Nach hamburgischem Landesrecht werden Veröffentlichungen durch Abdruck im Hamburgischen Gesetz- und Verordnungsblatt vorgenommen. Rechtsverbindlich ist deshalb ausschließlich die gedruckte Ausgabe des Hamburgischen Gesetz- und Verordnungsblattes. Eine Inhaltssuche kann nur über die Internetseite der <a href="http://www.luewu.de/gvbl/">Firma Lütcke & Wulff</a> erfolgen.
This report is a synthesis of the research and re-evaluates the options previously considered in this project (Vieweg et al (2014)) in the light of the negotiation process up to today. The mitigation-related design elements considered are:Participation and differentiation of countries;Types of commitments, including also the compulsory character of the commitments and time aspects;Guidance on ambition of the commitments to assure adequacy of global and individual coun-tries’ efforts;Transparency of commitments
Die Seite "Landesrecht online" bietet Ihnen die Möglichkeit, online in den Hamburger Rechtsvorschriften (Gesetze, Verordnungen etc.), den Entscheidungen der Hamburger Gerichte sowie in den schulrechtlichen Verwaltungsvorschriften zu recherchieren.
Das Projekt "Upscale Error Growth - A2: Structure formation on cloud scale and impact on larger scales" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. Cloud particles are determined by microscopic processes, such as nucleation/condensation, growth, aggregation and sedimentation. These processes can feedback on dynamics or organize themselves and form macroscopic cloud structures on the order of tens of kilometers. At particles scales (order of micrometers) only little energy is transferred in the system. However through forming structures on cloud scales, diabatic heat sources are confined and concentrated on this scale and can interact with atmospheric flows. In this project the formation of cloud structures and structures in clouds will be investigated. We will identify and determine possible structures in clouds containing ice crystals, i.e., mixed-phase clouds and pure ice clouds. In addition, we will identify the governing processes leading to structure formation and investigate the impact of cloud structures on processes on larger scales than cloud scale. Our approach is two-fold, using high-resolution modeling of clouds and mathematical analysis of cloud physics equations. For consistency, we start with a common analytical cloud model, which will be used in both parts of the project. In the modeling part of the project we will carry out high-resolution numerical simulation of clouds, represented by the cloud model coupled to equations of atmospheric motion (sound-proof models of compressible viscous flows). We will concentrate on convective situations, starting with moist Rayleigh-Benard convection, extended to multiphase systems, but proceed to more realistic convective scenarios. The output of the simulations will be evaluated in terms of temporal and/or spatial structures of clouds. Complementary, we will investigate the underlying equation of cloud physics combined with atmospheric dynamics using mathematical analysis. We will use different methods in order to identify possible structure formation. For direct analysis we will use techniques from dynamical system theory in order to analyze the equations in terms of equilibrium states, limit cycles, Lyapunov exponents, bifurcations due to parameters and attractors, respectively. On the other hand, we will use reduction techniques (e.g., as used for Landau-Ginzburg equations or reduced order methods) in order to simplify the underlying equations towards the governing processes determining structure formation. In a synthesis of these methods (structures in numerical modeling vs. mathematical analysis) we will finally derive some minimal models describing structure formation on cloud scale. These models will allow us to determine the impact of cloud scale structures on larger scales. Finally, we will carry out first numerical investigations on the impact of structured heat sources on atmospheric flows. Here, minimal models as derived during the project will be used for describing the structured heat sources, embedded into an atmospheric flow for certain idealized flow conditions. (abridged text).
Das Projekt "Sub project: On the geochemistry of volcanic gases and fluids from the Unzen volcano - ICDP-Unzen-Conduit-Drilling" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Within the framework of the ICDP Unzen Drilling Project we plan to analyse, on a continuous basis, the gas phase dissolved in the drill mud. The Unzen-Conduit-Drilling which starts on a flank, encloses both the hydrothermal and magmatic fluid systems of the volcano in a continuous profile. Real-time gas analysis will provide essential data on the amount and penetration depth of meteoric water as well as on convection processes of deep ground water and the dynamics and intensity of the mixture with volcanic (magmatic) gases. The internal connections and geometry of the fumaroles can thus be quantified directly along the drilled depth profile. With the planned gas monitoring experiment and subsequent laboratory isotope studies we aim to explain in how far a correlation exists between the composition and amount of degassed magmatic fluids and the seismicity in the volcano as well as its eruptive behaviour.
Das Projekt "Tagung 'Welterbe und nachhaltige Entwicklung' an der INA Vilm" wird vom Umweltbundesamt gefördert und von Bundesamt für Naturschutz durchgeführt. Vom 16. - 20. Oktober 2017 hat an der INA die Tagung 'World Heritage and Climate Change - Towards an Update of the Policy Document on the Impacts of Climate Change on World Heritage Properties' stattgefunden. Mitveranstalter waren IUCN, das UNESCO-Welterbezentrum, sowie die beiden anderen Beratungsorganisationen der Welterbekonvention, ICOMOS und ICCROM. Zielsetzung des Workshops war es, zur Umsetzung der Entscheidungen des Welterbekomitees von 2016 und 2017 beizutragen, welche eine Überarbeitung des 'Policy Documents on the Impacts of Climate Change on World Heritage Properties' fordert. In den Prozessen der Welterbekonvention wird das Thema 'Sustainable Development' mittelfristig eine wichtige Rolle spielen. Der Klimawandel ist ein zentrales Element der 'Policy for the Integration of a Sustainable Development Perspective into the Processes of the World Heritage Convention'. Damit stand der Workshop in direktem Zusammenhang mit dem bereits 2016 durchgeführten Workshop zum Thema 'World Heritage and Sustainable Development'. Die Veranstaltung war mit 20 internationalen Expertinnen und Experten aus 15 verschiedenen Ländern sehr gut besucht. Es ist gelungen Expertinnen und Experten aus allen globalen Regionen, dem Natur- und Kulturerbesektor, sowie Vertreter der Mitveranstalter zusammen zu bringen. Die Ergebnisse des Workshops lassen sich wie folgt zusammenfassen: - Die TeilnehmerInnen stellten fest, dass Klimawandel sich in den vergangenen Jahren zu einem der Haupteinflussfaktoren auf Welterbestätten entwickelt hat. - Die aktuelle Policy, 2007 verabschiedet, benötigt eine umfassende Überarbeitung, da sie sich ausschließlich mit dem Management von Klimawandelfolgen in Welterbstätten befasst und übergeordnete Fragen zum Zusammenhang zwischen Welterbe und Klimawandel und neue Entwicklungen im internationalen Klimaschutz nicht behandelt. - Im Workshop wurden Empfehlungen im Hinblick auf diese Überarbeitung entwickelt, die sich mit den Inhalten der zukünftigen 'Policy', dem Ansatz für die Umsetzung der neuen Policy und dem weiteren Prozess zur Erarbeitung dieser befassen. Die wichtigsten Ergebnisse des Workshops wurden in einem Bericht zusammengefasst und werden direkt in den weiteren Prozess zur Überarbeitung des Dokumentes einfließen, welcher vom UNESCO-Welterbezentrum und den Beratungsorganisationen gesteuert wird. Dieser Bericht wurde vom Welterbezentrum bereits auf dessen Webseite veröffentlicht.
Das Projekt "DOAS Messungen von der NASA Global Hawk während des NASA-ATTREX Projektes" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. The present project addresses differential optical absorption spectrometry (DOAS) measurements in scanning limb geometry from aboard the unmanned high-flying aircraft NASA Global Hawk (GH). The DOAS measurements are made within the NASA sponsored ATTREX (Airborne Tropical TRopopause EXperiment) project, by a 3 channel (UV/vis/nearer) optical spectrometer financed by NASA, but mostly built in Heidelberg. In fall 2011 and winter 2012/13 successful flights were already successfully performed and the DOAS instrument peformed. Within ATTREX three field campaigns are planned to take place in the Western Pacific (from EAFB, GUAM, and Darwin) in the years 2013 to 2014 (Jan./Feb. 2013, Jan./Feb. 2014 and June/July 2014). The field campaigns comprise about 50 GH sorties with 600 flight hours spent air-borne. Major scientific foci of the NASA-ATTREX project are the photochemistry, the microphysics of aerosols and cloud particles, and air mass transport into and within the tropical tropopause layer (TTL). The DOAS measurements aim to measure the vertical profiles in the TTL of ozone relevant species such as O3, HONO, NO2, C2H2O2, CH2O, O4, BrO, OClO, IO, and OIO, and of some microphysical properties aerosols and clouds, i.e., the particle phase function, Mie scattering extinction coefficient, the ice water path (IWP) and probably the ice water content (IWC). Together with complementary observations made by other instruments aboard the GH, the DOAS measurements may serve to particularily provide new insights into (a) the photochemistry of halogen oxides (OClO, BrO and IO) in the TTL, in particular on the contribution of so called halogenated Very Short Lived Species (VSLS) to the budgets of stratospheric halogens, (b) the impact of lightning produced NOx and HOx (NO2, and HONO) and other of radicals (c.f. CH2O, BrO, IO) to the oxidation capacity of air in the outflow region of deep convection, and (c) to the abundance and micro-physical properties of frozen aerosols and cloud particles in the upper tropical troposphere and TTL.
Das Projekt "Vorbereitung von COP-10 und Erarbeitung naturschutzfachlicher Ziele für die CBD nach 2010" wird vom Umweltbundesamt gefördert und von Staatliches Museum für Naturkunde Stuttgart, Abteilung Entomologie durchgeführt. Die Nationale Kontaktstelle der GTI soll auf der Vertragsstaatenkonferenz zur Konvention über die Biologische Vielfalt (VSK9) vom 19.-30 Mai 2008 in Bonn das von ihr erarbeitete 'GTI Global Assessment of Taxonomic Needs and Capacities' in Rahmen eines Side Event präsentieren, das in Kooperation mit dem CBD Sekretariat durchgeführt werden soll. Aufgrund des erheblichen Datenmaterials sind für die globale taxonomische Bedarfsanalyse im Zeitraum bis Mai 2008 noch umfangreiche Aufarbeitungen und Analysen erforderlich. Darüber hinaus sind in diesem Zeitraum die für die VSK9 geplanten Berichte und Publikationen vorzubereiten. Vom Juni bis September 2008 sollen die GTI-relevanten Ergebnisse der VSK9 aufbereitet und einschlägig unter folgendem Titel publiziert werden: S.C. Renner und Ch.L. Häuser: Towards a 'GTI Global Assessment of Taxonomic Needs and Capacities' - A Global Analysis of Knowledge Gaps, Capacity, Requirements, and Recommendation for Action. (ca 200 Seiten). Diese Publikation soll für die folgenden Jahre eine wesentliche Arbeitsgrundlage für die 'Globale Taxonomie Initiative' (GTI) der CBD bilden. Darüber hinaus besteht die Absicht, wesentliche Ergebnisse der globalen Analyse in der international führenden Zeitschrift 'Conservation Biology' unter dem Titel: Renner SC, Häuser CL. 'What do we know? A global knowledge-gap analysis of species inventories in protected areas - an indicator for conservation management zu publizieren. Solch eine Publikation kann wesentlich zur internationalen Verbreitung der neuen Erkenntnisse beitragen. Mit der zu leistenden Arbeit wird auch ein wichtiger Beitrag für die Umsetzung der nationalen Biodiversitätsstrategie erbracht. Hierzu gehört u.a. die Vorstellung der Arbeit des GTI National Focal Points sowie die Präsentation der aktuellen Ergebnisse der COP9 Vorbereitung auf der Tagung der Gesellschaft für Biologische Systematik in Göttingen im April 2008 (Tagung: Systematics 2008; geplanter Vortrag: Renner SC ...
Das Projekt "The iron-snow regime in Fe-FeS cores: a numerical and experimental approach" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf, Institut für Fluiddynamik durchgeführt. In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.
Das Projekt "Upscale Error Growth - A5: The role of soil moisture and surface- and subsurface water flows on predictability of convection" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU) durchgeführt. Moist convection is an atmospheric process whose initiation depends both on the synoptic-scale weather situation and local forcing. In weather situations characterized by weak synoptic-scale forcing, local characteristics (e.g. land surface variability) are more likely to be significant in the initiation of convective precipitation. Current state of the art numerical weather prediction (NWP) models still have a limited representation of terrestrial hydrological processes, particularly with respect to soil moisture and lateral terrestrial water flows. In the same time these NWP models are known for their limited forecast quality during weak synoptic-scale forcing conditions, which could be related to a larger contribution of unresolved land-atmosphere coupling processes in such weather situations. In this project we will investigate which improvements in convective precipitation predictability can be achieved by a more sophisticated treatment of terrestrial hydrological processes in NWP models. To reach this objective we will simulate a panel of joint case-studies in Germany and West Africa using the Weather Research and Forecasting (WRF) model, a hydrologically enhanced version of WRF, namely WRF-Hydro, and the Consortium of Small-scale Modeling (COSMO) model. We will then develop methods to quantify the physical processes at stake in soil moisture - precipitation feedback mechanisms, especially for the cases where more complex descriptions of surface and subsurface lateral water flows improve precipitation predictability. A further focus will be set on the description of uncertainties by adopting and applying a stochastic boundary layer parameterization. This parameterization scheme aims to represent subgrid-scale variability caused by specific processes important for convective initiation. Such a parameterization is developed by project A6 for the COSMO model and will be transferred and implemented in the WRF/WRF-Hydro modeling system. The ability of this approach to account for the land-atmosphere exchange variability originating from surface and subsurface lateral water flows will be assessed. Ensembles of soil moisture fields produced by WRF-Hydro will be shared with project B3, in order to investigate the sensitivity of cloud microphysical and boundary layer processes to a physically-enhanced description of soil moisture initial and boundary condition in the COSMO model. We will finally assess the role of lateral water flows at the surface and subsurface for improved soil moisture initialization in weather forecasting.