API src

Found 124 results.

Related terms

Submarine Kohlendioxyd (CO2) Austritte als natürliche Laboratorien zur Erforschung von Korallenriffen in Bezug auf die Ozeanversauerung

Das Projekt "Submarine Kohlendioxyd (CO2) Austritte als natürliche Laboratorien zur Erforschung von Korallenriffen in Bezug auf die Ozeanversauerung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachgebiet Geochemie und Hydrogeologie.Durch die Aufnahme von anthropogenem CO2 ist eine Verringerung des ph Wertes im Ozean zu erwarten Dies könnte weitrechende Auswirkungen auf Korallenriffe haben und ist daher von großem wissenschaftlichen Interesse. Die Mehrzahl der bisher durchgeführten Studien zur Ozeanversauerung wurde anhand vereinfachter Systeme im Labor vorgenommen. Obwohl diese Studien wichtig und aufschlussreich waren, wiesen sie jedoch Einschränkungen auf, im Besonderen hinsichtlich natürlicher Veränderungen, Beobachtungsdauer, Altersverteilung, genetischer Vielfalt und Wechselbeziehungen zwischen einzelnen Korallenarten. Eine Möglichkeit diese Einschränkungen zu umgehen, ist die Untersuchung von Korallenriffen in der Umgebung von submarinen CO2-Austritten. Der erhöhte CO2 im Meerwasser dort sorgt für pH und Temperaturbedingungen wie sie als Folge der Ozeanversauerung bis zum Jahr 2100 vorausgesagt werden. Drei solche Korallenriffe in Papua Neu Guinea, Japan und den Nördlichen Marianen-Inseln wurden untersucht und interessanter Weise fiel die Auswirkung der Ozeanversauerung an jedem der Standorte unterschiedlich aus. Eine mögliche Erklärung für die beobachteten Unterschiede könnte sein, dass die Studien nicht alle Parameter berücksichtigten, die sich nachteilig auf die Gesundheit von Korallen auswirken. Im Allgemeinen werden submarine CO2-Austritte von submarinen Hydrothermalquellen mit Temperaturen bis zu 100 °C begleitet. Der hydrothermale Eintrag induziert steile Temperaturgradienten und erhöht die Konzentrationen von Schwermetallen in dem zu untersuchenden Gebiet. Diese zwei Effekte gilt es bei einer solchen Untersuchung zur Ozeanversauerung in Betracht zu ziehen. In diesem Sinne dient die geplante internationale Zusammenarbeit dem Ziel, ein Expertenteam aus der Aquatischen Chemie und der Korallenphysiologie zusammenzubringen, um detaillierte chemische und biologische Untersuchungen an Korallenriffen mit CO2-Austritten vorzunehmen, um die Auswirkungen der Ozeanversauerung besser zu verstehen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Der Einfluss von Nährstoff- und Temperaturänderungen auf die Entwicklung der Korallenriffe in der Korallensee seit 12 Ma

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Der Einfluss von Nährstoff- und Temperaturänderungen auf die Entwicklung der Korallenriffe in der Korallensee seit 12 Ma" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Lehrstuhl für Geologie und Paläontologie und Geologisches Institut.Weltweit erleben Korallenriffe einen Niedergang. Die langfristigen Folgen dieses Rückgangs der Korallenriffe sind noch ungewiss. Es ist dagegen klar, dass Millionen von Menschen für ihr Überleben auf dieses am weitesten entwickelte Ökosystem in niederen Breiten angewiesen sind. Anthropogen bedingte globale Veränderungen wie die globale Erwärmung, die Versauerung der Ozeane und die Verschlechterung der Wasserqualität (Eutrophierung) wurden als mögliche Schuldige für den Niedergang der Korallenriffe identifiziert. Das Zusammenspiel dieser Faktoren ist jedoch unbekannt und verschiedene Studien deuten darauf hin, dass sie die Entwicklung der Korallenriffe hemmen oder fördern können. Ein Problem ist das Fehlen von Langzeitaufzeichnungen von Meeresoberflächentemperatur (SST) und -produktivität aus Gebieten mit einer Korallen-Vergesellschaftung, die modernen Riffen ähnelt. In diesem Projekt planen wir diese Rekonstruktion für das Queensland Plateau, welches in der Nähe des heutigen Großen Barriere Riffs liegt. Es ist bekannt, dass sich die Korallenriffe in dieser Region bis zum späten Miozän (10-5,5 Ma) ausgedehnt haben. Danach kam es während der mittelpliozänen Warmzeit (3,0-3,5 Ma) zu einer Reduktion der Fläche des Riffsystems. Wir planen drei Biomarker (UK37', TEX86, LDI) zur Rekonstruktion der Meeresoberflächentemperatur zu verwenden. Zur Rekonstruktion der Produktivität werden neue, korallenspezifische Stickstoffisotope mit den Biomarkern und korallen-basierten Ba/Ca verglichen werden. Unsere Pilotdaten zeigen, dass sowohl Meeresoberflächentemperaturen als auch die Produktivität während des Mittel-Pliozäns hoch waren, während nur SSTs während des späten Miozäns hohe Werte zeigen. Diese vorläufigen Daten deuten darauf hin, dass hohe SSTs in Kombination mit einer erhöhten Produktivität während des mittleren Pliozäns die Reduktion des Riffwachstums auf dem Queensland Plateau verursacht haben könnten. Um diese Hypothese zu überprüfen ist es essentiell Daten in höherer Auflösung zu generieren, um die Wechselwirkung von Faktoren zu bestimmen, die zum Verlust von Korallenriffen in der Vergangenheit geführt haben und potentiell in der Zukunft führen werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Geomorphologie der Belize Barrier Reef-Margin: eine Vorstudie für IODP-Bohrungen

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Geomorphologie der Belize Barrier Reef-Margin: eine Vorstudie für IODP-Bohrungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Frankfurt am Main, Institut für Geowissenschaften, Facheinheit Paläontologie, Arbeitsgruppe Biosedimentologie.Als Voraussetzung für IODP-Bohrungen am Belize Barrier Reef ist eine detaillierte bathymetrische Studie geplant. Diese soll mit Hilfe von Multibeam und flachseismischer Technik entlang ausgewählter Abschnitte im Außenriff (Wassertiefen 20-150 m) durchgeführt werden. Es existieren bislang keine detaillierten und GPS-gestützten Bathymetrie- und Seismik-Daten des Außenriffbereichs. Basierend auf den zu gewinnenden Daten sollen potentielle Bohrlokationen für das IODP gefunden werden. Unsere Arbeitshypothese geht davon aus, daß postglaziale Riffe deutliche topographische Lineamente bzw. Terrassen entang des Plattformrandes bilden. Wir beabsichtigen, Lokationen zu identifizieren, die geeignet sind, postglaziale (20-10 kyr BP) und darunterliegende, ältere pleistozäne Ablagerungen entlang einer Reihe von Bohrtraversen zu gewinnen. Außerdem ist ein internationaler Workshop mit interessierten Kollegen geplant, um die Möglichkeiten zu diskutieren, einen IODP-Antrag zu entwickeln. Der darauf aufbauende IODP-Antrag könnte vier potentielle Ziele haben: (1) Rekonstruktion des postglazialen Meeresspiegel-Anstiegs, (2) Analyse und Quantifizierung der postglazialen Riff-Zusammensetzung und -Architektur, (3) Gewinnung von Temperatur- und Karbonat-Sättigungs-Daten während dieses Zeitfensters. (4) Außerdem können Aspekte der pleistozänen Riff-Initiation und Paläökologie untersucht werden, abhängig vom Kerngewinn in älteren pleistozänen Abfolgen. Vor dem Hintergrund der modellierten Zunahme der Meeresspiegeanstiegsrate im 21. Jahrhundert, können postglaziale, ertrunkene Riff-Abfolgen für zukünftige Meeresspiegel-Projektionen genutzt werden. Im Unterschied zu hochauflösenden und robusten, Riff-basierten postglazialen Meeresspiegelkurven im Indo-Pazifik (Huon, Tahiti, Great Barrier Reef), existiert nur ein vergleichbares Archiv im westlichen Atlantik (Barbados). Das Barbados-Archiv ist insoweit merkwürdig als von den Schmelzwasser-Ereignissen (MWP) 1A und 1B in Tahiti (IODP 310) und NE-Australien (IODP 325) nur MWP 1A nachgewiesen wurde. Außerdem wurden, wie auch in anderen früh-holozänen Riffabfolgen, Mikrobialithe in großer Häufigkeit gefunden. Diese fehlen aber offensichtlich in Barbados aus bislang ungeklärten Gründen. Besonders die Häufigkeit (Dicke, Volumen) der Mikrobialith-Fazies in postglazialen Riffen ist von Bedeutung als Umwelt-Proxy, da die vergleichsweise einfachen Organismen (Bakterien) in großem Maße von Umwelt-Veränderungen abhängig sind, und daher einfacher zu interpretieren sind als Proxy-Daten (Sklerochronologie, d18O, Sr/Ca) von enzymatisch kontrollierten Skelettbildnern wie Korallen. Es wird diskutiert, ob die Mikrobialith-Häufigkeit von der Art des Hinterlandes, der Karbonatsättigung oder der Rate des Meeresspiegel-Anstiegs gesteuert wird. Ein neues, postglaziales Korallenriff-Archiv aus dem tropischen Atlantik würde helfen, diese offenen Fragen zu beantworten und den Verlauf des Meeresspiegel-Anstiegs im westlichen Atlantik zu konkretisieren.

Sklerochronologie und Isotopie von Korallen in Belize, Zentralamerika

Das Projekt "Sklerochronologie und Isotopie von Korallen in Belize, Zentralamerika" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Frankfurt, Fachbereich 11 Geowissenschaften,Geographie, Geologisch-Paläontologisches Institut.Vom größten Riffkomplex des Atlantischen Ozeans vor der Küste von Belize (Zentralamerika) liegen bislang keine historischen Klimadaten aus Korallen vor. In dem hier beantragten Projekt sollen 18 bereits vorliegende Bohrkerne aus massiven Korallen von Belize sklerochronologisch und geochemisch untersucht werden. Variationen der Wachstumsraten und Schwankungen in der isotopischen Zusammensetzung von Kohlenstoff und Sauerstoff in den Korallenskeletten sollen ermittelt werden, um eine Klimageschichte der letzten 150-200 Jahre für die Region aufzustellen. Da die Kerne in unterschiedlichen Rahmenbedingungen (offenmarine, lagunäre und landnahe Position; unterschiedliche Wassertiefen) genommen wurden, sollte es weiterhin möglich sein, Einflüsse lokaler Variationen von Umweltparametern wie Temperatur, Salinität, Nährstoffgehalten und Licht zu entziffern. Die Ergebnisse dieser Studie sollen mit publizierten historischen Klimadaten des COADS (comprehensive ocean-atmosphere data set) Datensatzes verglichen werden. Weiterhin ist geplant, die Daten mit anderen im Atlantik im Bereich der Sklerochronologie tätigen Arbeitsgruppen auszutauschen, um einen Beitrag zur Rekonstruktion der Veränderlichkeiten von Meeresströmungen und Klima im karibisch-atlantischen Raum zu leisten.

Transplantation von Steinkorallenfragmenten auf elektrochemisch erzeugte Riffstrukturen

Das Projekt "Transplantation von Steinkorallenfragmenten auf elektrochemisch erzeugte Riffstrukturen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität-Gesamthochschule Essen, Institut für Ökologie, Abteilung Hydrobiologie.Korallenriffe werden zunehmend mechanisch gestoert; die Bedeckung mit lebenden kalkabscheidenden Steinkorallen ist vielerorts unter die kritische Rate fuer das Riffwachstum gesunken. Zur Rehabilitation geschaedigter Korallenriffe wird in situ geeignetes Besiedlungssubstrat via Elektrolyses aus dem Meerwasser abgeschieden. Neben der Schaffung optimaler Ansiedlungsbedingungen fuer Korallenlarven sorgt eine zusaetzliche 'Aufforstung' mit lebenden Korallenfragmenten fuer die rasche Etablierung von Geruestbildnern. So koennen in veroedeten Arealen Trittsteinbiotope fuer die weitere Besiedlung und grossflaechige Bestandserholung geschaffen werden. Die Methode wurde im Kubikmetermassstab bei Aqaba im Roten Meer erfolgreich erprobt. Spezielle Anlagen fuer die Marikultur von Schwaemmen, Korallen und anderen wirtschaftlich interessanten Arten sowie der Einsatz bei der Schaffung spezieller Erlebnis- und Uebungsraeume fuer Tauchtouristen sind geplant.

Energiepolitik und Wissenschaft - die Enquete-Kommission 'Zukünftige Kernenergie-Politik' (Arbeitstitel)

Das Projekt "Energiepolitik und Wissenschaft - die Enquete-Kommission 'Zukünftige Kernenergie-Politik' (Arbeitstitel)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bielefeld, Graduiertenkolleg 724 'Auf dem Weg in die Wissensgesellschaft: institutionelle und epistemische Transformationen der Wissensproduktion und ihre gesellschaftlichen Rückwirkungen'.Ziel des Projektes ist es, die Zusammenarbeit von Wissenschaft und Politik innerhalb der Enquete-Kommission 'Zukünftige Kernenergie-Politik' zu untersuchen, die ihren ersten Bericht 1980 vorlegte. In diesen wissenschaftlichen Beratungsprozess waren neben industrienahen Wissenschaftlern auch Alternative integriert - wie beispielsweise ein Sachverständiger des Öko-Instituts, das von Mitgliedern der Umweltbewegung gegründet wurde. Damit gewannen alternative Wissenschaftler zunehmend Gewicht in der Diskussion um zukunftsfähige Energiepolitik, die bis dahin vor allem von den - der Industrie nahe stehenden - Forschungseinrichtungen wie Jülich und Karlsruhe bestimmt wurde. Vor dem Hintergrund der innenpolitisch prägenden Konfliktphase um die Atomenergie soll die Funktionsfähigkeit der wissenschaftlichen Politikberatung untersucht werden. Dies beinhaltet neben der Untersuchung von Kommunikationsprozessen auch die Frage nach den Argumentationsstrategien.

Breeding and Rearing of Ornamental Organisms under Controlled Conditions

Das Projekt "Breeding and Rearing of Ornamental Organisms under Controlled Conditions" wird/wurde ausgeführt durch: Zentrum für Marine Tropenökologie an der Universität Bremen.

Processes of reef diversification during the Ordovician Radiation

Das Projekt "Processes of reef diversification during the Ordovician Radiation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Freie Universität Berlin, Institut für Geologische Wissenschaften, Fachrichtung Paläontologie.During the Ordovician a massive diversification occurred within reef structures and habitats. In this time interval microbial bioherms were generally replaced by more complex metazoan-dominated structures. These changes were accompanied by a dramatic diversification of the entire reef-fauna. Here I will test the hypothesis, that ecosystem-inherent factors prompted the diversification and the expansion of Ordovician reefs. Hypothetically, new types of organisms massively, and largely independent from climatic and physicochemical changes, influenced the susceptibility, and the structural differentiation of Ordovician reefs. In order to test this hypothesis, a detailed characterization of the evolution of fossil communities within Ordovician reef-systems is necessary. A sedimentological microfacies analysis, and a taxon-quantitative analysis of specific Ordovician reef structures is intended, which will identify crucial diversification drivers. A comparison of changes in the fossil communities of Ordovician reefs with known physicochemical changes will identify the role of organisms itself during the course of the diversification.

Das 1,5-Grad-Ziel nach dem Übereinkommen von Paris

Was ist eigentlich wirklich damit gemeint, wenn vom „1,5-Grad-Ziel“ für das Klima gesprochen wird? Woher kommt dieser Wert und wie wird er gemessen? Was passiert, wenn wir das Ziel überschreiten – gibt es danach noch ein Zurück unter 1,5 Grad Erderwärmung? Dieser Text geht auf die Hintergründe des 1,5-Grad-Ziels ein und erklärt, warum wir dieses Ziel in Reichweite halten müssen. Mit der Verabschiedung des Übereinkommens von Paris (ÜvP) auf der Weltklimakonferenz im Dezember 2015 setzte sich die Weltgemeinschaft das gemeinsame Ziel, dass „der Anstieg der durchschnittlichen Erdtemperatur deutlich unter 2 °C über dem vorindustriellen Niveau gehalten wird und Anstrengungen unternommen werden, um den Temperaturanstieg auf 1,5 °C über dem vorindustriellen Niveau zu begrenzen […]“. Das darin enthaltene 1,5-Grad-Ziel wurde in den folgenden Jahren zum Maßstab des politischen Handelns im globalen ⁠ Klimaschutz ⁠. Die Bedeutung dieser Temperaturobergrenze für den Schutz von Menschen und Umwelt wurde unter anderem durch den Sonderbericht des Weltklimarats (Intergovernmental Panel on Climate Change, ⁠ IPCC ⁠) aus dem Jahr 2018 über 1,5 Grad globale Erwärmung unterstrichen. Hier das UBA-Positionspapier zum 1,5-Grad-Ziel lesen. Was bedeutet das 1,5-Grad-Ziel? Das 1,5-Grad-Klimaziel, das 2015 im ÜvP festgelegt wurde, bezieht sich auf den Anstieg der globalen Durchschnittstemperatur im Vergleich zum vorindustriellen Niveau (1850-1900). Eine Erwärmung um 1,5 Grad würde zwar immer noch erhebliche Auswirkungen haben, aber diese wären deutlich weniger katastrophal als eine Erwärmung von zwei Grad oder mehr. Im ÜvP selbst wurde die Basislinie, also der genaue Referenzzeitraum, für vorindustrielle Messungen nicht definiert. Der ⁠ IPCC ⁠ verwendet jedoch eine Basislinie von 1850 bis 1900. Dies ist der früheste Zeitraum mit zuverlässigen, nahezu globalen Messungen. Ein kurzer Ausflug in die Geschichte Das 1,5-Grad-Ziel wurde 2015 im Rahmen des ÜvP festgelegt, aber seine Wurzeln reichen weiter zurück: 1992 wurde die Klimarahmenkonvention der Vereinten Nationen (⁠ UNFCCC ⁠) auf der ⁠ UNO ⁠-Konferenz für Umwelt und Entwicklung in Rio de Janeiro beschlossen, um eine globale Antwort auf den ⁠ Klimawandel ⁠ zu koordinieren. 1997 setzte das Kyoto-Protokoll erstmals rechtlich bindende Emissionsziele für Industrieländer fest, jedoch ohne spezifische Temperaturziele. 2010 wurde mit dem Cancun-Abkommen auf der Klimakonferenz in Cancun das langfristige Ziel bestätigt, die Erwärmung auf unter zwei Grad zu begrenzen. Der 1,5-Grad-Grenzwert wurde von besonders betroffenen Staaten gefordert. 2015 einigten sich die Staaten als Ergebnis wissenschaftlicher Forschung und intensiver diplomatischer Verhandlungen auf der COP21 in Paris mit dem Übereinkommen von Paris auf das Ziel, die Erwärmung auf deutlich unter zwei Grad zu begrenzen und Anstrengungen zu unternehmen, sie auf 1,5 Grad zu beschränken. Warum 1,5 Grad? Wissenschaftliche Erkenntnisse und Studien, größtenteils zusammengetragen in den Berichten des ⁠ IPCC ⁠, haben gezeigt, dass eine Erwärmung über 1,5 Grad hinaus schwerwiegende und möglicherweise irreversible Auswirkungen auf das ⁠ Klima ⁠ haben kann. Schon bei 1,5 Grad Erwärmung sind Meeresspiegelanstiege, der Verlust großer Eisflächen, Hitzewellen und die Bedrohung für Inselstaaten signifikant. Bei zwei Grad globaler Erwärmung und darüber hinaus werden sehr wahrscheinlich irreversible Kipppunkte erreicht, die das ⁠ Klimasystem ⁠ destabilisieren und unumkehrbare Veränderungen nach sich ziehen würden. Zu den drastischen Auswirkungen des fortschreitenden Klimawandels zählen: Extremwetterereignisse: Eine Erwärmung über 1,5 Grad würde die Häufigkeit und Intensität von extremen Wetterereignissen wie Hitzewellen, ⁠ Starkregen ⁠ und Wirbelstürmen noch weiter erhöhen. Diese Ereignisse können erhebliche Schäden an Infrastruktur und Landwirtschaft verursachen und die Lebensgrundlagen vieler Menschen bedrohen. Meeresspiegelanstieg: Eine Begrenzung der Erwärmung auf 1,5 Grad würde den Anstieg des Meeresspiegels verlangsamen, was besonders wichtig für Inselstaaten und küstennahe Regionen ist. Folgen des Meeresspiegelanstiegs sind u. a. Überschwemmungen und der Verlust von Landflächen. Ökosysteme und ⁠ Biodiversität ⁠: Viele Ökosysteme, darunter Korallenriffe und arktische Lebensräume, sind bei einer Erwärmung von mehr als 1,5 Grad stark gefährdet. Der Erhalt dieser Ökosysteme ist entscheidend für die Biodiversität und das Wohlergehen vieler Tier- und Pflanzenarten. Gesundheitliche Auswirkungen: Eine geringere Erwärmung würde auch die negativen gesundheitlichen Auswirkungen reduzieren, die durch Hitzewellen, Luftverschmutzung und die Ausbreitung von Krankheiten entstehen können. Wirtschaftliche Stabilität: Klimawandelbedingte Schäden können erhebliche wirtschaftliche Kosten verursachen. Eine Begrenzung der Erwärmung würde helfen, wirtschaftliche Verluste zu minimieren und neue Arbeitsplätze im Bereich der grünen Technologien zu schaffen. Haben wir die 1,5-Grad-Marke schon überschritten? Im Jahr 2024 wurde durch aktuelle Messdaten der europäischen Klimadaten-Agentur Copernicus bestätigt, dass die Erde erstmals ein volles Jahr lang eine Erwärmung von mehr als 1,5 Grad über dem vorindustriellen Niveau erreicht hat. Das bedeutet jedoch noch nicht, dass das langfristige Ziel des ÜvP bereits überschritten ist. Die globale Erwärmung wird als langjährige Durchschnittstemperatur (in der Regel 20- bis 30-jährige Mittel) gemessen, nicht anhand einzelner heißer Jahre oder Monate, da kürzere Zeiträume stark von natürlichen Schwankungen dominiert werden können. Legt man den aktuellen Erwärmungstrend zugrunde, würde die Welt zwischen 2030 und 2040 das 1,5-Grad-Ziel langfristig überschreiten. Wie lässt sich das 1,5-Grad-Ziel noch erreichen? Die Debatte um die Einhaltbarkeit und die Auslegung des 1,5-Grad-Ziels verdeutlicht, wie dringend wir globalen und wirksamen ⁠ Klimaschutz ⁠ brauchen und wie komplex die politischen, wirtschaftlichen und technologischen Herausforderungen sind, die damit einhergehen. Während einige Fachleute skeptisch sind, ob das ÜvP-Ziel überhaupt noch erreichbar ist, gibt es immer noch Hoffnung, dass der ⁠ Klimawandel ⁠ durch rasches Handeln auf ein erträgliches Maß begrenzt werden kann. Um das Ziel von 1,5 Grad zu erreichen, müssten die globalen Treibhausgasemissionen bis 2030 um 43 Prozent im Vergleich zu 2019 reduziert werden, bis 2035 dann um 60 Prozent, und spätestens in den frühen 2050er Jahren muss die Bilanz des Ausstoßes und der Entnahme von CO 2 aus der ⁠ Atmosphäre ⁠ mittels Senken ausgeglichen sein - also globale CO 2 -Neutralität erreicht werden. Dies erfordert drastische Maßnahmen wie die Reduktion der Abhängigkeit von fossilen Brennstoffen und eine ambitioniertere Förderung erneuerbarer Energien. Weltweit müssen die Emissionen stark gesenkt und bis auf nicht vermeidbare Restemissionen reduziert werden. Internationale Kooperationen im Klimaschutz, insbesondere zwischen großen Emittenten wie den USA, China und der EU, werden als entscheidend angesehen. Ein Überblick der wichtigsten Klimaschutz-Maßnahmen: Erneuerbare Energien : Investitionen in Solar- und Windkraft, um fossile Brennstoffe zu ersetzen. Energieeffizienz : Verbesserung der Energieeffizienz in allen Sektoren. Aufforstung : Schutz und Wiederherstellung von Wäldern, um CO 2 aus der Atmosphäre zu binden. Technologische Innovationen : Entwicklung und Einsatz neuer Technologien zur Emissionsreduktion. Kreislaufwirtschaft : Übergang zu einer nachhaltigen, regenerativen und treibhausgasneutralen Kreislaufwirtschaft. Verhaltensänderungen: Förderung nachhaltiger Lebensstile und Konsummuster, z. B. Mobilitätssuffizienz . Internationale Zusammenarbeit : Globale Unterstützung und Zusammenarbeit, besonders für Entwicklungsländer. Was passiert, wenn wir 1,5 Grad überschreiten? Gibt es danach noch einen Weg zurück? Ein „Overshoot“, also ein Überschreiten der 1,5-Grad-Marke würde schwerwiegende Folgen haben. Beispielsweise wäre das Schmelzen der Eisschilde auf Grönland und in der Antarktis kaum mehr aufzuhalten, was den Meeresspiegel langfristig ansteigen ließe. Auch das Risiko von Extremwetterereignissen wie Dürren und Hitzewellen würde zunehmen. Es wäre theoretisch möglich, auch nach einem Overshoot wieder eine Absenkung unter die 1,5-Grad-Marke zu erreichen. Dies würde aber enorme Anstrengungen und neben der ohnehin nötigen Stärkung natürlicher CO 2 -Senken wie Wäldern den großflächigen Einsatz von Technologien zur Kohlenstoffdioxidabscheidung und -speicherung bedeuten. Diese Technologien, die CO 2 aus der ⁠ Atmosphäre ⁠ entfernen und beispielsweise in geologischen Formationen speichern, sind bisher nur in kleinem Maßstab verfügbar, extrem teuer, ressourcenintensiv und ihre potenziellen Auswirkungen auf die Umwelt sind (noch) nicht absehbar. Deshalb ist es wichtig, den globalen Temperaturanstieg so gering wie möglich zu halten: Jede noch so kleine vermiedene Temperaturerhöhung zählt. Eine vorübergehende Überschreitung der 1,5-°C-Marke muss im Ausmaß so gering und in der Dauer so kurz wie möglich gehalten werden. Denn jedes Überschreiten kann schwerwiegende und möglicherweise irreversible Veränderungen im ⁠ Klimasystem ⁠ zur Folge haben, mit unvorhersehbaren Auswirkungen auf Menschen und Umwelt. Daher gilt weiterhin die Prämisse, frühzeitig und konsequent zu handeln, um solche Szenarien zu vermeiden. Für wen gilt das 1,5-Grad-Ziel? Das 1,5-Grad-Ziel gilt für alle Länder, die das ÜvP unterzeichnet haben. Insgesamt 195 Länder haben sich verpflichtet, nationale Klimaschutzbeiträge (Nationally Determined Contributions, NDCs) zu erstellen, um ihre Treibhausgasemissionen zu reduzieren und Anpassungsstrategien zu entwickeln. Diese Unterschiede sind wichtig: Industrieländer: Sie tragen eine besondere Verantwortung, da sie historisch gesehen die meisten Treibhausgase ausgestoßen haben und über mehr Ressourcen verfügen, um Maßnahmen gegen den ⁠ Klimawandel ⁠ zu ergreifen. Diese Länder müssen ihre Emissionen drastisch senken und Entwicklungsländer finanziell und technologisch unterstützen. Entwicklungsländer: Diese Länder sind oft am stärksten von den Auswirkungen des Klimawandels betroffen und haben die geringsten Ressourcen, um sich anzupassen. Internationale Unterstützung und Zusammenarbeit sind daher besonders wichtig. Besonders verwundbare Staaten: Kleine Inselstaaten und niedrig gelegene Küstenländer sind besonders gefährdet durch den Anstieg des Meeresspiegels und extreme Wetterereignisse. Diese Länder haben sich in den Verhandlungen besonders stark für das 1,5-Grad-Ziel eingesetzt. Fazit: Das 1,5-Grad-Ziel ist nach wie vor von zentraler Bedeutung für die internationale Klimapolitik. Ziel ist, die Begrenzung des globalen Temperaturanstiegs auf 1,5 Grad in Reichweite zu halten. Darüber hinaus ist das ÜvP völkerrechtlich bindend. Um gefährliche Auswirkungen ungebremster Erderwärmung zu verhindern oder zu minimieren, muss die Weltgemeinschaft weiterhin ambitionierte Klimaschutzmaßnahmen umsetzen. Die Begrenzung der Erderwärmung bedeutet eine lebenswertere Zukunft für uns alle und ist für vulnerable Gesellschaften und Gruppen sowie auch für viele bedrohte Arten und die ⁠ Biodiversität ⁠ überlebensnotwendig. Hier weiterlesen: Das UBA-Positionspapier zum 1,5-Grad-Ziel nach dem Übereinkommen von Paris .

Fisch und Meeresfrüchte

Tipps für einen umweltbewussten Verzehr von Fisch und Meeresfrüchten Das sollten Sie beachten beim Kauf von Fisch und Meeresfrüchten Kaufen Sie Fisch mit ⁠Umweltsiegeln. Als besonders glaubwürdig haben sich dabei das Naturland-, das Bioland- und das Bio-Siegel erwiesen. Bevorzugen Sie Fisch und Meeresfrüchte aus nicht übernutzten Beständen, die mit ökologisch verträglichen Methoden gewonnen wurden wie beispielsweise mit Hand- und Angelleinen oder aus extensiver Teichwirtschaft Bevorzugen Sie Friedfische aus Aquakultur und Meeresfrüchte, die mit wenig oder ohne Fischmehl und -öl in ihren Futtermitteln auskommen Nutzen Sie Einkaufsratgeber, zum Beispiel von der Verbraucherzentrale oder dem WWF Machen Sie sich bewusst, dass Fisch ein Luxusprodukt ist und schränken Sie Ihren Konsum ein. Gewusst wie Fisch ist grundsätzlich gesund. Aber weltweit sind mehr und mehr Fischarten durch Überfischung in ihrem Bestand bedroht und marine Säuger, Seevögel oder Meeresschildkröten verenden häufig als Beifang. Die meisten Aquakulturen sind keine Alternative, da Fischmehle und -öle aus Wildfang verfüttert werden, wodurch ebenfalls Druck auf die Weltmeere erzeugt wird. Fische und Meeresfrüchte sind weiterhin mit Schadstoffen und immer mehr auch durch Mikroplastik belastet, wodurch der Konsum auch aus gesundheitlicher Sicht zu überdenken ist. Es gibt auch andere gute Omega-3-Quellen wie Leinsamen, Walnüsse und bestimmte Öle wie Lein- oder Hanföl. Mit Siegel einkaufen : Insbesondere das Siegel von "Naturland" kennzeichnet nachhaltig erwirtschafteten Wildfisch aus kleinen, handwerklichen und besonders vorbildlichen Fischereien. Die Siegel von "Bioland", "Naturland" und das Biosiegel weisen auf nachhaltig erwirtschafteten Zuchtfisch hin. Die häufig anzutreffenden Siegel des und des ASC für Zuchtfisch haben zwar niedrigere Standards, so gibt es z.B. weder Vorgaben zum Tierwohl beim Fang noch zu sozialen Belangen, sind aber  trotzdem nicht zertifiziertem Fisch und Meeresfrüchten  vorzuziehen. Aufschriften oder Aufdrucke wie "delfinfreundlich", "dolphin friendly", oder auch Bilder mit durchgestrichenem Delphin sind ungeschützte Kennzeichnungen, die von Firmen ohne Prüfung verwendet werden können und weder überprüfbar noch vertrauenswürdig sind. Empfehlenswerte Fisch- und Fangarten: Empfehlenswert sind Fischarten, die nicht in ihrem Bestand gefährdet sind oder bei der Zucht nicht auf Fischmehl angewiesen sind. Nutzen Sie für eine genaue Auflistung akzeptabler Arten und Fangmethoden die Einkaufsratgeber der Verbraucherzentrale und des WWF . Beachten Sie dabei auch die Unterscheidung Fangebieten, da nicht immer der Bestand eines ganzen Gebiets bedroht ist, sondern manchmal lediglich Populationen in einem Teilgebiet. Gute Alternativen sind Friedfische und Muscheln: Zum Beispiel Karpfen, Tilapia und Welse lassen sich nachhaltig züchten, da sie mit sehr wenig oder gar keinem Fischmehl- und -öl-Zusatz im Futter auskommen. Dabei ist darauf zu achten, dass sie aus europäischer Zucht stammen, um die Klimabelastung aus Transportwegen zu minimieren. Auch Muscheln sind eine gute Alternative zu fischfressenden Zuchtfischen. Sie weisen den kleinsten ökologischen Fußabdruck auf, da sie als Filtrierer alle benötigten Nährstoffen selbst aus dem Umgebungswasser aufnehmen. Was Sie noch tun können: Kaufen Sie im Supermarkt nur Fisch und Meeresfrüchte, deren Herkunft und Fangmethode auf der Verpackung gekennzeichnet ist. Erfragen Sie diese Informationen bei Frischfisch an der Theke, falls diese Informationen nicht erkenntlich sind. Beachten Sie unsere Tipps zu Biolebensmitteln . Beachten Sie unsere Tipps zu Lebensmittelverschwendung . Essen Sie Fisch bewusst und probieren Sie auch vegetarische Alternativen aus. Beachten Sie dazu auch unsere Tipps zu klima- und umweltfreundlicher Ernährung . Hintergrund Weltweit gelten 37 Prozent der kommerziell genutzten Fischbestände als überfischt und weitere 50 Prozent als maximal genutzt (FAO 2024). Obwohl das Ziel der EU-Politik darin bestand, bis 2020 alle Bestände wiederherzustellen, werden im Nordost-Atlantik inklusive der Nordsee immer noch 32 Prozent der Bestände überfischt. Besonders dramatisch gestaltet sich die Situation in der Ostsee: von acht Fischbeständen, zu denen Daten vorliegen, befinden sich sechs außerhalb sicherer biologischer Grenzen, darunter auch Hering und Dorsch. Der Begriff Fischbestand wird dabei als Gesamtmasse einer Fischereiressource definiert. Solche Bestände werden normalerweise anhand ihres Standorts identifiziert. Laut WWF gehen etwa 40 Prozent des weltweiten Fischfangs  ungewollt in Netz. Die Beifangmenge ist abhängig von der Fangmethode und besonders hoch bei der Grundschleppnetzfischerei auf bodenlebende Arten, wie Schollen, Seezungen oder Garnelen. Zusätzlich sind Nichtzielarten wie Meeressäuger betroffen, die mitgefangen werden. Sie werden meist tot oder sterbend zurück ins Meer geworfen (DAVIES RWD et al. 2009)So werden nach Angaben der Internationalen Walfangkommission beispielsweise jährlich circa 650.000 Robben, Delfine und Wale beigefangen (WCL 2022). Damit sterben heute durch Beifang mehr Wale pro Jahr als zur Blütezeit des kommerziellen Walfangs. Laut der ⁠ OSPAR ⁠-Kommission zum Schutz der Meeresumwelt des Nordostatlantiks ist die Fischerei weiterhin eine der Hauptverursacher von Schäden an marinen wie Seeberge, Seegraswiesen oder Korallenriffe (OSPAR QSR 2023). Auch die Fischzucht (Aquakultur) trägt zur Überfischung bei: Um Fisch aus Aquakultur zu züchten, wird zusätzlich Wildfisch gefangen und verfüttert. Jährlich werden circa 20 Prozent der weltweiten Fänge zu Fischmehl und -öl verarbeitet (FAO 2018). Für die "Produktion" von nur einem Kilo Lachs können bis zu drei Kilo Fischmehl oder Fischöl nötig sein. Nach Angaben von Fischereiexperten wären 90 Prozent der Fische, die für die Herstellung von Fischmehl gefangen werden, für den menschlichen Verzehr geeignet (Cashion et al. 2017). Außerdem nehmen diese Futterfische (kleine bis mittelgroße pelagische Fischarten wie Sardinen, Sardellen oder Hering) eine wichtige Rolle in der Nahrungskette ein und sind eigentlich Hauptnahrungsquelle für Fische, Seevögel und Meeressäuger (Oceancare 2021). Aquakulturen können große Umweltschäden verursachen, wenn Chemikalien, Kunststoffabfälle, Nahrungsreste, Fischkot und Antibiotika aus den offenen Netzkäfigen in die Flüsse und Meere gelangen. Da die rasant wachsende Aquakultur viel Fläche in den Küstenregionen tropischer und subtropischer Länder vereinnahmt,  kommt es zu sozialen Konflikten. Weiterhin werden durch den Bau von Zuchtanlagen wertvolle Lebensräume wie Mangrovenwäldern verloren. Laut Schätzungen der FAO (2018) sind seit 1980 3,6 Millionen Hektar Mangrovenwälder weltweit verloren gegangen, ein wesentlicher Grund dafür sind Shrimpzuchten. Weiterhin sterben jährlich Millionen von Zuchtfischen infolge schlechter Haltungsbedingungen. Mittlerweile ist unbestritten, dass Fische fähig sind, zu leiden und Schmerz zu empfinden. Und doch sind Zuchtfische die am wenigsten geschützten Nutztiere (Oceancare 2021). Quellen: Cashion T., Le Manach F., Zeller D., Pauly D. 2017. Most fish destined for fishmeal production are food-grade fish. Https://doi.org/10.1111.faf.12209 FAO 2022. The State of World Fisheries and Aquaculture. Towards Blue Transformation. Rome, FAO. FAO 2018. The state of world fisheries and aquaculture: Meeting the sustainable development goals. Licence: CC BY-NC-SA 3.0 IGO. Rome: FAO. DAVIES RWD, et al. 2009. Defining and estimating global marine fisheries bycatch. Marine Policy, doi:10.1016/j.marpol.2009.01.003Oceancare 2021. Überfischung: Wildfisch als Fischfutter in Aquakulturen – Schweizer Detailhändler im Vergleich OSPAR QSR 2023: https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/ WLC 2022

1 2 3 4 511 12 13