgelegt ist. Die Heißwasserkesselanlage hat eine FWL von insgesamt 135 MW (je 45 MW) und wird ebenfalls primär mit Erdgas der öffentlichen Gasversorgung betrieben.
Projektförderung Das Vorhaben “Umsetzung einer klimaverträglichen Biomasseverwertung” wird im Berliner Programm für Nachhaltige Entwicklung (BENE) gefördert aus Mitteln des Europäischen Fonds für Regionale Entwicklung und des Landes Berlin (Förderkennzeichen 1161-B5-0). Die aktuelle einfache Kompostierung von Grünabfällen aus Berlin (maßgeblich Straßenlaub der BSR und Mähgut der Grünflächenpflege) weist trotz Nutzen des Kompostes deutliche Emissionen an Treibhausgasen auf, rd. 7.600 Mg CO 2 -Äq. pro Jahr, zudem geht der Energieinhalt dieser Abfälle verloren. In dem vom Berliner Abgeordnetenhaus beschlossenen Abfallwirtschaftskonzept 2020 bis 2030 werden diese Treibhausgas-Emissionen aus der bisherigen Einfachkompostierung angesprochen und zum Fazit geführt: „Die Behandlung von Berliner Grasschnitt- und Laubabfällen in solchen Einfachkompostierungsanlagen ist daher bis Ende 2022 zu beenden.” Auch das Berliner Energie- und Klimaschutzprogramm des Landes Berlin fordert, diese Abfälle vollständig einer höherwertigen Verwertung zuzuführen. In den vorhergehenden Jahren wurden von der Senatsumweltverwaltung verschiedene technische Möglichkeiten dieser höherwertigen Verwertung untersucht. Für die höherwertige, klimaentlastende Verwertung der genannten Grünabfälle wurden die Vergärung, die direkte Verbrennung, die Aufbereitung in Hausmüll-Behandlungsanlagen und die Hydrothermale Karbonisierung (HTC) untersucht. Teils aus verfahrenstechnischen, teils aus Kostengründen konnte sich bislang keines dieser Verfahren durchsetzen. Im vorliegenden Forschungsvorhaben wurde der Weg untersucht, die Grünreste über ein mechanisches Pressverfahren zu Brennstoff aufzubereiten und diesen dann in bestehenden Kraftwerken als Kohleersatz einzusetzen. Dazu wurden in einer bereits bestehenden Aufbereitungsanlage der Firma florafuel AG für Laub und Gras in der Nähe von München große Mengen an Brennstoff produziert und für großtechnische Verbrennungsversuche in Berlin eingesetzt. In dieser Aufbereitung werden die Grünreste zunächst zerkleinert und dann gewaschen, um Inertstoffe und verbrennungsschädliches Chlor und Kalium auszutragen. Danach wird der Faserschlamm mechanisch entwässert, nachfolgend getrocknet und zu Pellets oder Briketts verpresst. Dieser Brennstoff ist in seinen physikalisch/chemischen Eigenschaften regulären Holzbrennstoffen sehr ähnlich. Die Aufbereitung selbst arbeitet nach langjähriger Betriebserfahrung weitgehend sicher. Daher soll in Berlin eine erste Demonstrationsanlage von rd. 12.000 Mg/a Durchsatz errichtet werden. Im Projekt war die sehr wichtige Frage zu klären, ob der erzeugte Brennstoff in bestehenden Berliner Kraftwerken verarbeitbar ist und dabei klimabelastende Kohle ersetzen kann. Dazu wurden in den Kohle-Kraftwerken der BTB, von Vattenfall und im Fernheizwerk Neukölln insgesamt über 150 Mg aufbereiteten Brennstoffs testweise verbrannt, in verschiedenen Feuerungsverfahren (Wanderrost und Wirbelschicht). Die Ergebnisse der Verbrennungs-Großversuche zeigen, dass sich die Grünrest-Brennstoffe zwar nicht allein, aber in Mischung mit anderen Brennstoffen in beiden Feuerungsverfahren gut verbrennen lassen. Das in den Versuchen begleitend aufgezeichnete Emissionsverhalten einer solchen Mischung erwies sich als unproblematisch. Allerdings neigt der Brennstoff bei mehrfachen Umlade- und Abwurfvorgängen zu relevanten Staubentwicklungen. Dies konnte durch die geänderte Brennstoff-Konfektionierung zwar deutlich reduziert werden, bildet aber eine noch weiter zu lösende Aufgabe. Die weitere Prüfung – eben auch über möglichst bald durchzuführende weitere Versuche – als Grundlage einer zugesagten Dauerabnahme der Bio-Brennstoffe wird durch die EVU, gerade auch im Hinblick auf zukünftige Standortkonzepte im Kontext Kohleausstieg fortgesetzt. Die Abnahme des Brennstoffs zunächst aus der Demonstrationsanlage ist die zentrale Voraussetzung für die erzielbare hohe Treibhausgas-Entlastung: Durch die Umlenkung aus der Kompostierung in diese energetische Verwertung kann eine spezifische THG-Reduzierung von rd. -460 kg CO 2 -Äq/Mg erreicht werden. Für die Gesamtmenge von rd. 102.000 Mg/a an Laub und Mähgut wäre damit eine jährliche THG-Entlastung von rd. -47.000 Mg CO 2 -Äq erzielbar. Das ist einerseits im Bereich der Abfallwirtschaft Berlins eine im Vergleich sehr hohe absolute Klima-Entlastung, andererseits liegt der spezifische Preis für die THG-Minderung im Bereich von 40 €/Mg CO 2 -Äq und damit im unteren Bereich alternativer Reduktionsmaßnahmen. Im Verlauf des Projektes ergab sich im Austausch mit dem CarboTip-Projekt (FU Berlin) eine ergänzende vorteilhafte Verwertungsmethode: Aufbereitete Mengen aus Laub und Mähgut werden zur pyrolytischen Erzeugung von Pflanzenkohle (langfristige Bindung des Kohlenstoffes im Boden) und Pyrolysegas als Erdgasersatz verwendet. Der Klimaeffekt ist ähnlich positiv wie beim Ersatz von Kohle im Kraftwerk, die CO 2 -Reduktionskosten sind ähnlich günstig.
Kraftwerke: konventionelle und erneuerbare Energieträger Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein. Kraftwerkstandorte in Deutschland Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das UBA stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung. In der Karte „Kraftwerke und Verbundnetze in Deutschland“ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke mit einer elektrischen Bruttoleistung ab 100 MW verzeichnet. Basis ist die Datenbank „Kraftwerke in Deutschland“ . Weiterhin sind die Höchstspannungsleitungstrassen in den Spannungsebenen 380 Kilovolt (kV) und 220 kV eingetragen. In der Karte „ Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland “ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke ab einer elektrischen Bruttoleistung von 50 MW bzw. mit einer Wärmeauskopplung ab 100 MW verzeichnet. Auch hier ist die Basis die Datenbank „Kraftwerke in Deutschland“ . Die Karte „Kraftwerke und Windleistung in Deutschland“ zeigt die installierte Windleistung pro Bundesland und die Kraftwerke ab 100 MW. Die Karte „Kraftwerke und Photovoltaikleistung in Deutschland“ vermittelt ein Bild des Zusammenspiels von Photovoltaikleistung und fossilen Großkraftwerken. Aus der Karte "Kraftwerksleistung in Deutschland" werden bundeslandscharf die jeweiligen Kraftwerksleistungen ersichtlich. Kraftwerke und Verbundnetze in Deutschland Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als PDF herunterladen Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Windleistung in Deutschland Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Photovoltaikleistung in Deutschland Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerksleistung in Deutschland Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke auf Basis konventioneller Energieträger Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt. In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der CO2 -Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus. Braunkohlenkraftwerke : Mit Einsetzen der „Kommission für Wachstum, Strukturwandel und Beschäftigung“ wurde der Prozess zum Ausstieg aus der Kohlestromerzeugung in Deutschland gestartet. Im Januar 2020 wurde im Rahmen des Kohleausstiegsgesetzes ein Ausstiegspfad für die Braunkohlestromerzeugung zwischen Bund, Ländern und beteiligten Unternehmen erarbeitet, welcher Entschädigungsregelungen für die Unternehmen und Förderung für die betroffenen Regionen enthält. Die Leistung von Braunkohlenkraftwerken als typische Grundlastkraftwerke lässt sich nur unter Energieverlust kurzfristig regeln. Sie produzieren Strom in direkter Nähe zu den Braunkohlenvorkommen im Rheinischen und Lausitzer Revier sowie im Mitteldeutschen Raum. Steinkohlenkraftwerke: Im Rahmen des Kohleausstiegs wird auch der Ausstieg aus der Steinkohle angestrebt. 2019 wurde bereits aus ökonomischen Gründen der Abbau von Steinkohle in Deutschland eingestellt. Im Gegensatz zur Braunkohle wird der Ausstieg aus der Steinkohle durch einen Auktionsmechanismus geregelt, der die Entschädigungszahlungen bestimmt. Steinkohlenkraftwerke produzieren Strom in den ehemaligen Steinkohle-Bergbaurevieren Ruhr- und Saarrevier, in den Küstenregionen und entlang der Binnenwasserstraßen, da hier kostengünstige Transportmöglichkeiten für Importsteinkohle vorhanden sind. (Weitere Daten und Fakten zu Steinkohlenkraftwerken finden sie in der Broschüre „Daten und Fakten zu Braun- und Steinkohle“ des Umweltbundesamtes.) Gaskraftwerke: Die Strom- und Wärmeerzeugung mit Gaskraftwerken erzeugt niedrigere Treibhausgasemissionen als die mit Kohlenkraftwerken. Des Weiteren ermöglichen sie durch ihre hohe Regelbarkeit und hohe räumliche Verfügbarkeit eine Ergänzung der Stromerzeugung aus erneuerbaren Energien. Dennoch muss zum Erreichen der Klimaziele die gesamte Stromerzeugung dekarbonisiert werden, etwa durch Umrüstung auf Wasserstoffkraftwerke. Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern Quelle: Umweltbundesamt Diagramm als PDF Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern Quelle: Umweltbundesamt Diagramm als PDF Tab: Braunkohlenkraftwerke in Deutschland gemäß Kohleausstiegsgesetz Quelle: UBA-Kraftwerksliste und BMWi Diagramm als PDF Kraftwerke auf Basis erneuerbarer Energien Im Jahr 2023 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden 18,5 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt 70 % höher als die vorherige Ausbauspitze aus dem Jahr 2011. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 168,4 GW (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“). Getragen wurde der Erneuerbaren-Zubau in den vergangenen vier Jahren vor allem von einem starken Ausbau der Photovoltaik (PV). Seit Anfang 2020 wurden mehr als 33 GW PV-Leistung zugebaut, davon mit 15,1 GW allein 45 % im Jahr 2023. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau in den Folgejahren zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich und übertraf im Jahr 2023 die Rekordjahre 2011 und 2012 deutlich. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde bereits im August des Jahres 2024 erreicht. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich etwa 20 GW zur Zielerreichung notwendig. Auch wenn das Ausbautempo bei Windenergie zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2023 wurden 3,3 GW neue Windenergie-Leistung zugebaut (2022: 2,4 GW; 2021: 1,6 GW). In den Jahren 2014 bis 2017 waren es im Schnitt 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 69,5 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig. Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential. Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der Themenseite „Erneuerbare Energien in Zahlen“ . Wirkungsgrade fossiler Kraftwerke Im Brutto-Wirkungsgrad ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider. Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen. Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig. Kohlendioxid-Emissionen Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden: Braunkohlen : Die spezifischen Kohlendioxid-Emissionen von Braunkohlenkraftwerken variieren je nach Herkunft des Energieträgers aus einem bestimmten Braunkohlerevier und der Beschaffenheit der mitverbrannten Sekundärbrennstoffe (siehe „Emissionsfaktoren eingesetzter Energieträger zur Stromerzeugung“). Mit mindestens 103.153 kg Kilogramm Kohlendioxid pro Terajoule (kg CO 2 / TJ) war der Emissionsfaktor von Braunkohlen im Jahr 2023 höher als der der meisten anderen Energieträger. Steinkohlen : Der Kohlendioxid-Emissionsfaktor von Steinkohlenkraftwerken betrug im Jahr 2023 94.326 kg CO 2 / TJ. Erdgas : Erdgas-GuD-Anlagen haben mit derzeit 56.221 kg CO 2 / TJ den geringsten spezifischen Emissionsfaktor fossiler Kraftwerke (abgesehen von Kokerei-/Stadtgas): Bei der Verbrennung von Erdgas entsteht pro erzeugter Energieeinheit weniger Kohlendioxid als bei der Verbrennung von Kohle. Weitere Entwicklung des deutschen Kraftwerksparks Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig. Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.
Angesichts der ökologischen Herausforderungen stellt sich die Frage, wie die mit dem Ausstieg aus der Förderung und Verstromung von Braunkohle eingeleiteten Strukturwandelprozesse in den Revieren im Sinne einer sozial-ökologischen Transformation gezielt entwickelt werden können. Hierzu untersucht das Vorhaben TransIS an Fallbeispielen im Rheinischen, Mitteldeutschen und Lausitzer Revier, welchen Beitrag eine an Nachhaltigkeitskriterien ausgerichtete Gestaltung und innovative Vernetzung regionaler Infrastrukturen für einen sozial-ökologischen Strukturwandel leisten kann und welche Impulse davon für eine nachhaltige Regionalentwicklung ausgehen können. Der vorliegende Zwischenbericht umfasst das erste Arbeitspaket, das sich mit der historischen Entwicklung und aktuellen Leitthemen in den Revieren befasst hat und erste Befunde zu den Infrastrukturentwicklungen darstellt. Veröffentlicht in Texte | 17/2024.
Origin | Count |
---|---|
Bund | 147 |
Land | 58 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Ereignis | 8 |
Förderprogramm | 77 |
Text | 89 |
Umweltprüfung | 8 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 120 |
offen | 84 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 202 |
Englisch | 9 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 9 |
Dokument | 48 |
Keine | 126 |
Webseite | 52 |
Topic | Count |
---|---|
Boden | 158 |
Lebewesen & Lebensräume | 152 |
Luft | 132 |
Mensch & Umwelt | 205 |
Wasser | 125 |
Weitere | 192 |