API src

Found 6427 results.

Related terms

Heizen mit Holz

Die Gesundheit wird vor allem durch die hohen Emissionen an Feinstaub und gasförmigen Kohlenwasserstoffen der Holzfeuerungen beeinträchtigt. Beim Verbrennen von Holz entstehen klima- und gesundheitsschädliche Stoffe. So heizen Sie möglichst emissionsarm. Die Verbrennung von Holz, insbesondere von Scheitholz in kleinen Holzfeuerungsanlagen wie Kamin- oder Kachelöfen ohne automatische Regelung, läuft nie vollständig ab und es entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan, Lachgas und Ruß. Um möglichst emissionsarm und effizient zu heizen, sollte gut aufbereitetes und getrocknetes Holz aus nachhaltiger regionaler Forstwirtschaft in einer modernen Feuerstätte mit automatischer Regelung der Luftzufuhr, Katalysator und möglichst hohem Wirkungsgrad verbrannt werden. Gerade beim Verbrennen minderwertigen Holzes in alten, schlecht gewarteten Öfen und bei ungünstigen Verbrennungsbedingungen entstehen unnötig hohe Emissionen. Besonders in Ballungsräumen und in Tälern verschlechtern Holzheizungen aufgrund ihrer niedrigen Schornsteine die Luftqualität. Wie sorge ich dafür, dass mein Holzofen möglichst wenige Schadstoffe ausstößt? Bereits beim Kauf sollten Sie darauf achten, dass die Feuerstätte effizient und emissionsarm ist. Hinweise kann unser Ratgeber „Heizen mit Holz: Wenn, dann richtig!“ geben. Ältere Feuerstätten, die vor 2010 errichtet wurden, haben häufig höhere Emissionen und einen geringeren Wirkungsgrad und sollten daher ausgetauscht werden. Die verwendeten Brennstoffe müssen für das Gerät geeignet sein. Das heißt zum Beispiel, dass Kohleöfen nicht mit Holz oder Scheitholzöfen nicht mit zu großem, zu feuchtem oder zu viel Holz beheizt werden sollten. Die Bedienungsanleitung gibt Auskunft, welche Brennstoffe geeignet sind. Außerdem gibt sie Hinweise über die richtige Bedienung, um Anwendungsfehler, wie beispielsweise Überfüllen der Feuerungsanlage, zu spätes Nachlegen oder falsches Anzünden des Brennstoffes zu vermeiden. Die richtige Lagerung des Brennstoffes ist wichtig, damit das Holz unter optimaler Wärmeabgabe möglichst emissionsarm verbrennt. Frisch geschlagenes Holz enthält – je nach Jahreszeit und Holzart – zwischen 45 und 60 Prozent Wasser. Bei optimaler Trocknung sinkt dieser Wasseranteil auf 15 bis 20 Prozent. Damit das Brennholz richtig durchtrocknen kann, sollten es an einem sonnigen und luftigen Platz vor Regen und Schnee geschützt gestapelt werden und – je nach Holzart – ein bis zwei Jahre lang trocknen. Nicht zuletzt sollte der Ofen regelmäßig durch Fachleute gewartet und überwacht werden. So kann die Luftbelastung soweit wie möglich reduziert werden. Weitere Tipps für die Wahl des geeigneten Ofens und Brennmaterials, Anleitungen, wie Sie richtig heizen und Informationen zu den rechtlichen Rahmenbedingungen finden Sie in der ⁠ UBA⁠-Broschüre „Heizen mit Holz“ . Tipps zur Wärmewende in Gebäuden finden Sie in den Umwelttipps „Heizen & Bauen“ . Klimabilanz von Holzheizungen Beim Verbrennen von Holz entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan und Lachgas. Bei der Klimabilanz von Brennholz müssen zudem Emissionen berücksichtigt werden, die bei Holzernte, Transport und Bearbeitung entstehen. Darüber hinaus ist der Wald auch Kohlenstoffspeicher. So werden in deutschen Wäldern 1,26 Milliarden Tonnen Kohlenstoff in oberirdischer oder unterirdischer ⁠Biomasse⁠ gespeichert, die zuvor der ⁠Atmosphäre⁠ durch ⁠Photosynthese⁠ entzogen worden sind. Kommt es zu einer Verringerung des Wald- oder Baumbestandes, so kommt es auch zu einer damit einhergehenden Abnahme des Kohlenstoffspeichers sowie der Speicherleistung (neue Einbindung pro Jahr). Um den Kohlenstoff so lange wie möglich gebunden zu halten, soll Holz gemäß des Kaskadenprinzips vorrangig stofflich genutzt und erst am Ende seines Lebenszyklus der energetischen Nutzung zugeführt werden. Im Gegensatz dazu tragen u.a. Einzelraumfeuerungen, welche Scheitholz als Brennstoff verwenden, zu einer schnellen Freisetzung von Treibhausgasen an die ⁠ Atmosphäre ⁠ bei. Die vierte Bundeswaldinventur kam zu dem Ergebnis, dass in Deutschland zwischen 2017 und 2022 der Wald zu einer Kohlenstoffquelle wurde, d.h. es wurde mehr Kohlenstoff freigesetzt als gebunden. Um den ⁠ Klimawandel ⁠ und die dadurch bedingten Folgen durch Extremwetterereignisse möglichst gering zu halten, muss der Wald wieder zur Kohlenstoffsenke werden und die Senken-Leistung möglichst maximiert werden. Dazu muss weniger Kohlenstoff entnommen werden als gebunden wird. Das bedeutet, dass das klimafreundliche Rohstoff-Potenzial von Holz begrenzt ist. Darüber hinaus gibt es eine steigende Konkurrenz zwischen stofflicher und energetischer Nutzung von Holz. Bei der stofflichen Nutzung von Holz in Holzprodukten kann der Kohlenstoff lange Zeit gespeichert bleiben. Bei der energetischen Nutzung wird er stattdessen sofort in die Atmosphäre freigesetzt. Daher sollte eine energetische Nutzung am Ende einer stofflichen Nutzungskaskade erfolgen, in der der Kohlenstoff erst möglichst spät wieder in die Atmosphäre freigesetzt wird. Wer seine Heizung möglichst klimaschonend planen möchte, sollte verbrennungsfreie Technologien auswählen. Mehr zu diesem Thema finden Sie in den UBA-Umwelttipps zum Heizungstausch . Welche Luftschadstoffe können noch bei der Holzverbrennung entstehen? Bei der Verbrennung von Holz entstehen neben Treibhausgasen auch gesundheitsgefährdende Luftschadstoffe wie Feinstaub, organische Kohlenwasserstoffe wie Polyzyklisch Aromatische Kohlenwasserstoffe (PAKs), Stickoxide, Kohlenstoffmonoxid und Ruß. Feinstaub ist so klein, dass er mit dem bloßen Auge nicht sichtbar ist. Er kann beim Einatmen bis tief in die Lunge eindringen und dort Entzündungen und Stress in Zellen auslösen. Bronchitis, die Zunahme asthmatischer Anfälle oder Belastungen für das Herz-Kreislauf-System können die Folge sein. Feinstaub ist krebserregend und steht außerdem im Verdacht, Diabetes mellitus Typ 2 zu fördern. Feinstaub stellt insbesondere für Schwangere und Personen mit vorgeschädigten Atemwegen eine gesundheitliche Belastung dar. Ein neuer Kaminofen üblicher Größe (ca. 6 bis 8 kW) emittiert, wenn er bei Nennlast betrieben wird, in einer Stunde etwa 500 mg Staub. Das entspricht ca. 100 km Autofahren mit einem PKW der Abgasnorm Euro 6. Einige Kohlenwasserstoffverbindungen , wie z.B. PAKs, die bei einer Verbrennung als unverbrannte ⁠Nebenprodukte⁠ entstehen, sind geruchstragende Schadstoffe, die durch unsere Nase wahrgenommen werden können. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe.

WIR! - biogeniV - Biomethanmembran - bV-C2, TP3: Analyse und Messtechnik für Membranen

Das Projekt "WIR! - biogeniV - Biomethanmembran - bV-C2, TP3: Analyse und Messtechnik für Membranen" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: DBI Gas- und Umwelttechnik GmbH.

Immissions- und Strahlenschutz (GB 2)

• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.

Permafrostforschung auf dem Weg zur integrierten Beobachtung und Modellierung des Methanhaushalts von Ökosystemen; Leitantrag, Vorhaben: Prozessstudien zur Methanproduktion und -oxidation

Das Projekt "Permafrostforschung auf dem Weg zur integrierten Beobachtung und Modellierung des Methanhaushalts von Ökosystemen; Leitantrag, Vorhaben: Prozessstudien zur Methanproduktion und -oxidation" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Universität zu Köln, Institut für Geologie und Mineralogie.

Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Polymermembrantechnologie für die Abtrennung von Kohlendioxid und Wasserstoff

Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Polymermembrantechnologie für die Abtrennung von Kohlendioxid und Wasserstoff" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum hereon GmbH.Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Membranmodule integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Ein Modellansatz zur Kontrolle des Umsatzes von organischer Substanz im Ökosystem durch Nährstoffverfügbarkeit

Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Ein Modellansatz zur Kontrolle des Umsatzes von organischer Substanz im Ökosystem durch Nährstoffverfügbarkeit" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Biogeochemie.Langzeitstudien legen nahe, dass erhöhte atmosphärische CO2 Konzentration und anhaltende Stickstoffdeposition zu einem erhöhten Maß der Phosphorlimitierung von Waldökosystemen führen könnte. Die Prozesse, die die biologische Verfügbarkeit beeinflussen, und ihre Abhängigkeit von der Bodenentwicklung und Verwitterung sind aber nur unzureichend verstanden. In der ersten Phase des SPP 1685 wurde ein einzigartiger Datensatz zum P-Kreislauf in akquirierenden (gekennzeichnet durch hauptsächlich verwitterungsbasierte P Verfügbarkeit) und rezyklierende (P Verfügbarkeit hauptsächlich durch organischen Umsatz) Ökosysteme gesammelt. In unserem Antrag möchten wir ein neues, prozess-basiertes Bodenmodell der biogeochemischen Kohlenstoff- (C), Stickstoff- (N), und P-Kreisläufe entwickeln, um diese Daten mittels numerischer Modellierung der wichtigsten biogeochemischen Prozesse in ein konsistentes Gesamtgefüge einzuordnen. Unsere Grundannahme ist, dass der Umsatz der organischen Substanz im Boden eine wichtige Rolle bei der Aufrechterhaltung der P Verfügbarkeit entlang des Gradienten der geologischen P-Verfügbarkeit spielt. Daher werden wir auch neue Messungen des Kohlenstoffumsatzes mittels der 14C Methode an ausgewählten SPP 1685 Standorten vornehmen, um den Zusammenhang zwischen P-Verfügbarkeit und C-Umsatz besser zu verstehen. Die Prozessbeschreibung des organischen und anorganischen N und P Kreislaufes und der unterschiedlichen Nährstoffaufnahmekapazität von Pflanzen und Mikroorganismen für das neue Modell, wird auf einem existierenden, von uns entwickelten Bodenkohlenstoffmodell aufbauen. Dieses beschreibt Umsätze, Stabilisierung und Transport der organischen Substanz innerhalb des Bodenprofils. Mit diesem neuen Modell werden wir die Auswirkung unterschiedlicher verwitterungsbedingter P Verfügbarkeit auf die biologische P Verfügbarkeit insbesondere unter Berücksichtigung der Rolle des organischen Umsatzes untersuchen. Trotz unseres Bestrebens, das Modell einfach zu halten, sollte es in der Lage sein, die Ökosystemantwort auf die Düngeexperimente des SPP 1685 Phase II korrekt wiederzugeben. Die Modellentwicklung wird zu einem besseren Verständnis der Ursachen für den Übergang von akquirierenden zu rezyklierenden Ökosystemen beitragen. Die Modellentwicklung gibt darüber hinaus die Möglichkeit, die empirisch gewonnenen Erkenntnisse des SPP 1685 zu regionalisieren und auf Studien der Auswirkung von erhöhtem atmosphärischem CO2 und Stickstoffdeposition auf Waldökosysteme anzuwenden.

Uebergang von Pflanzenbehandlungsmitteln bei sogenannter Strohballenkultur in Nutzpflanzen

Das Projekt "Uebergang von Pflanzenbehandlungsmitteln bei sogenannter Strohballenkultur in Nutzpflanzen" wird/wurde ausgeführt durch: Bundesforschungsanstalt für Ernährung, Institut für Biologie, Außenstelle Geisenheim.Die unter Glas oder Folien durchgefuehrte Kultur von Tomaten, Paprika, Auberginen oder Gurken auf Strohballen mit anorganischer Naehrloesung humifiziert einerseits das Stroh, zum anderen erzeugt sie messbare Waerme (Energieeinsparung) und CO2 (Blattduengung) und bringt gute Ertraege. Es ist zur Zeit jedoch nicht klar, ob die dem Stroh vom Feld her anhaftenden Pflanzenbehandlungsmittel nicht in messbaren Mengen in die Ernteprodukte uebergehen.

Mikrokalorimetrische Modelluntersuchungen zum Einfluss der Aggregierung auf die Steuerung mikrobieller Stoffwechselprozesse in Böden bei unterschiedlichen O2-Partialdrücken

Das Projekt "Mikrokalorimetrische Modelluntersuchungen zum Einfluss der Aggregierung auf die Steuerung mikrobieller Stoffwechselprozesse in Böden bei unterschiedlichen O2-Partialdrücken" wird/wurde ausgeführt durch: Universität Göttingen, Institut für Bodenkunde und Waldernährung.Der Wechsel zwischen aerober und anaerober Stoffwechselprozesse in Böden findet überwiegend in Mikrohabitaten statt. Bodenaggregate stellen solche Mikrohabitate dar, in denen Sauerstoffverfügbarkeit durch Diffusionsbarrieren (wassergefülltes Porenvolumen) und die Sauerstoffzehrung durch mikrobielle Aktivität (Substrat) bestimmt wird. Ziel des Vorhabens ist es, auf mikroskaliger Ebene kritische Werte der Sauerstoffverfügbarkeit zu ermitteln, unter denen vorwiegend anaerobe Stoffwechselprozesse stattfinden. Dazu wird ein Durchflussmikrokalorimeter genutzt, in dem die unmittelbare Reaktion der mikrobiellen Aktivität auf stufenlos veränderbare Sauerstoffpartialdrücke bei einer gleichzeitigen Analyse von isotopenmarkierten Gasverbindungen (CO2, N2O, CH4) bestimmt werden kann. In Parallelansätzen in Mikrokosmen werden weitere wichtige Kenngrößen anaerober Stoffwechselprozesse wie organische Säuren und reduzierte Eisen- und Manganverbindungen ermittelt. Die Ergebnisse aus diesem Vorhaben sollen dazu beitragen, Prognosen über ablaufende Stoffwechselprozesse im Grenzbereich aerober und anaerober Zustände in Bodenaggregaten und bei natürlich oder anthropogen verursachten Veränderungen von Umweltbedingungen zu erstellen.

TransHyDE_FP1 : Systemanalyse zu Transportlösungen für grünen Wasserstoff, Teilvorhaben des DVGW: Analyse von PtX-Bereitstellungsoptionen und Gasinfrastrukturbedarf für den Transport von grünem Wasserstoff, EE-Methan und CO2

Das Projekt "TransHyDE_FP1 : Systemanalyse zu Transportlösungen für grünen Wasserstoff, Teilvorhaben des DVGW: Analyse von PtX-Bereitstellungsoptionen und Gasinfrastrukturbedarf für den Transport von grünem Wasserstoff, EE-Methan und CO2" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie.

H2Mare-VB2, Teilvorhaben Q - Nachhaltige Erzeugung von grünem Wasserstoff und PtX-Produkten durch autarken Betrieb und Direktankopplung an Offshore Windenergieanlagen

Das Projekt "H2Mare-VB2, Teilvorhaben Q - Nachhaltige Erzeugung von grünem Wasserstoff und PtX-Produkten durch autarken Betrieb und Direktankopplung an Offshore Windenergieanlagen" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Chemie, Fachgebiet Technische Chemie, Arbeitsgruppe Elektrokatalyse - Materialien.

1 2 3 4 5641 642 643