API src

Found 367 results.

Related terms

General Global Map of Seafloor Bedrock Geology (seafloorgeol) (WMS)

The General Global Map of Seafloor Bedrock Geology (seafloorgeol) shows the global distribution of seafloor bedrock, the boundaries of the continental shelf and continental slope, the axes of the oceanic ridges and other marine geological features. Sedimentary deposits are not shown. The map is based on extracts from Bouysse et al. (2010) © CGMW, and Bryan & Ernst (2008) using Esri Basemap, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors and the GIS User Community.

Processed seismic data of Cruise BGR80 1980

During the cruise with S.V. EXPLORA within the Ross Sea on the second marine-geophysical expedition of the Federal Institute for Geosciences and Natural Resources (BGR) to Antarctica, in total 6,745 km of magnetic, gravity and digital reflection seismic lines and additionally 1,400 km gravity lines were acquired in the period from January 10th to March 2nd 1980. On 43 stations sonobuoy refraction measurements have been carried out. The main results are: (1) In the eastern part of the Ross Sea Shelf two striking discontinuities have been identified in the reflection seismics representing gaps in the sediments at the turn-over of the Upper Miocene to the Pliocene (ca. 7 mio years B.P.) and between the Middle and Upper Miocene (ca. 11.5 mio. years B.P.) according to results of DSDP boreholes. (2) In the southern part of the Ross Sea Shelf the basement is uncovered at depths over 700m due to a thrust of the shelf ice recently. (3) A structural unit extends alongside the meridian of 180° separating the Ross Sea into two different geologic regions. This unit is characterised by two basement highs with seismic velocities exceeding 5 km/sec. (4) In relation with the GANOVEX expedition two profiles have been measured off northern Victoria Land which indicate two large faults with a faulting amount of 2 km. Another area is characterised by intrusive and volcanic bodies.

Processed seismic data of Cruise ANT-IV/3 1986

On the F.S. POLARSTERN cruise ANT-IV/3 (6th December, 1985 - 13th March, 1986) multichannel seismic measurements were carried out in parallel with magnetic and gravimetric measurements on 33 lines with a total length of 6,263 km. 3,350 km of the multichannel seismic lines have been processed aboard. The geophysical studies were designed to investigate the structure and geological development of the Weddell Sea continental margin from meridians zero to 60°W, and to define suitable and safe drilling locations for Leg 113 of the Ocean Drilling Program. The main results of the geophysical studies are: (1) The discovery of an approximately N50°E trending failed drift basin, following the trend of a negative magnetic anomaly and a positive gravity anomaly. (2) The discovery of two extensive wedge-shaped and symmetric basement units around a failed drift basin between longitudes 40°W and 20°W. The seismic characteristics, i.e. seismic velocities of 4 km/s and an internally divergent pattern of reflectors suggest that both wedges are formed from extrusive/intrusive volcanic rocks. (3) The confirmation of a major plate tectonic boundary trending approximately N80°E to N60°E, i.e. the EXPLORA-ANDENES escarpment. (4) The confirmation of a glaciogenic progradational wedge beneath the shelf of the Weddell Sea Embayment, made up of several thousand metres of sediments. (5) The definition of 13 suitable and safe drilling locations for ODP-Leg 113.

Processed seismic data of Cruise SO189 SUMATRA 2006

The SUMATRA cruise SO189 Leg 1, aboard the RV SONNE, was carried out off Sumatra between 3rd August and 3rd September 2006, with mobilisation in Penang, Malaysia and demobilisation in Jakarta, Indonesia, respectively. The survey was dedicated to marine geophysical measurements and acquired multichannel seismic data (MCS) using a 240 channel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, sub-seabed data using the hull mounted high resolution PARASOUND profiler together with gravity (G) and magnetic (M) data were also acquired. Along two lines with a total length of ~ 390 km refraction/wide-angle seismic experiments were carried out. During the survey a total of 4,375 line kilometres of MCS, M and G data were acquired and an additional 990 km with M and G alone. The 41 MCS lines cover as close grid three fore-arc basins. Five lines extend nearly orthogonal to the subduction front and, thus, cover the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the forearm basins offshore Sumatra. The survey was planned using the bathymetry from the HMS SCOTT, RV NATSUSHIMA, RV MARION DUFRESNE and RV SONNE cruises carried out in 2004, 2005 and 2006. The main scientific objective of the project SUMATRA is to determine or estimate the hydrocarbon (HC) system (source rocks, HC generation, HC migration and reservoir rocks) of the Sumatra fore-arc region (mainly the fore-arc basins). Cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub-basin. Carbonate build-ups were found in the northern sub-basin only on the very shallow shelf in the north-east. The maximum thickness was determined to be ~ 3 s TWT. In the southern sub-basin carbonate build-ups (which were already identified on some lines of the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55 km the maximum sediment thickness exceeds 5 s TWT. The largest fore-arc basin is the Siberut Basin. It extends from the equator to ~ 5°S over 550 km and has a maximum width of 140 km between the island of Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8 s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. The geometry of this major fault changes significantly along strike. In some areas it is traceable as one single fold whereas in other areas it spreads in up to three different branches indicating splay faults originating from a main fault. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. The morphology of the Sunda Trench and its sedimentary cover varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~ 3.5 s TWT. The seafloor dips increase southwards, but sediment thickness decreases to ~ 2.5 s TWT off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults with a maximum displacement of 0.6 s TWT. Along strike the deformation front between Nias and Siberut displays several incipient folds. As offshore northern Sumatra, both landward (BGR06-228) and seaward verging folds (BGR06-227) are developed at the deformation front. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. In contrary to first thoughts during the expedition SO186-2 SEACAUSE, landward verging folds are not limited to the area off Aceh. Two refraction lines were acquired parallel to the subduction front at 2°30'N and 1°30'S approximately 40 - 50 km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set consists now of over 38,000 line km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (~ 6°30'N/95°E) to Mid Java( ~8°30'S/110°E). Gravity modelling in parallel with refraction seismic data interpretation was carried along two lines during the cruise. The preliminary results show that the incoming oceanic plate is unusual thin both in the north off Simeulue (6 km) and in the south off Nias (5 km).

Processed seismic data of Cruise BGR18 2018 (PS115/1)

The expedition PS155/1 started on August 5th, 2018 in Tromsø (Norway) and ended in Longyearbyen (Spitsbergen) on September 3rd, 2018. In the course of BGR’s GREENMATE project the geological development of the European North Atlantic and the northern and north eastern Greenland shelf was analyzed using various marine geophysical methods (seismics, magnetics, gravity, heatflow measurements) and geological sampling (gravity corer, box corer, multi-corer, dredge). Sampling of marine Shelf sediments was undertaken in close correspondence with co-users from Geomar (add-on project ECHONEG), aiming to reconstruct Holocene paleo environmental and climatic evolution. Using the ship’s helicopters, marine sampling was complemented by onshore sampling operations to extract geological material at selected near coastal locations. Other scientific project groups used the cruise PS115.1 as an opportunity to quantify marine mammals and sea birds and their statistical distribution in our research area as part of the long-term project (add-on project Birds& Mammals) and to gather additional meteorological data via radiosondes (add-on Project YOPP). Against all expectations, outstanding ice conditions along the northern coast of Greenland enabled us to carry out reflection seismic surveys north of 84°N at the southern tip of Morris Jesup Rise with a 3 km long streamer. Structural data of this particular region of North Greenland is of special importance for BGR’s project GREENMATE for reconstructing the continental margin evolution. A 100 km long refraction seismic profile was measured to complement the reflection seismic data. After completing this, scientific work was concentrated on the northeastern Greenland shelf area between 76°N and 82.5°N. Over the time of the cruise a total of 2500 km of reflection seismic profiles (2250 km measured with 3km streamer length) and 100 km of refraction seismic profile (using nine ocean bottom seismometers) were measured, accompanied by gravity and magnetic surveys and seven heat flow measurement stations. Along the shelf and deep-sea area 21 geological sampling sites were chosen, with all together one dredge (around 200 kg of sample), 16 gravity cores (total core length 65 m), 12 box corers and 6 multi-corer stations. Onshore sediment sampling was done at 11 sampling sites. Beside sediment sampling hard rock from near coastal outcrops was collected in a total amount of 250 kg that will be used for age dating. The entire science program was carried out under consideration of the highest ecological standards to protect marine mammals and to meet all environmental requirements of the permitting authorities. In addition to external marine mammal observers (MMO) various acoustic monitoring systems and AWI’s on board infrared detection system AIMMS monitored any activity of marine mammals in the ships perimeter, especially during seismic operations.

Processed seismic data of Cruise BGR98 1998

From 24th November 1998 to 24th February 1999 BGR in cooperation with YPF (Yacimientos Petrolíferos Fiscales) and SHN (Servicio de Hidrografía Naval) conducted three seismic surveys along the passive continental margin of Argentine. The seismic vessel M/V Akademik Lazarev which is operated by SMNG (Sevmorneftegeofizika) was used for these cruises. Although the seafloor spreading history of the South Atlantic Ocean is very well defined, the development of the continental margins poses still great problems to a profound understanding. When break-up of Gondwana started in Middle Jurassic, South Africa and South America remained connected. Their break-up started in Early Cretaceous, possibly propagating from south to north. Before break-up, huge tholeiitic flood basalts were extruded near the future rift, namely the Paraná basalts in Brazil and the Etendeka basalts in Namibia. It is likely that these basalts are caused by a large mantle plume. As the flood basalts were predecessors to the break-up, often a causal relationship is assumed. The dipping reflector sequences along large parts of the continental margins of South America and South Africa are interpreted as indications of the plume influence. Investigations along many passive margins have meanwhile shown that dipping reflector sequences exist along most of them. These so-called volcanic margins are the normal ones, the non-volcanic margins are the exception. For many years, it had been assumed that the hydrocarbon potential of volcanic margins is very low. The discovery of the Kudu gas field has demonstrated that this assumption is not valid in general. This increases our interest in continuing the investigation of volcanic passive margins and the variability of their structure along strike. BGR has carried out already two marine geophysical cruises off Argentina, namely with M/V EXPLORA in 1985 and with FS SONNE in 1993. These surveys had shown locally the existence of threefold dipping reflector sequences (Hinz et al., 1999). Furthermore, it had turned out that not everywhere they are accompanied by the strong magnetic G anomaly (Rabinowitz & LaBrecque, 1979). The main objectives of the BGR98 cruise were: (1) Investigation and mapping of the zone of the seaward dipping reflectors (SDR) (reflection + refraction seismic) (2) Investigation of the sedimentary column within this zone (reflection seismic) (3) Setting up a seismostratigraphy based on the seismic records obtained during the cruise and the information from the previous cruises (BGR87, SO85) as well as on additional well information (4) Comparison of the argentine seismic data with seismic data of the conjugate volcanic margin off Namibia (BGR 87). The study area is located offshore Argentine, extending from about 37° 20' S to 45° 40' S and from about 61° 10' W to 52° 00' W. It comprises the Colorado Basin as well as the outermost shelf, slope and rise of the continental margin with water depths up to 5000 m.

Processed seismic data of Cruise BGR97

The 3rd cooperative BGR/SMNG Arctic cruise was designed to acquire new scietific data for a better understanding of temporal and spatial lithospheric variations during rifting and its influence on the tectonic and structural evolution of the continental crust of the Laptev Sea undergoing extension since at least the Early Tertiary, and for tackling open questions regarding the evolution of the submarine permafrost zone. Although conditions for seismic measurements were worse in 1997 than in 1993 and 1994, along 4,622 km of seismic traverses reflection seismic data and wide angle reflection/refraction data from 23 OBH-(ocean bottom hydrophone) stations were collected in the Laptev and East Siberian Sea. The most prominent rift basin is the Ust' Lena Rift, which is at least 300 km wide at latitude 75°N. The Cenozoic sedimentary cover exceeds 3 km everywhere, increasing up to 14 km at two locations. In the northern part of the shelf, the complex mainly N–S-trending Anisin Basin has a basin fill of up to 10 km thickness. The New Siberian Basin which is located in the northwestern part of the study area shows an up to 9 km thick graben fill. The Laptev Horst crust is locally subdivided into several tilted blocks by deep-reaching faults and there are several half grabens of smaller extent which divide the Laptev Horst into three parts: the North, the South and the East Laptev Horst. A major west dipping listric fault of at least 250 km length separates the Laptev Horst from the Ust' Lena Rift. Results from the seismological investigation indicate that recent extension is concentrated within the narrow rift basins of the eastern Laptev Sea. From wide-angle reflection/refraction seismic measurements the seismic velocities of the crustal layers were estimated along five profiles. The layers with velocities of up to 3.5 km/s apparently consist of predominantly Cenozoic sediments. The sedimentary section showing relatively high seismic velocities of 4.5 to 5.2 km/s might be interpreted as Late Paleozoic to Mesozoic deposits or overcompacted/cemented syn-rift deposits. In the eastern shelf area a layer beneath the acoustic basement was interpreted to represent Ordovician to Early Mesozoic carbonates. The lower crust in the area under study shows relatively uniform seismic velocities of about 6.0-6.8 km/s and the velocities estimated for the crust-mantle transition are in the range of 8.0 to 8.2 km/s. The origin of a several 100 m thick layer with a relative high velocity of 3 to 3.5 km/s directly beneath the seafloor was inferred as sub-sea permafrost.

Processed seismic data of Cruise SO23 1982

In the framework of the IDOE-SEATAR (International Decade of Ocean Exploration - Studies of East Asia Tectonics and Resources) Program, the Federal Institute for Geosciences and Natural Resources carried out a geophysical survey in the Sulu Sea during the period from March 11, 1982 to April 15, 1982 using the German research vessel R/V SONNE. The SONNE cruise no. SO-23 continued SEATAR-related studies of BGR which have been carried out during the Southeast Asian Cruise of the VALDIVIA (VA-16) in 1977. During SONNE cruise no. SO-23, multi-channel reflection measurements were carried out in parallel with magnetic, gravimetric, and sea-beam measurements on 21 lines with a total length of 3,300 km in the Sulu Sea. In the NW Sulu Basin, situated between the shelf of East Palawan in the north and the volcanic Cagayan Ridge in the south, a 50 - 100 km wide graben-like basin exists which is filled with thick Neogene and pre-Middle Miocene sediments. The basin trends east-northeast. At longitude 119°E it bends to a north-south direction. The dominating structural element within the sedimentary graben-like basin is a diapiric-chaotic zone about 25 km wide, which was only detectable west of longitude 120°E. The base of the elongated diapiric-chaotic zone, which might represent a tectonically mobilized equivalent of the Crocker Formation (Middle Miocene - Lower Oligocene) is difficult to define in the seismic monitor records. The configuration and the internal structural style of individual structures of the diapiric-chaotic zone, which can be followed over length of about 150 km, seem to resemble those of the oil-bearing province offshore western Sabah. In the eastern part of the NW-Sulu Basin east of longitude 119°E, several north-trending anticlines of presumably Middle Miocene age and locally volcanic intrusions of presumably Plio-Pleistocene age have been observed. During the second leg of the cruise SO-23 in the southeastern part of the South China Sea (April 16, 1982, to May 9, 1982) multi-channel seismic reflection measurements were carried out in parallel with magnetic, gravimetric, and sea-beam measurements on 19 lines with a total length of 3,570 km in the southeastern part of the South China Sea, including the area of the Dangerous Grounds. In addition, 2,280 km of profile was surveyed with only magnetics, gravity, and sea-beam measurements. A complex structural style was observed in the investigated part of the Dangerous Grounds, South China Sea, which is believed to be part of a microcontinental block which rifted from the continental margin of Asia in the Early Paleogene/Late Mesozoic time. There are prospective depocenters and structures trending NE-SW, E-W, and N-S in the southwestern part, i.e. the area west of longitude 117.5°E (units 2, 3, 4). Unit 4 contains a series of half-grabens with thick sedimentary infill. An imbricated melange of pre-Middle Miocene age seems to exist only off southern Palawan. The dominating structural trend in the area northeast of Reed Bank is NW-SE. Oceanic crust characterized by NW-trending magnetic lineations (anomalies 8 to 12 ?) was observed north of latitude 12°N and between longitude 118°E and the Manila Trench.

Processed seismic data of Cruise SO27 1983

As recommended by the Joint CCOP-IOC Working Group on Post-IDOE Studies on East Asia Tectonics and Resources and the proposal of the Bureau of Mines and Geosciences of the Philippines to extend the research of the previous R/V SONNE survey SO-23, the Federal Institute of Geosciences and Natural Resources (BGR) carried out a geophysical survey in the southeastern part of the South China Sea (Dangerous Grounds) and in the northwestern part of the Sulu Sea in two legs from 29th April to 29th June 1983 on SONNE cruise SO-27. Multichannel reflection seismic measurements were carried out in parallel with magnetic, gravimetric, Sea-Beam, and 3.5 kHz subbottom profiler measurements on 34 lines with a total length of 7,204 km. In addition, 26 lines with a total length of 2,800 km were surveyed with only the last four named methods. SONNE cruise SO-27 was financed by the Federal Ministry of Research and Technology (BMFT). Six seismic sequences (DG-1 to DG-6) (DG = Dangerous Grounds) could be distinguished in the surveyed part of the South China Sea. The oldest recognizable sequence is the sequence DG-6, an equivalent of the Pre-Nido Formation of the northwest shelf of Palawan. Seismic unconformity Violet marks the top of the DG-6 sequence, which consists of a complex system of tilted horsts and half-grabens. The half-grabens are presumably filled with clastic sediments of Eocene age (seismic sequence DG-5). The top of seismic sequence DG-5 is bounded by unconformity Blue, which is interpreted as representing the end of the rift phase and the onset of seafloor spreading in the South China Sea about 32 m.y. ago. The overlying seismic sequence DG-4 is characterized by an internal reflection pattern with low frequencies. Lithologically, this sequence consists of shallow-water carbonates with reef complexes of Oligocene to Early Miocene age and has to be regarded as equivalent to the oil-containing Nido Formation of the Palawan shelf. A rapid subsidence of large parts of the survey area during the late (?) Early Miocene ended the growth of the shallow water carbonate platform, indicated by the unconformity Blue. The overlying seismic sequence DG-3 is interpreted as consisting of a transitional facies between a shallow water and a bathyal depositional environment. The top of this sequence is marked by unconformity Red, which most probably represents the end of the drifting phase (seafloor spreading) in the South China Sea during the Middle Miocene. The most prominent structural feature of the shelf and slope of central and southern Palawan is a thick sedimentary wedge originally interpreted as a melange. Our data show that the Oligocene to Early Miocene carbonate platform of the Dangerous Grounds extends beneath the Palawan Trough, as well as beneath the central and southern Palawan shelf, underlying the melange. Based on the finding that i) Rhaeto-Liassic rocks are present in the Dangerous Grounds, ii) the Oligocene to Early Miocene carbonate platform continues from the Dangerous Grounds through the Palawan Trough to the central and southern Palawan shelf, and iii) there is thinned continental crust 20 km thick below the continental slope of southern Palawan, we believe the Dangerous Grounds, together with Palawan and the Caiman Islands belong to a uniform continental fragment which separated from the proto-chinese continental margin when the South China Sea opened during the Oligocene. Previously, the melange of central and southern Palawan, which contains ophiolites, was interpreted as being autochthonous. In our opinion, the melange is an allochthonous mass which has been overthrusted onto the eastern margin of the Dangerous Grounds-Palawan-Caiman microcontinent from the Northwest Sulu Basin. The Ulugan Bay fault is interpreted as the northeastern front of this allochthonous mass. The area of prospective carbonate plays is considerably enlarged by the discovery that the Oligocene to Early Miocene carbonate platform with Nido-type reef structures extends below the allochthonous sediments of central and southern Palawan. We expect that hydrocarbon-bearing structures of the Sabah-type, i. e. thick, folded Neogene sediments, will be found in the western part of the northwestern Sulu basin. If our interpretation is correct, a new chapter of hydrocarbon exploration may be about to begin around Palawan in the Philippines.

Processed seismic data of Cruise BGR04 ARGURU 2004

From 19th November to 19th December 2004 BGR conducted a marine geophysical cruise between 34°S and 36°S off Uruguay and between 46°S and 50°S off Argentine. The main research objective was to contribute to a better understanding of the initial breakup and the early opening of the South Atlantic. In continuation of our former work on the South Atlantic continental margins off Argentina, Brazil, Uruguay, Namibia and South Africa marine geophysical research (multi-channel seismics, refraction-/wide-angle reflection seismics, magnetics and gravity) was performed in close cooperation with the Argentine and Uruguayan authorities Comisión Nacional del Límite Exterior de la Plataforma Continental (COPLA) of Argentina and Servicio de Oceanograficia, Hidrograficia y Meteorologia de la Armada (SOHMA) of Uruguay. Multi-channel seismic lines with a total length of 3,754 km and additional 3540 km with the other geophysical methods were acquired . Along two lines refraction-/wide-angle reflection seismic work was carried out. The preliminary analyses of the new seismic data show different images of the crustal structures between Uruguay and southern Argentine with regard to the distribution and volume of offshore volcanic rocks (seaward dipping reflector sequences, SDRS) along the South American Atlantic margin. On the northern profiles between 34°S and 36°S one single well developed wedge of SDRS is present. Although the landward termination (‘feather edge’) on most of the lines is masked by multiples the average total width of the wedge across the margin seems to be 90 – 100 km and is very constant for this margin segment. This is strong contrast to the results from former cruises (BGR87, SO85 and BGR98) which covered the area between 38°S and 45°S. There, the SDRS showed distinct multiple wedges which in some places extend over 120 km across the continental slope. The investigation of the sedimentary section yielded that in the area off Uruguay widespread bottom simulating reflectors (BSR) are present. This indications for stable gas hydrates cover a total area of 7000 km2. One major aim of the cruise was to cover the transition between a volcanic passive margin and a non-volcanic passive resp. sheared margin. This was accomplished in the southern part of the investigated area. Two EW-trending profiles across the Argentine shelf into the Argentine Basin still show indications for SDRS but these structures are only 25 – 30 km wide. The profiles which extend from the NE to the SW crossing the Agulhas-Falkland Fracture Zone (AFFZ) onto the Falkland Plateau show the typical trend of a sheared margin. At the northern rim of the Falkland Plateau a set of small pre-rift half grabens were found indicating pre-rift extensional tectonic phases. The magnetic data in the area off Uruguay show lineations which are preliminary interpreted as chrons M0 to M3. This might indicate that the first (oldest) oceanic crust was created at a time around the magnetic polarity reversal between the normal interval M4 and the reversed interval M3 (126-127 Ma). Together with existing data from previous cruises this indicates that the breakup of the South Atlantic started further South because there magnetic chrons back to M9 (130 Ma) were identified. In the southernmost part of the margin at 47°S only the magnetic lineations M0 to M4 were identified in the oceanic domain Nevertheless, it is likely that between M4 and the assumed position of the continent ocean boundary/transition (COB/COT) older oceanic crust exists that for some reasons does not show correlatable lineations. The the free-air gravity map is dominated by the main topographic and structural features in the survey area. Rifted continental margins are characterized by prominent free-air gravity anomalies elongated parallel to the ocean-continent transition. The continental slope is considerably steeper in the North off Uruguay than in the South and thus the gravity high is much more pronounced in the North than in the South. The simple Bouguer anomaly map also shows the difference between the more gentle and wider continental slope in the South and the steeper slope in the North. The lowest Bouguer gravity values are found in the area of the basins on the continental shelf. Especially the Salado Basin in the prolongation of the Rio de la Plata and the Colorado Basin at about 40°S are indicated by Bouguer gravity anomaly highs. The interpretation by forward density modelling shows, however, the presence of SDRS units in the North of relative high density in the area of the continental slope. Whereas the modelling shows no indications for such volcanic bodies in the South. Although the MCS data indicate a small SDRS wedge but this body may be too small to cause an anomaly.From 17th April to 6th June 2003 BGR conducted a marine geophysical cruise between 30°S and 38°S off the Atlantic coast of South Africa. The main research objective was to contribute to a better understanding of the initial breakup and the early opening of the South Atlantic. In continuation of our former work on the South Atlantic continental margins off Argentina, Brazil, Uruguay and Namibia marine geophysical research (multi-channel seismics, wide-angle refraction seismics, magnetics and gravity) was performed in cooperation with the Petroleum Agency South Africa (PASA). Multi-channel lines with a total lenght of 3,260 km, and additional 1,365km, with the other geophysical methods were acquired. Combined onshore/offshore refraction seismic work in cooperation with GeoForschungsZentrum Potsdam (Germany) and the Council for Geoscience (South Africa) was also part of the program.

1 2 3 4 535 36 37