<p>Seit 1990 gehen die Kohlendioxid-Emissionen in Deutschland nahezu kontinuierlich zurück. Ursachen waren in den ersten Jahren vor allem die wirtschaftliche Umstrukturierung in den neuen Ländern. Seitdem ist es die aktive Klimaschutzpolitik der Bundesregierung, die in Einzeljahren jedoch auch von witterungsbedingten Effekten überlagert werden kann.</p><p>Kohlendioxid-Emissionen im Vergleich zu anderen Treibhausgasen</p><p>Kohlendioxid ist das bei weitem bedeutendste <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/die-treibhausgase">Klimagas</a>. Laut einer ersten Berechnung des Umweltbundesamtes betrug 2024 der Kohlendioxid-Anteil an den gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen 88,2 % (siehe Abb. „Anteile der Treibhausgase an den Emissionen“). Der Anteil hat gegenüber 1990 um über 4 Prozentpunkte zugenommen. Der Grund: Die Emissionen von Methan und Distickstoffoxid wurden im Vergleich zu Kohlendioxid erheblich stärker gemindert.</p><p>___<br> Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2023 (Stand 03/2025), für 2024 vorläufige Daten (Stand 15.03.2025)</p><p>Herkunft und Minderung von Kohlendioxid-Emissionen</p><p>Kohlendioxid entsteht fast ausschließlich bei den Verbrennungsvorgängen in Anlagen und Motoren. Weitere Emissionen entstehen im Bereich Steine und Erden, wenn Kalk zur Zement- und Baustoffherstellung gebrannt wird. Bezogen auf die Einheit der eingesetzten Energie sind die Emissionen für feste Brennstoffe, die überwiegend aus Kohlenstoff bestehen, am höchsten. Für gasförmige Brennstoffe sind sie wegen ihres beträchtlichen Gehalts an Wasserstoff am niedrigsten. Eine Zwischenstellung nehmen die flüssigen Brennstoffe ein.</p><p>Seit 1990 gehen die Kohlendioxid-Emissionen nahezu kontinuierlich zurück. Zwischen 1990 und 1995 ist dies vor allem auf den verminderten Braunkohleeinsatz in den neuen Ländern zurückzuführen. Ab Mitte der 90er-Jahre wirkt sich insbesondere die aktive Klimaschutzpolitik der Bundesregierung emissionsmindernd aus. Durch kalte Winter and durch konjunkturelle Aufschwünge stiegen die Emissionen zwischenzeitlich immer wieder leicht an, zum Beispiel in den Jahren 1996, 2001, 2008, 2010, 2013 und 2015, 2021 (siehe Abb. „Emissionen von Kohlendioxid nach Kategorien“ und Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Im Jahr 2009 wirkte die ökonomische Krise emissionsmindernd. 2010 stiegen die Emissionen hauptsächlich durch die konjunkturelle Erholung der Wirtschaft und die kühle <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> wieder an. In den Folgejahren hatte die Witterung den größten Einfluss auf die Emissionsentwicklung, zusätzlich drückt der stetige Rückgang der Emissionen aus der Energiewirtschaft das Emissionsniveau ab dem Jahr 2014 deutlich. Im Jahr 2020 dominieren die komplexen Sondereffekte der Corona-Pandemie das Emissionsgeschehen, während 2021 von Wiederanstiegen dominiert wird. Der Russische Angriffskrieg gegen die Ukraine wirkte sich in unterschiedlicher Weise auf die Entwicklung der Emissionen im Jahr 2022 aus (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-prognose-treibhausgasemissionen-sanken-2022-um">UBA/BMWK: Gemeinsame Pressemitteilung 11/2023</a>).</p><p>Kohlendioxid-Emissionen 2024</p><p>2024 sanken die Kohlendioxid-Emissionen gegenüber 2023 um 21,3 Millionen Tonnen bzw. rund 3,6 % auf 572 Millionen Tonnen Kohlendioxid. Gegenüber 1990 sind die Kohlendioxid-Emissionen demnach um 48,2 % gesunken. Die größten Rückgänge gab es in der Energiewirtschaft. Weitere Nennenswerte Rückgänge der Emissionen gab es im Straßenverkehr, und bei den Haushalten und Kleinverbrauchern.</p><p>Den größten Anteil an den Kohlendioxid-Emissionen hatte 2024, wie in den letzten Jahren, die Kategorie Energiewirtschaft mit 30,8 %. Aus diesem Bereich wurden im Jahr 2024 rund 177 Millionen Tonnen Kohlendioxid freigesetzt. Die Kategorien Haushalte/Kleinverbraucher (18,6 %) und Straßenverkehr/übriger Verkehr (24,9 %) sowie Verarbeitendes Gewerbe/Industrieprozesse (zusammen 24,8 %) besitzen hinsichtlich der Kohlendioxid-Emissionen derzeit eine etwas geringere Bedeutung.</p><p>Die gesamtwirtschaftliche Emissionsintensität (Emissionen bezogen auf das Bruttoinlandsprodukt) sank zwischen 1991 und 2024 um 62 % (siehe Abb. „Kohlendioxid-Emissionsintensität in Deutschland“).</p>
Quantitative Kenntnisse über die Einbauraten von Streukohlenstoff in unterschiedlich stabile Fraktionen der organischen Bodensubstanz (SOM) sind eine wichtige Voraussetzung für das Verständnis der Regulation der Stabilisierung organischer Substanz in Böden. Die Bestimmung der Bildungs- und Umsatzraten unterschiedlich stabiler Fraktionen der organischen Bodensubstanz im Zuge des Streuabbaus setzt voraus, dass der Ursprung des organischen Kohlenstoffs in den Fraktionen zurückverfolgt werden kann. Ziel dieses Projektes ist es, die langfristigen Umsatz- und Stabilisierungsraten von maisbürtigem Kohlenstoff in den Böden der Maismonokulturflächen (seit 1961) des Dauerversuches 'ewiger Roggen' zu erfassen. Die Analyse erfolgt anhand der natürlichen 13C-Verteilung in unterschiedlichen Fraktionen der organischen Bodensubstanz. In Inkubationsversuchen wird die Bedeutung der unterschiedlich alten SOM-Vorräte (maisbürtig bzw. vor 1961 gebildet) als Substrat für die DOC-Produktion und die Bodenrespiration quantifiziert. Weiterhin soll der Einfluss mineralischer Nährstoffzufuhr auf die Umsatz- und Stabilisierungsfragen von Maisstreu erfasst werden. Die Ergebnisse werden zur Modellierung der Dynamik der C-Umsetzungsprozesse mit dem Rothamsted C-Modell eingesetzt.
This dataset presents total organic carbon (TOC, wt%) contents in sediments at 19 stations in the Kiel Bight taken during the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025). Sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). The TOC analysis was performed using an Element Analyzer (Euro EA 3000). The data are used in combination with porewater and water column data to describe the sulfur geochemistry and cycling across different sites in the Kiel Bight and to identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor.
Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)
Ziel des Projektes war die Ermittlung eines vereinfachten ökobilanziellen Ansatzes zum Emissionsvergleich verschiedener Verwertungs- und Entsorgungsoptionen von Bioabfall. Die Vereinfachung sollte über die CO2-Äquivalente erfolgen, da Kohlendioxid bezüglich der Masse die größten Emissionen darstellt und somit gut als maßgebendes Kriterium herangezogen werden kann. Trotz Reduktion, und der damit zwangsläufig verbundenen ungenaueren Emissionsaussage, sollte es möglich sein, verschiedene biologische Prozesse der Abfallbehandlung miteinander zu vergleichen und zu beurteilen. Ziel war es, ein Handwerkszeug zu schaffen, mit dem schnell, einfach und kostengünstig eine Entscheidungshilfe zum 'günstigsten' Weg des Bioabfalls gegeben werden kann. Bei der Verwertung des Bioabfalls zum Kompost wird, anders als bei der Behandlung zusammen mit Restmüll, die Möglichkeit einer längerfristigen Einbindung des enthaltenen Kohlenstoffs in Boden und Pflanzen gegeben. Dieser wird dem natürlichen Kohlenstoffkreislauf längerfristig entzogen, und trägt somit nicht zum Treibhauseffekt bei. Unter dem Aspekt des Treibhauseffektes ist die Bioabfallverwertung daher eine sinnvolle ökologische Verwertungsoption. So leistet Kompost auf Grund der Gehalte an organischer Substanz einen wichtigen Beitrag zur Bodenverbesserung. Weiterhin kann durch die im Kompost enthaltenen Nährstoffe mineralischer Dünger zum Teil substituiert werden. Das Projekt wird gemeinsam mit Fachgebiet Abfallwirtschaft/Abfalltechnik der Universität GH Essen bearbeitet.
Die Verwendung von Stabilisotopenverhältnissen zur Aufdeckung von Prozessen in der Umwelt erfordert ein tiefreichendes Verständnis, das für einige Elemente wie Kohlenstoff (C) und Stickstoff (N) im Boden vorhanden ist. Unsere vorigen Projekte zeigten grundlegende Unterschiede in der Reaktion der Wasserstoff (H)-Isotopenverhältnisse auf Umwelteinflüsse im Vergleich zu C und N auf. Das Sauerstoff (O)-Isotopensystem im Boden wurde bisher wenig beachtet. Es ähnelt dem von H hinsichtlich eines austauschbaren und eines nicht austauschbaren Anteils, wobei nur Letzterer ein aussagekräftiges Signal liefert. Die C- und N-Isotopensysteme sind dem von O ähnlich, da diese Elemente an biochemischen Reaktionen beteiligt sind, die durch extrazelluläre Enzyme katalysiert werden und mit einer Isotopenfraktionierung verbunden sind. Da in der spärlichen Literatur ein Zusammenhang zwischen den O-Isotopenverhältnissen in der organischen Substanz (OS) und dem Klima angenommen wird, könnte ein verbessertes Verständnis des O-Isotopensystems ein neues Instrument darstellen, mit dem sich subtile Auswirkungen des Klimawandels in Ökosystemen aufspüren lassen, die sonst übersehen werden. Unser übergeordnetes Ziel ist es, die Bedeutung der ?18O-Werte von nicht austauschbarem O in der organischen Bodensubstanz (OBS) in einem ökologischen Kontext aufzudecken. Wir planen, (i) den Anteil von austauschbarem O in der Pflanzenstreu und in der OBS zu quantifizieren, (ii) die Kinetik des O-Einbaus aus dem Umgebungswasser in die OS durch mikrobielle und extrazelluläre Enzymaktivität zu bestimmen, (iii) zu testen, ob der Abbau von OS mit einer O-Isotopenfraktionierung verbunden ist, und wenn ja, die scheinbare Netto-Isotopenfraktionierung zu quantifizieren, (iv) die Beziehung zwischen den ?18O-Werten des Niederschlags und dem nicht austauschbarem O-Anteil in der organischen Auflage im Wald zu untersuchen und (v) herauszufinden, ob die ?18O-Werte des nicht austauschbaren O in der OBS mit denen ausgewählter Biomarker korrelieren. Als Voraussetzung (WP1) muss der Einfluss von anorganischem O eliminiert werden. Wir werden (a) testen, ob eine Demineralisierungsmethode, die für H-Isotope etabliert wurde, auf O-Isotope übertragbar ist, und (b) eine neue Methode entwickeln, die auf der Extraktion von Oxyanionen und der Zerstörung der OS durch Vermuffelung basiert. Wir werden die zuverlässigste Methode auswählen und Experimente durchführen, um den Einbau von O und H aus dem Umgebungswasser und die damit verbundene Isotopenfraktionierung quantifizieren zu können (WP2). Dies wird durch eine Feldstudie ergänzt, in der die Anteile von austauschbarem O und H in der OS quantifiziert, die mittelfristigen Auswirkungen des O- und H-Einbaus aus dem Umgebungswasser sowie der Isotopenfraktionierung in den Systemen C, N, O und H und das Potenzial des O-Isotopensystems zusammen mit dem von H und/oder anderen Elementen, klimabedingte Prozessänderungen anzuzeigen, untersucht werden (WP3).
Borealen Wälder speichern fast ein Drittel des weltweiten terrestrischen Kohlenstoffs in Biomasse und Böden. Die Stabilität dieser Kohlenstoffvorräte ist in der jüngsten Zeit intensiv diskutiert worden, denn es wird erwartet, dass Waldstörungen wie etwa Insektenausbrüche, Stürme oder Brände im Klimawandel zunehmen werden. Während für die nordamerikanischen und europäischen borealen Wälder eine solide Wissensbasis über sich verändernde Waldstörungen existiert, gibt es für die russischen borealen Wälder nur wenige Fallstudien. Diese wenigen Fallstudien decken jedoch nur einen sehr kleinen Teil der riesigen Ausdehnung des russischen borealen Waldes ab, was wiederum das Kohlenstoffbudget des russischen borealen Waldes höchst unsicher macht. Im Rahmen des BOFOR-Projekts schlagen wir daher vor, diese Wissenslücke zu schließen, indem wir unser Verständnis der sich veränderte Waldstörungen und deren Einfluss auf den Kohlenstoffhaushalt des russischen borealen Waldes verbessern. Das Projekt verfolgt dabei die folgenden sechs Ziele: (1) Entwicklung eines neuen räumlich expliziten Datensatzes für Waldstörungen für den gesamten russischen borealen Wald unter Verwendung von Erdbeobachtungsdaten. (2) Die Zuordnung von Waldstörungen zu ihren kausalen Verursachern wie Feuer, Wind, Insektenbefall und Holzernte. (3) Quantifizierung der Sensitivität von Störungen in borealen Wäldern gegenüber zunehmenden Klimaextremen im Zuge des Klimawandels. (4) Quantifizierung der Erholungsfunktion nach Störung, mit besonderem Blick auf die Biomasse. (5) Quantifizierung der Sensitivität der Erholungsfunktion gegenüber biotischen, bodenkundlichen und klimatischen Faktoren. (6) Erstellung eines vollständigen Kohlenstoffbudgets für den borealen Wald, einschließlich Störungen und Erholung. Das von uns vorgeschlagene Projekt wird eine wichtige Wissenslücke im globalen Kohlenstoffkreislauf schließen und damit unser Verständnis des Klimaschutzpotenzials der Wälder weltweit erheblich verbessern.
Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.
| Origin | Count |
|---|---|
| Bund | 3678 |
| Kommune | 1 |
| Land | 2101 |
| Wissenschaft | 405 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Chemische Verbindung | 55 |
| Daten und Messstellen | 2399 |
| Ereignis | 7 |
| Förderprogramm | 3246 |
| Gesetzestext | 39 |
| Lehrmaterial | 1 |
| Repositorium | 1 |
| Taxon | 13 |
| Text | 278 |
| Umweltprüfung | 3 |
| unbekannt | 168 |
| License | Count |
|---|---|
| geschlossen | 394 |
| offen | 5689 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 4993 |
| Englisch | 1638 |
| Resource type | Count |
|---|---|
| Archiv | 554 |
| Bild | 17 |
| Datei | 400 |
| Dokument | 1757 |
| Keine | 2208 |
| Unbekannt | 16 |
| Webdienst | 8 |
| Webseite | 3417 |
| Topic | Count |
|---|---|
| Boden | 4640 |
| Lebewesen und Lebensräume | 5411 |
| Luft | 4648 |
| Mensch und Umwelt | 6148 |
| Wasser | 4736 |
| Weitere | 5814 |