Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Mapping and monitoring the break-up events on Wilkins Ice Shelf and identification of mechanisms and processes leading to break-up. Within this activity we integrate various high and moderate-resolution satellite images with special emphasis on SAR data. The analysis covers currently a time period back to 1986 (Landsat TM) with increasing dense time series to present. In close collaboration with the European Space Agency (ESA) and the German Aerospace Center (DLR) acquisition plans for the ENVISAT ASAR and TerraSAR-X instruments are implemented and the respective data analysed. Since September 2009, this activity is supported by a DFG research grant. Main aim is to derive surface velocity fields of the ice shelf and its tributary glaciers by satellite remote sensing as input for icedynamic modelling and fracture mechanical analyses.
Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Ziel dieser Studie ist die Erforschung der Grundwasserbewegung im New Jersey Shelf (NJS). Ende der 1970er Jahre wurde Grundwasser mit deutlich geringerem Salzgehalt als Meerwasser in zahlreichen Bohrungen entlang der U.S. Ostküste nachgewiesen - teilweise mehr als 100 km vom Festland entfernt. Besonders detaillierte Daten zur Porenwassersalinität wurden im Rahmen von IODP Leg 313 am NJS gewonnen: Sie zeigen abrupte vertikale Salinitätskontraste an allen drei Bohrlokationen. Verschiedene Autoren erklären die Entstehung von küstenfernem Süßwasser im NJS durch rezenten meerwärts gerichteten Grundwasserfluss oder führen sie auf ein erhöhtes hydraulisches Potential während der letzten Eiszeit zurück. Zur Klärung welcher dieser Prozesse zur Entstehung von küstenfernem Süßwasser geführt hat, soll im Rahmen dieser Studie, auf der Basis eines detaillierten 3D hydrogeologischen Modells, die Grundwasserströmung im NJS numerisch simuliert werden. Es werden folgende Arbeitshypothesen aufgestellt: 1. Küstenfernes Süßwasser im NJS entstand während der letzten Eiszeit. 2. Ablandige Grundwasserströmung reicht gegenwärtig nicht bis zu 100 km von der Küste. 3. Küstenferne Süßwasservorkommen sind auf Sedimentschichten mit niedriger Permeabilität beschränkt. Die verfügbare Datengrundlage ist exzellent und besteht neben petrophysikalischen Messungen und Bohrlochdaten vergangener ODP/IODP Expeditionen aus zahlreichen 2D seismischen Profilen. Das gleichnamige Projekt wird seit Mitte 2015 an der TU Freiberg und seit Ende 2016 an der RWTH Aachen durch die DFG gefördert. Eine Tiefenmigration reflexionsseismischer Profile ist nahezu abgeschlossen und bildet die Grundlage zur Erstellung eines hydrogeologischen Modells. Auf Basis einer sequenz-stratigraphischen Interpretation der seismischen Daten und unter Berücksichtigung der aus Bohrlochdaten abgeleiteten Korngrößenverteilung am NJS, wurde mittels geostatistischer Verfahren ein komplexes, über 30 Millionen Gitterpunkte umfassendes und geologisch plausibles 2D Faziesmodell erstellt. Dabei ist jeder Faziestyp durch bohrloch- und literaturgestützte petrophysikalische Eigenschaften charakterisiert. Nach sorgfältiger Definition von Anfangs- und Randbedingungen, bildet dieses Modell die Grundlage für vorläufige numerischer Simulationen. Die Simulationsergebnisse sind vielversprechend und deuten auf eine Bestätigung der oben genannten Hypothesen hin. Zukünftig geplante Arbeiten umfassen eine Erweiterung des hydrogeologischen Modells in 3D unter Einbeziehung multiple-point-geostatistischer Methoden. Dabei sollen auch die durch eine AVO-Analyse der Seismik abgeleiteten petrophysikalischen Parameter berücksichtigt werden. Die Überprüfung der oben genannten Hypothesen wird durch numerische Simulationsrechnung auf Basis des finalen 3D Modells erfolgen. Die Ergebnisse dieser Studie können zu einem verbesserten Verständnis von meerwärts gerichtetem Grundwassertransport im Allgemeinen beitragen.
Das westantarktische Eisschild (WAES) umfasst ein Volumen von 2,2 Millionen km3 und trägt damit zu etwa 10 Prozent am gesamten antarktischen Eisvolumen bei. In der jüngsten Vergangenheit, hat sich diese Volumen allerdings dramatisch reduziert und zurzeit gehört der WAES zu der am stärksten abschmelzenden Region des antarktischen Kontinents. Satellitengestützte Untersuchungen legen den Schluss nahe, dass der WAES mit 86 Prozent den weitaus größten Anteil am Verlust der antarktischen Eismassen über die letzten zwei Jahrzehnte hatte. Sollte sich das Abschmelzen in einer ähnlichen Weise fortsetzen, ist davon auszugehen, dass alleine die Eismassen des WAES den globalen Meeresspiegelanstieg bis zum Ende des Jahrhunderts um einen Meter ansteigen lassen kann. Ein kompletter Zusammenbruch des WAES könnte sogar zu einem Anstieg des Meeresspiegels von bis zu 6 m führen. Computermodellierungen deuten an, dass Zusammenbrüche des WAES wiederholt seit dem späten Miozän aufgetreten sein könnten und sich über geologisch kurze Zeiträume von nur wenigen hundert Jahren entwickeln. Allerdings sind solche Modellierungen mit großen Unsicherheiten hinsichtlich der zeitlichen Entwicklung als auch der Menge der abschmelzenden Eismassen behaftet. Proxydaten, die Informationen hinsichtlich der zeitlichen und räumlichen Ausdehnung des WAES liefern, sind ein vielversprechender Ansatz um zukünftige Änderungen dieser sehr zerbrechlichen aber aus globaler Sicht äußerst wichtigen Region unseres Planeten zu bestimmen. Solche Proxydaten stehen aus der Westantarktis zurzeit jedoch nur begrenzt zur Verfügung. Sedimente, die vom Kontinentalhang der Amundsensee in der Westantarktis während IODP Expedition 379: 'Amundsen Sea West Antarctic Ice Sheet History' genommen wurden, bieten erstmalig die Möglichkeit kontinuierliche Klimaprofile und Profile der Eismassenbewegungen des WAES über die letzten ca. 6.8 Millionen Jahre in einer bis jetzt einmaligen Auflösung zu generieren. In dem hier vorgestelltem Projekt wird ein Multiproxyansatz bestehend aus bulk-geochemischen Methoden, Isotopen und Lipidbiomarkern gewählt um das Verhalten des WAES auf sich verändernde Umweltparameter zu untersuchen und zu bestimmen ob und auf welchen Zeitskalen partielle oder komplette Zusammenbrüche des WAES erfolgten. Im speziellen, soll der erste durchgängige Temperaturrekord der Westantarktis seit dem späten Miozän erzeugt und die Hypothese getestet werden, dass die Rückwanderung des WAES in der Amundsensee im direkten kausalen Zusammenhang mit dem Übergreifen von relativ warmen zirkumpolaren Tiefenwasser auf die Schelfbereiche der Westantarktis steht. Zudem soll untersucht werden, wie aquatische und terrestrische Ökosysteme auf sich verändernde Eismassenverhältnisse reagieren und ob diese Systeme bei einem sich erwärmenden Klima als Quellen oder eher als Senken für Kohlenstoff fungieren.
Gegenstand des beabsichtigten Forschungsprojektes ist die Untersuchung der Molluskenfaunengemeinschaften des Brackwassers ausgewählter Sedimentationsräume des Oligozäns und Miozäns. In dieser Zeit nach dem Verschluss des Tethys-Ozeans entstanden infolge von Klimaveränderungen und des Rückganges des ursprünglichen zusammenhängenden Mangrovewaldes in Europa völlig neue Lebensbedingungen für die Molluskenfaunen randmariner Biotope. Die weite Verbreitung und der Austausch der Mollusken über planktonische Larven wurde eingeschränkt. Die Faunengemeinschaften der einzelnen Ablagerungsräume sollen in ihrer qualitativen und quantitativen Zusammensetzung erfasst werden. Eine sichere systematische Einstufung erfolgt besonders über die Analyse der Protoconche (Embryonal- und Larvalschalen), da ausgewachsene Schalen häufige Gehäusekonvergenzen aufweisen. Ziel der Untersuchungen ist es, die faunistischen Sukzessionen herauszuarbeiten, Gemeinsamkeiten in der Zusammensetzung der Biozönosen aber auch endemische (an einen Ort gebundene) Formen zu charakterisieren. Ein Vergleich mit bekannten Daten älterer Fossilien und von Vertretern moderner Faunenprovinzen soll einen umfassenden Einblick in die Evolution der Brackwassergastropoden im Känozoikum geben.
In diesem Projekt werden wir die grönländische Küste als ideales Ziel für eine Prozessstudie nutzen, um zu untersuchen, wie sich Veränderungen des Wasserkreislaufs auf die Biogeochemie und Produktivität des Ozeans auswirken.Mit zunehmender jährlicher Abflussmenge aus dem Grönländischen Eisschild (GrIS) stellt sich die Frage, wie sich dieser Süßwasserabfluss auf die Produktivität der Schelfmeere in Grönland auswirkt. Der GrIS ist das zweitgrößte Eisschild der Erde. Wenn Süßwasser vom GrIS in den Ozean gelangt, entstehen in den Küstengewässern der Insel starke physikalische und biogeochemische Gradienten. Diese Gradienten sind am ausgeprägtesten in den Fjorden Grönlands, die flächenmäßig zu den größten maritimen Kohlenstoffsenken gehören. Grönlands Fjorde und Schelfmeere beherbergen auch national wichtige Fischereien, deren Zukunft für die grönländische Wirtschaft von entscheidender Bedeutung ist.Obwohl allgemein anerkannt ist, dass Süßwasser-Gletscher-Inputs die regionale Ozeanzirkulation beeinflussen, steht unser Verständnis von Verbindungen zwischen der Physik der Schmelzwasser-Freisetzung und langfristigen Veränderungen in der marinen Biogeochemie noch in den Anfängen. Ein Thema von aktuellem Interesse für der Intergovernmental Panel on Climate Change (IPCC) ist, wie Kryosphäre und Ozean biogeochemisch in einem sich erwärmenden Klima interagieren werden. Das Hauptziel hier wird sein, zu bestimmen, wie die physikalischen und chemischen Veränderungen, die durch erhöhte Süßwassereinträge in den Ozean um Grönland verursacht werden, die Verfügbarkeit von Nährstoffen (Makronährstoffe und Mikronährstoffe) für Phytoplankton und somit die Primärproduktion beeinflussen.Durch die Kombination von Feldforschung mit idealisierten Modellen werden die Auswirkungen der drei wichtigsten unterschiedlichen Süßwasserquellen (Oberflächenabfluss, Untergrundabfluss und Eisbergschmelze) bestimmt. Die Chemie des Mündungs-Mischprozesses, welcher häufig schnelle Veränderungen der chemischen Form und damit der Bioverfügbarkeit von Nährstoffen induziert wenn sich Süß- und Salzwasser mischen, wird untersucht. Der Nährstofflimitierungsstatus von Phytoplanktongemeinschaften in von Süßwasser beeinflussten Gebieten in Grönland wird bestimmt und somit der Nettoeffekt gleichzeitiger Veränderungen der physikalischen und chemischen Zusammensetzung der Wassersäule bewertet.Dadurch wird es möglich sein, die Auswirkungen der Zunahme von Süßwassereintrag in den polaren Ozean, im Hinblick auf Änderungen der Primärproduktion im Meer zu verstehen.
Der Nord-West Schelf von Australien (NWS) bildet eine sich distal versteilende Karbonat-Rampe, die in ihrer Größe den Karbonatsystemen der Bahamas oder des Persischen Golfs entspricht und somit einen wichtigen Beitrag zum Verständnis älterer Rampensysteme liefern kann. Der NWS erstreckt sich von ca. 13 Grad bis 21 Grad S und liegt am Übergang von den Tropen zu den Subtropen. Die Karbonatsedimentation auf dem Schelf ist stark von der regionalen Ozeanographie abhängig, die durch den südwärts gerichteten, warmen, niedrig salinaren Leeuwin-Strom und den Indonesischen Durchfluss bestimmt wird. Die heutige Sedimentverteilung am Meeresboden ist gut dokumentiert. Erkenntnisse zur neogenen bis pleistozänen Sedimentabfolge sind dagegen auf Informationen von Bohrklein und geophysikalischen Daten beschränkt. Die IODP Expedition 356 erbohrte 2015 den Kontinentalrand des zentralen und südlichen NWS, um dessen Ablagerungsgeschichte vom Miozän bis heute zu untersuchen. Die gewonnenen Daten erlauben zum ersten Mal eine Integration zwischen Kernmaterial und seismischen Untersuchungen mit dem Ziel regionaler sowie detaillierter geomorphologischer Untersuchungen des Karbonat-Systems. Innerhalb des Projektes werden wir: 1) überprüfen, ob sich im Gegensatz zur 'highstand shedding' Theorie auf dem NWS aragonit-reiche 'lowstand wedge' Systeme ausbilden; 2) die Umweltbedingungen analysieren, die zur Ablagerung von Ooiden und Peloiden auf dem NWS führten; 3) mit Hilfe einer am Kern kalibrierten, seismischen und sequenzstratigraphischen Interpretation die Kontrollfaktoren für die Entwicklung und das spätere Ertrinken des miozänen Riffsystems analysieren.
Die marine Eisendüngung durch Inseln ist ein wichtiger Steuerungsprozess der marinen Planktonproduktion, einer der größten atmosphärischen CO2-Senken. Der Prozess lässt sich allgemein im Südozean beobachten, wo die glaziale Verwitterung auf Inseln eine gut dokumentierte Quelle an reaktivem, partikulärem Fe (pFe) darstellt. Diese Verwitterung dürfte sehr empfindlich auf den globalen Klimawandel reagieren. Der diagenetische Stoffkreislauf auf dem Schelf, mit Rückdiffusion und Rücksuspension von Fe in die Wassersäule ist eine weitere Quelle von globaler Bedeutung. In unseren vergangenen Studien auf King George Island, antarktischer Inselbogen, konnten wir zeigen, Fe-isotope eine Unterscheidung dieser Quellen erlauben. Jedoch zeigt die Fe-Isotopenzusammensetzung des gelösten Fe (dFe) insgesamt im Südozean eine überraschend große Variabilität von etwa 2‰ (d56Fe). Dies bedeutet entweder eine lokal sehr variable Mischung der beiden Fe-Quellen, einen regional sehr diversen Fe-Stoffkreislauf mit variabler Interaktion zwischen dFe und pFe, ein regional sehr dynamischer biologischer Fe-Kreislauf in der Wassersäule, oder Kombinationen aller drei Aspekte. Ich beantrage während einer FS Polarstern Expedition (PS-133), die verschiedenen Fe-Quellen von der Küste der Insel Süd-Georgiens und den Fe-Transport in den offene Ozean mithilfe von Fe-Isotopenanalysen zu verfolgen, und die Transformation dieser partikulären Fe-Quellen in bioverfügbares dFe, z.B. durch Lösung und Austausch mit der Partikeloberfläche, auf der Basis der Fe-Isotopenfraktionierung zu bestimmen. Die Fe-Isotopenfraktionierungsfaktoren, die generell im marinen Millieu nur unzureichend bestimmt sind, sollen experimentell im Labor und an Bord bestimmt werden. Diese Austauschexperimente beinhalten Mischungen aus reinen Fe-Oxyhyroxiden und Mn-Oxiden mit künstlichem Meerwasser, sowie Mischungen aus mittels Tangentialflussfiltration angereicherten marinen Partikeln von der Schelf- und Kontinentalhangregion Süd-Georgiens mit filtriertem, partikelfreiem Meerwasser von stromaufwärts der Insel. Ebenso werden Mischungen aus reinen Mineralphasen mit Meerwasser des Südozeans untersucht. In allen Experimenten wird das Wasser mit einem monoisotopisch angereicherten „Spike“ versetzt, werden die Experimente (lang)zeit-kontrolliert beprobt, und die „Drei-Isotopenmethode“ konsequent verwendet, mittels derer die Extrapolation der isotopischen Fraktionerungsfaktoren möglich ist, selbst wenn die Austauschreaktion nicht vollständig abläuft. Die experimentell bestimmten Fraktionierungsfaktoren dienen als Basis, die natürlichen, molekularen Austauschprozesse bei der marinen Fe-Düngung zu identifizieren. Die natürliche Fe-Düngung soll vor Süd-Georgien auf der PS-133 Expedition vom Littoral bis in den offen, hochproduktiven Ozean beobachtet und beprobt werden. Zum Vergleich sollen zusätzlich Proben aus dem Littoral und der Küstenregion vor King George Island von einer früheren Expedition analysiert werden.
Origin | Count |
---|---|
Bund | 362 |
Land | 26 |
Wirtschaft | 1 |
Wissenschaft | 15 |
Type | Count |
---|---|
Daten und Messstellen | 12 |
Ereignis | 5 |
Förderprogramm | 327 |
Gesetzestext | 4 |
Taxon | 5 |
Text | 7 |
Umweltprüfung | 2 |
unbekannt | 31 |
License | Count |
---|---|
geschlossen | 10 |
offen | 369 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 307 |
Englisch | 120 |
Resource type | Count |
---|---|
Archiv | 7 |
Datei | 8 |
Dokument | 5 |
Keine | 166 |
Unbekannt | 5 |
Webdienst | 18 |
Webseite | 203 |
Topic | Count |
---|---|
Boden | 388 |
Lebewesen und Lebensräume | 339 |
Luft | 269 |
Mensch und Umwelt | 388 |
Wasser | 369 |
Weitere | 385 |