API src

Found 401 results.

Related terms

CO2-Haushalt der Atmosphaere

Das Projekt "CO2-Haushalt der Atmosphaere" wird/wurde ausgeführt durch: Kernforschungsanlage Jülich GmbH, Institut für Chemie.Die Groesse der Quellen und Senken fuer atmosphaerisches CO2 sind bislang noch unzureichend bekannt, um zukuenftige CO2-Gehalte der Atmosphaere vorhersagen zu koennen. Neben direkten Messungen des derzeitigen CO2-Anstiegs erlauben Isotopenuntersuchungen wichtige Rueckschluesse der CO2-Fluesse zwischen den einzelnen Reservoiren (Atmosphaere, Biosphaere, Hydrosphaere); Vorgaenge in der Vergangenheit lassen sich einzig und allein nur durch Isotopenuntersuchungen von fixiertem atmosphaerischen CO2 erkennen. Die Untersuchungen im Institut fuer Chemie befassen sich mit der Ermittlung des CO2-Inputs in die Atmosphaere aufgrund von C-13-Messungen an datierten Holzproben, um biosphaerische CO2-Senken oder Quellen der Vergangenheit erkennen zu koennen. Bisher vorliegende Messungen an Baeumen der noerdlichen Hemisphaere und des industriellen Zeitraumes sind statistisch genuegend abgesichert. Die Messungen sollen an Baeumen der suedlichen Hemisphaere und des vorindustriellen Zeitraumes weitergefuehrt werden. Daneben werden C-13 Messungen an derzeitigen atmosphaerischen CO2 Proben durchgefuehrt. Zur Modellauswertung der Ergebnisse sind ferner Isotopenuntersuchungen zum CO2-Austausch zwischen Atmosphaere und Meer erforderlich.

Nachweis von fossilem Kohlenstoff in der marinen Biosphaere

Das Projekt "Nachweis von fossilem Kohlenstoff in der marinen Biosphaere" wird/wurde ausgeführt durch: Universität Kiel, Institut für Reine und Angewandte Kernphysik.Kohlenstoff aus Erdoel und Erdoelderivaten unterscheidet sich in seiner Isotopenzusammensetzung von natuerlichen Kohlenstoffverbindungen im Meer und muesste, auch wenn er biologisch aufgearbeitet worden ist, bei hinreichender Konzentration nachweisbar sein. Messungen an jetzt geborgenen Proben sollen Bezugswerte liefern fuer Vergleiche in einigen Jahren, wenn die Erdoelfoerderung moeglicherweise zu staerkeren Verschmutzungen gefuehrt hat. An Proben, die vor den Raffinerien von Southampton entnommen wurden, deutet sich eine derartige Verschmutzung evtl. bereits an.

Trennung der Komponenten des CO2 Gaswechsels von Pflanzenbeständen im Licht

Das Projekt "Trennung der Komponenten des CO2 Gaswechsels von Pflanzenbeständen im Licht" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Grünlandlehre.Photosynthese und Respiration - die zwei dominierenden Komponenten des C-Haushaltes von Pflanzen und Ökosystemen - lassen sich mit konventionellen Methoden der Gaswechselmessung nicht mit befriedigender Präzision trennen. Dieser Sachverhalt begründet Defizite im Verständnis des C- und Energiehaushaltes von Kulturpflanzen und Ökosystemen. Im vorliegenden Vorhaben sollen neuartige CO2 Gaswechselmesstechniken in Kombination mit der kontinuierlichen Messung der C- und O-isotopischen Signaturen (d13C und d18O) des CO2 eingesetzt werden, um Photosynthese und Respiration eines Pflanzenbestandes im Licht zu quantifizieren und zu trennen. Grundlage hierfür ist die Bestimmung der natürlich entstehenden Unterschiede in der C- und O-isotopischen Signatur von photosynthetischen und respiratorischen CO2-Flüssen. Diese Ergebnisse werden mit Schätzwerten aus Untersuchungen mit anderen Methoden verglichen. In den Experimenten sollen Photosynthese, Respiration, Wachstum und Assimilateverteilung der Bestände durch differenzielle N-Ernährung manipuliert und deren Auswirkung auf die 13C- und 18O-Signaturen des respirierten und fixierten CO2 charakterisiert werden. Mit den gewonnenen Daten lässt sich erstmalig die Übertragbarkeit der bislang nur auf der Skala von Blättern verifizierten Modelle zur C- und O-Isotopendiskriminierung auf die Skala von Pflanzenbeständen und Ökosystemen überprüfen.

Haushalt und Flüsse des wurzelbürtigen Kohlenstoffs in Nahrungsketten

Das Projekt "Haushalt und Flüsse des wurzelbürtigen Kohlenstoffs in Nahrungsketten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Agrarökosystemforschung.Rhizodeposition der Pflanzen ist eine wichtige primäre Kohlenstoff- (C) und Energiequelle für Bodenorganismen. Die Ziele dieses Projektes sind die Abschätzung des C-Eintrages durch Mais in den Boden, die Verfolgung des wurzelbürtigen C in der ganzen Nahrungskette im Boden und die Aufstellung von C-Bilanzen. Mais wird in der 13CO2- und 14CO2-Atmosphäre markiert, um zwischen den wurzelbürtigen und bodenbürtigen C zu unterscheiden und den Haushalt des wurzelbürtigen C zu bestimmen. Der Einbau von wurzelbürtigem C in Mikroorganismen, Nematoden, Collembolen und Predatormakrofauna wird quantifiziert. 14C-Phosphor-Imaging der Wurzel ermöglicht es Hotspots der Rhizodeposition und der Exsudation zu lokalisieren. 13C-Pulsmarkierung wird die Empfindlichkeit der Koppelung des 13C mit Biomarker der Bakterien und Pilze (PLFA, Ergosterol) und Collembolen (neutrale Lipide) wesentlich erhöhen. Die Verzögerung zwischen der Photoassimillation der Pflanze, Wurzelexsudation in die Rhizosphäre und Einbau vom wurzelbürtigen C in die einzelnen Organismen wird bestimmt. Dies wird die Aufstellung und Modellierung des C-Flusses durch die Nahrungsketten im Boden ermöglichen. Durch mehrfache 13C-Pulsmarkierung von Mais wird eine hohe 13C-Anreicherung der Mikroorganismen erreicht, um anschließend die aktivsten Spezies in der Rhizosphäre mit Hilfe von Stable Isotope Probing (SIP) zu bestimmen.

Weg des Kohlenstoffs und Regulation des Saeurestoffwechsels bei Sukkulenten (Crassulaceen-Saeurestoffwechsel)

Das Projekt "Weg des Kohlenstoffs und Regulation des Saeurestoffwechsels bei Sukkulenten (Crassulaceen-Saeurestoffwechsel)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft / Technische Universität Darmstadt. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachbereich 10 Biologie, Institut für Botanik.Sukkulenten, die ueber den Crassulaceen-Saeurestoffwechsel (CAM) verfuegen, vermoegen in der Nacht CO2 aus der Atmosphaere zu binden und dieses in Form von Aepfelsaeure zu speichern. Am folgenden Tag wird die Aepfelsaeure decarboxyliert und das dabei entstehende CO2 ueber den Calvin-Zyklus der Photosynthese zugefuehrt. Diese Form des Kohlenstoffgewinns ermoeglicht einen besonders sparsamen Wasserhaushalt. Es handelt sich also um eine oekologische Anpassung an wasserarme Standorte. In dem vom hier vorliegenden Bericht abgedeckten Zeitraum wurden besonders folgende Teilaspekte des CAM erforscht: 1. Charakterisierung der PEP-Carboxylase, des Schluesselenzyms des CAM und Untersuchung seiner Regulierbarkeit in vivo und in vitro. 2. Vergleich verschiedener Sukkulententypen und verschiedener Organe bzw. Gewebe einer Pflanze hinsichtlich ihrer Faehigkeit CAM durchzufuehren oder nicht. Erkenntnisziel: Erforschung der Voraussetzungen fuer das Zustandekommen des CAM bei Pflanzen. 3. Untersuchung des Weges des Kohlenstoffs im CAM. Besonders untersucht wurde das Problem, ob in den Plastoglobuli der Chloroplasten gespeicherte Lipide im CAM umgesetzt werden.

Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia

Das Projekt "Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich 14 - Geowissenschaften.In bog ecosystems, vegetation controls key processes such as the retention of carbon, water and nutrients. In northern hemispherical bogs, a shift from Sphagnum- to vascular plant-dominated vegetation is often traced back to Climate Change and increased anthropogenic nitrogen deposition and coincides with substantially reduced capacities in carbon, water and nutrient retention. In southern Patagonia, bogs dominated by Sphagnum and vascular plants coexist since millennia under similar environmental settings. Thus, South Patagonian bogs may serve as ideal examples for the long-term effect of vascular plant invasion on carbon, water and nutrient balances of bog ecosystems. The contemporary balances of carbon and water of both a bog dominated by Sphagnum and vascular plants are determined by CO2- H2O and CH4 flux measurements and an estimation of lateral water losses as well as losses via dissolved organic and inorganic carbon compounds. The high time resolution of simultaneous eddy covariance measurements of CO2 and H2O in both bog types and the strong interaction between climatic variables and the physiology of bog plants allow for direct comparisons of carbon and water fluxes during cold, warm, dry, wet, cloudy or sunny periods. By the combination with leaf-scale measurements of gas exchange and fluorescence, plant-physiological controls of photosynthesis and transpiration can be identified. Long-term peat accumulation rates will be determined by carbon density and age-depth profiles including a characterization of peat humification characteristics. A reciprocal transplantation experiment with incorporated shading, liming and labeled N addition treatments is conducted to explore driving factors affecting competition between Sphagnum and vascular plants as well as the interactions between CO2-, CH4-, and water fluxes and decisive plant functional traits affecting key processes for carbon sequestration and nutrient cycling. Decomposition rates and driving below ground processes are analyzed with a litter bag field experiment and an incubation experiment in the laboratory.

Anthropogene Einfluesse auf das atmosphaerische CO2

Das Projekt "Anthropogene Einfluesse auf das atmosphaerische CO2" wird/wurde ausgeführt durch: Universität Heidelberg, Institut für Umweltphysik.Die Ueberhoehung des natuerlichen atmosphaerischen CO2-Pegels durch Zufuhr fossilen Verbrennungs-CO2 laesst sich mit Hilfe der unterschiedlichen isotopischen Markierung (vor allem bezueglich des Kohlenstoff-13) erfassen. Bei einer Mittelwertbildung ueber eine Woche sind absolute Konzentrationsangaben von besser plus/minus 1 ppm moeglich; die jahreszeitlichen Schwankungen der Reinluftkonzentration werden dabei beruecksichtigt. Das Verfahren soll ausgeweitet werden a) auf parallel durchgefuehrte SO2-Messungen und b) auf die Untersuchung des Kohlenstoff-14 Pegels in unmittelbarer Umgebung von Kernkraftwerken. Methode: Chemische Absorption des Luft-CO2 mit anschliessender massenspektrometrischer Untersuchung, bzw. Aktivitaetsmessung.

Detaillierte Waldüberwachung mittels skalierbarer KI-Methoden, Detaillierte Waldüberwachung mittels skalierbarer KI-Methoden

Das Projekt "Detaillierte Waldüberwachung mittels skalierbarer KI-Methoden, Detaillierte Waldüberwachung mittels skalierbarer KI-Methoden" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität München, Department für Life Science Systems, Lehrstuhl für Ökosystemdynamik und Waldmanagement in Gebirgslandschaften.

Datenraum für das Nachhaltigkeitsmonitoring der Wald- und Holzwirtschaft, Teilvorhaben: Tracking und Tracing - Verfolgbarkeit von Holzflüssen durch die Holzbereitstellungskette, Forstwissenschaftliche Expertise, Branchenweites Netzwerk und Dissemination

Das Projekt "Datenraum für das Nachhaltigkeitsmonitoring der Wald- und Holzwirtschaft, Teilvorhaben: Tracking und Tracing - Verfolgbarkeit von Holzflüssen durch die Holzbereitstellungskette, Forstwissenschaftliche Expertise, Branchenweites Netzwerk und Dissemination" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Kuratorium für Waldarbeit und Forsttechnik e.V..

Umgestaltung eines Wassereinzugsgebietes im Nationalpark Eifel von einem Fichtenwaldreinbestand zu einem standortgerechten Laubmischwald: Dynamik des Kohlenstoff- und Wasserhaushaltes; Heterogenität relevanter Standortfaktoren für die Waldentwicklung - Untersuchungen zum Wasser- und Stoffhaushalt kleiner bewaldeter Einzugsgebiete unter besonderer Berücksichtigung periglazialer Deckschichten (Natio

Das Projekt "Umgestaltung eines Wassereinzugsgebietes im Nationalpark Eifel von einem Fichtenwaldreinbestand zu einem standortgerechten Laubmischwald: Dynamik des Kohlenstoff- und Wasserhaushaltes; Heterogenität relevanter Standortfaktoren für die Waldentwicklung - Untersuchungen zum Wasser- und Stoffhaushalt kleiner bewaldeter Einzugsgebiete unter besonderer Berücksichtigung periglazialer Deckschichten (Natio" wird/wurde gefördert durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Geographisches Institut, Lehrstuhl für Physische Geographie und Geoökologie. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Geographisches Institut, Lehrstuhl für Physische Geographie und Geoökologie.Hintergrund: Dieses Projekt begleitet die Umgestaltung eines Fichtenwald-Reinbestandes im Nationalpark Eifel vom derzeitigen Ist-Zustand über eine Baumentnahme hin zu einem standortgerechten Laubmischwald. Der Stoffhaushalt (Kohlenstoff, Lösungsfracht, Schwebfracht, Bachgeschiebe und Wasser) sowie die ihn beeinflussenden Faktoren (Klima, Boden, Vegetation, Landnutzung) werden genauer untersucht. Erstmalig werden für dieses Gebiet im Rahmen dieses Projektes CO2-Kreisläufe quantifiziert und Maßnahmen zur Kohlenstoffreduktion beschrieben (durch das Institut für Chemie und Dynamik der Geosphäre - Institut 4: Agrosphäre (ICG-4)). Zudem sollen zu erwartende Veränderungen auf Stoff- und Wasserkreisläufe erfasst werden. Bestehende Datenlücken für die Mittelgebirge werden damit geschlossen (durch den Lehrstuhl für Physische Geographie und Geoökologie (PGG)). Fragestellungen: Aufgabe des Projektes wird sein, präzise Informationen zum Stoff- (u.a. Kohlendioxid, Nitrat, Phosphat, Ammonium) und Wasserkreislauf zu erhalten sowie die Bedeutung standortrelevanter Parameter (Klima, Boden, Vegetation, Landnutzung) bei der Entstehung eines standorttypischen Laubmischwaldes zu erfassen. Während der Umwandlung eines Fichtenreinbestandes zu einem Laubwald - mit Vergleichsuntersuchungen im Freiland (Wiese) - sollen verschiedene Stadien der Umwandlung untersucht werden. Die Ergebnisse werden neue und vor allem quantifizierbare Erkenntnisse zum CO2-Haushalt sowie zum Wasser- und Stoffkreislauf im Ökosystem Wald liefern; Grundbausteine für eine nachhaltige Landnutzung und der Reduzierung atmosphärischen CO2. Von der Arbeitsgruppe PGG und dem ICG-4 bearbeitete Fragestellungen: - Wie wirken sich Landnutzungsänderungen auf Stoff- und Wasserhaushalt aus? - Welche Auswirkungen hat der Klimawandel auf Wasser, Boden und Vegetation? - Wie wirken sich Rückkopplungsprozesse auf terrestrische Systeme aus? - Wie wirken sich großräumige Eingriffe aus? Ziele: Ziele des Lehrstuhls für Physische Geographie und Geoökologie sind insbesondere, in Kooperation mit dem ICG-4 Veränderungen des Kohlenstoff- und Wasserhaushaltes sowie der Nährstoffkreisläufe in Erwartung des absehbaren Klimawandels und der Maßnahmen zur CO2-Reduktion zu erfassen. Gesicherte Erkenntnisse in Bezug auf den Wasserhaushalt und die ihn beeinflussenden Größen in Mittelgebirgsräumen liegen bisher kaum vor. Hier schließt das Projekt eine Datenlücke. Die Rolle der Vegetation sowie der Böden (insbesondere die bodenbildenden periglazialen Deckschichten) sind hier von Bedeutung, da Prozesse der Stoffakkumulation, -umwandlung und -transport von diesen Parametern stark abhängig sind. Deckschichten haben mit ihren Mächtigkeiten und Ausprägungen einen starken Einfluss auf Sickerwasser, Grundwasserneubildung, Retention und Oberflächenabfluss. Zudem ist für die Kooperation mit dem ICG-4 die Betrachtung des Bodenwasserhaushaltes unerlässlich, um den CO2-Vorrat im Boden zu analysieren. Die Retentionskapazitäten der Böden werden präzi

1 2 3 4 539 40 41