API src

Found 13 results.

Geologische Karte der Bundesrepublik Deutschland 1:1.000.000 (GK1000) (WMS)

Die Geologische Karte 1:1.000.000 (GK1000) zeigt die Geologie Deutschlands und der angrenzenden Gebiete. Die quartären Einheiten Norddeutschlands und des Alpenvorlands werden genetisch (nach der Entstehungsweise) beschrieben. Die älteren Sedimentgesteine sind nach der Stratigraphie (das Alter der Entstehung) klassifiziert. Die magmatischen Gesteine und die metamorphen (durch Druck und Temperatur veränderten) Gesteine werden nach ihrer petrographischen Zusammensetzung differenziert.

EMODNET Seafloor Geology (WMS)

The European Marine Observation and Data Network (EMODnet) consists of more than 100 organisations assembling marine data, products and metadata to make these fragmented data resources more available to public and private users relying on quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use. EMODnet is currently in its fourth phase. BGR participates in the EMODnet Geology theme and is coordinating the “seafloor geology” work package from the beginning. In cooperation with the project partners BGR compiles and harmonises GIS data layers on the topics geomorphology, pre-Quaternary and Quaternary geology and provides those, based on INSPIRE principles, via the EMODnet Geology portal https://www. emodnet-geology.eu/map-viewer/. These map layers present the pre-Quaternary and Quaternary sea-floor geology and Geomorphology of the European Seas, semantically harmonized based on the INSPIRE data specifications including the terms for lithology, age, event environment, event process and geomorphology. The data are compiled from the project partners, the national geological survey organizations of the participating countries. The data set represents the most detailed available data compilation of the European Seas using a multiresolution approach. Data completeness depending on the availability of data and actual mapping campaigns. This open and freely accessible product was made available by the EMODnet Geology project (https://www.emodnet-geology.eu/), implemented by EMODnet Geology Phase IV partners, and funded by the European Commission Directorate General for Maritime Affairs and Fisheries. These data were compiled by BGR from the EMODnet IV Geology partners. All ownership rights of the original data remain with the data originators, who are acknowledged within the attribute values of each map feature.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH - Bereich Endlagerung durchgeführt. Das Vorhaben leistet einen wichtigen Beitrag zur Bewertung des kolloidalen Radionuklidtransports im Umfeld eines Endlagers in geklüftetem Hartgestein sowie zur Stabilität der geotechnischen Barriere Bentonit im Kontakt mit Formationswässern. Es trägt dazu bei, ein fundiertes Verständnis der Kolloidwechselwirkung mit relevanten Radionukliden und Mineraloberflächen, dem Erosionsverhalten von kompaktiertem Bentonit im Kontakt mit Formationswässern der geologischen Barriere, sowie der Kolloidmigration unter naturnahen Bedingungen zu gewinnen. Da ein Teil der experimentellen Arbeiten dezidiert die Mechanismen der Wechselwirkung zwischen Kolloid, Radionukliden und Mineraloberflächen betrachtet, sind die Ergebnisse generischer Natur und zur Beurteilung der Kolloidrelevanz und Bentonitstabilität in anderen Endlagerkonzepten anwendbar. Im Rahmen des Projekts sollen die PA-Transportcodes COFRAME und r3t-col qualifiziert werden. In einem naturnahen System des Untertagelabors Grimsel, Schweiz, wird die durch Kolloide aus der geotechnischen Barriere beeinflusste Radionuklidmigration unter endlagerrelevanten Grundwasserfließraten experimentell untersucht und mit den oben genannten Transportcodes modelliert. Auf der Basis der sollen 2D und 3D Modelle entwickelt und auf reale Fließgeometrien angewandt werden. Darüber hinaus werden im Rahmen des Projekts analytische Methoden wie die laserinduzierte Breakdown Detektion (LIBD) und die Accelerator Massenspektroskopie (AMS) zur RN Detektion im Ultraspurenbereich weiterentwickelt und angewandt.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Materialforschung und -prüfung durchgeführt. Mit dem Vorhaben sollen die technischen Randbedingungen und Beanspruchungsgrößen unter Berücksichtigung der aktuellen Sicherheitsanforderungen ermittelt sowie Anforderungen zur Konzeption und Auslegung von Endlagerbehältern für ein HAW-Endlager in Steinsalz, Tonstein und Kristallingestein hergeleitet und exemplarisch in denkbare Behälterkonzepte umgesetzt werden. Hierbei wird insbesondere auch die Bedeutung der Endlagerbehälter im Sicherheitskonzept des jeweiligen wirtsgesteinsspezifischen Endlagerkonzeptes berücksichtigt. Darüber hinaus wird die Verfügbarkeit geeigneter Nachweis- und Prognoseinstrumente für relevante Behälterkomponenten überprüft. AP 1: Aufarbeitung des nationalen und internationalen Standes zu bereits existieren-den Anforderungen und Konzepten für Endlagerbehälter und Zusammenstellung sicherheitsrelevanter Behältereigenschaften AP 2: Ermittlung der behälterrelevanten Randbedingungen und Beanspruchungsgrößen für Endlagerbehälter in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein in Deutschland AP 3: Herleitung und Zusammenstellung der Anforderungen an Endlagerbehälter für ein HAW-Endlager in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein AP4: Erarbeitung von Vorschlägen für mögliche Behälterkonzepte in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Nukleare Entsorgung (INE) durchgeführt. Der Kenntnisstand zur Kolloidproblematik, speziell zur Prognostizierbarkeit des Kolloidquellterms, der Kolloidstabilität und Kolloid- Mineraloberflächen- Wechselwirkung unter Einbezug der Oberflächenrauigkeit hat in den letzten Jahren sehr große Fortschritte gemacht. Neben der Beschreibung der Kolloidstabilität mittels elektrostatischer Ansätze sind quantitative Daten zur Erosion der Bentonitbarriere in Laborversuchen generiert worden. Alle Daten zum kolloidgetragenen Radionuklidtransport weisen auf eine starke Abhängigkeit der Kolloidmobilität von der Kluftgeometrie/Oberflächenrauigkeit hin, wobei die vollständige Dissoziation vierwertige Actinide von der Tonkolloidoberfläche nach wie vor eine offene Fragestellung ist. Hauptziel des Anschlussvorhabens ist es weiterhin, das mechanistische Verständnis der Erosion des kompaktierten Bentonits und der Radionuklid-Kolloid Wechselwirkungen unter naturnahen Bedingungen mittels in-situ Experimenten zu verbessern und die Relevanz des kolloidgetragenen Radionuklidtransports hinsichtlich der Langzeitsicherheit eines Endlagers in einer Hartgesteinsformation zu bewerten. Darüber hinaus werden generische Aussagen zur Kolloidrelevanz und der Mobilität von Radionukliden erarbeitet. AP1: Experimentelles Programm zum kolloidgetragenen RN-Transport AP 1.1: Mechanismen der Kolloid-Radionuklid-Kluftmineral Wechselwirkung (Laborprogramm zur Radionuklidspeziation, zur Bentoniterosion und Kolloidgeneration an der Bentonit Grundwassergrenzfläche und Radionuklid-Kolloid-Kluftfüllmaterial Wechselwirkung) AP1.2: Kolloidgetragene Radionuklidmigration (Labormigrationsexperimente an Bohrkernmaterial, Mock-up Test(s), In-situ Experimente in der Grimsel Test Site (GTS) und Radionuklidmigration auf der Wirtsgesteinsformationsskala) AP2: Modellrechnungen zum kolloidgetragenen RN-Transport (Simulationsrechnungen für weitere CFM-Homolog/Radionuklid-Experimente und Numerische Simulation von Strömungs- und Transportvorgängen im Kristallingestein).

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von DBE TECHNOLOGY GmbH durchgeführt. Ziel des vorliegenden Vorhabens ist es, unter Berücksichtigung des geltenden gesetzlichen und untergesetzlichen Regelwerks die Anforderungen an Endlagerbehälter für die Gewährleistung eines sicheren Betriebes eines HAW-Endlagers in Steinsalz, Tonstein und Kristallingestein, über und unter Tage sowie eines sicheren Einschlusses der radioaktiven Abfälle und ausgedienten Brennelemente herzuleiten, Umsetzungsmöglichkeiten anhand von generischen Behälterkonzepten darzustellen sowie die Auswirkungen entsprechender Designentscheidungen auf die Gestaltung der Endlagersysteme abzuschätzen. Die Ziele sollen erreicht werden, indem zunächst der nationale und internationale Stand zu bereits existierenden Anforderungen und Konzepten für Endlagerbehälter recherchiert und sicherheitsrelevante Behältereigenschaften zusammengestellt werden. Darüber hinaus werden behälterrelevante Randbedingungen und Beanspruchungsgrößen für Endlagerbehälter in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein in Deutschland ermittelt. Im nächsten Schritt werden die Anforderungen an Endlagerbehälter für ein HAW-Endlager hergeleitet und zusammengestellt. Dabei werden die aktuell gültigen rechtlichen Regelungen und Rahmenbedingungen, die für die Konzeption und den Nachweis von Endlagerbehältern relevant sind, betrachtet ebenso wie Anforderungen aus der Standortgeologie, aus der Auslegung des Endlagerbergwerkes, aus dem Endlagerbetrieb und schutzzielorientierte Anforderungen hinsichtlich der langfristigen Behältersicherheit. Abschließend werden Vorschläge für mögliche Behälterkonzepte in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein erarbeitet.

Vorhaben: Wegsamkeiten durch Spannungsumlagerungen - Numerik

Das Projekt "Vorhaben: Wegsamkeiten durch Spannungsumlagerungen - Numerik" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Mechanik (Bauwesen), Lehrstuhl II (Kontinuumsmechanik) durchgeführt. Eingriffe in den geologischen Untergrund, z. B. zur Gewinnung und Speicherung von Energie oder zur sicheren Verwahrung toxischer und radioaktiver Abfälle, erfordern im Verbund verschiedener Disziplinen sorgfältige geowissenschaftliche Zustandsanalysen und Prognosestudien, um nachteilige Auswirkungen auf die Umwelt zu vermeiden. Insbesondere Deformationsprozesse und physikalisch-chemische Alterationen können zu einer tiefgreifenden Schädigung von Gesteinen führen und damit die Integrität geologischer Reservoire und Barrieren ungünstig beeinflussen. Die dabei auftretenden vielfältigen mikro- und makromechanischen Strukturen (Fissuren, Risse, Klüfte etc.) schwächen das Gestein aus mechanischer Sicht und können in ungewollten Wegsamkeiten für fluide Phasen resultieren. Sie können unter dem Oberbegriff Diskontinuitäten zusammengefasst werden, deren Entstehung zumeist nur unzureichend verstanden und mit den derzeit verfügbaren kommerziellen Simulationssystemen nicht adäquat modellierbar ist. Ziel des Verbundprojekts GeomInt ist die realitätsnahe experimentell-numerische Analyse der Entstehung und Entwicklung von Diskontinuitäten in untertägigen Gesteinen am Beispiel von Salz-, Ton- und Kristallingesteinen. Als Forschungsschwerpunkte sollen typische Prozesse betrachtet werden, die zur Entstehung spezifischer Diskontinuitäten führen. Hierzu gehören Quell- und Schrumpfungsprozesse, druckgetriebene Perkolation und Spannungsumlagerungen. Das Projekt GeomInt gliedert sich in insgesamt drei Arbeitspakete. Im Rahmen des ersten Arbeitspaketes sollen Wegsamkeiten untersucht werden, die durch Quell- und Schrumpfungsprozesse hervorgerufen werden. Hierfür sind verschiedene Laborexperimente an Tongesteinen geplant, um Materialparameter zu bestimmen und die Entstehung von Diskontinuitäten zu beobachten. Ein Schwerpunkt der Untersuchungen ist auf Selbstheilungsprozesse des Tongesteins ausgerichtet. Das zweite Arbeitspaket befasst sich mit der Entstehung von Wegsamkeiten in Salz- und Tongesteinen infolge druckgetriebener Perkolation. Mit Hilfe von Laborexperimenten soll u. a. geklärt werden, inwieweit die Höhe der Perkolationsschwelle vom Spannungszustand und von der Temperatur des Gesteins abhängig ist. Im Zentrum des dritten Arbeitspaketes stehen Wegsamkeiten, die infolge von Spannungsumlagerungen im Kristallin gebildet werden. Dabei richtet sich das Hauptaugenmerk der Laborexperimente auf die Rissausbreitung und das Verhalten von Klüften. Die Ergebnisse der Experimente dienen in allen Arbeitspaketen numerischen Simulationen zur Nachbildung der grundlegenden Prozesse. Während mit den Laborexperimenten insbesondere das spezifische Prozessverständnis für Bildung und Entwicklung der betrachteten Diskontinuitäten verbessert werden soll, dienen die numerischen Analysen u. a. auch einem Progress im Methodenverständnis. (Text gekürzt)

Vorhaben: HYSPALAB

Das Projekt "Vorhaben: HYSPALAB" wird vom Umweltbundesamt gefördert und von Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Arbeitsgruppe Gesteinsphysik durchgeführt. Das Projekt STIMTEC widmet sich der Optimierung von Stimulationsverfahren und der Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch hochauflösendes seismisches 3D-Monitoring beobachtet und in Kombination mit hydraulischen Versuchen sowie numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulische Tests und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung der für sie diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen.

Vorhaben: Mikroseismisches Monitoring von Simulationstests in strukturell charakterisiertem Kristallingestein und Korrelation der Hypozentrenverteilung von mikroseismischen und akustischen Ereignissen mit dem in Bohrungen direkt bestimmten Rissinventar

Das Projekt "Vorhaben: Mikroseismisches Monitoring von Simulationstests in strukturell charakterisiertem Kristallingestein und Korrelation der Hypozentrenverteilung von mikroseismischen und akustischen Ereignissen mit dem in Bohrungen direkt bestimmten Rissinventar" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Das Projekt STIMTEC konzentriert sich auf die Optimierung von Stimulationsverfahren und die Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch periodische Pumptests und hochauflösendes seismisches 3D-Monitoring analysiert und in Kombination mit numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulisches Testen und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung ihrer diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen. Die Projektarbeiten durch das GFZ zu den Arbeitspaketen AP1-3 sind in 6 Teilabschnitte untergliedert, die eng in den Ablaufplan des Gesamtvorhabens eingebunden sind (Details im Antrag). Folgende Schritte sind geplant: (1) Installation und Instrumentierung, (2) Ultraschall-Messungen, (3) Mikroseismische Beobachtungen, (4) Auswertung der Daten, (5) Wiederholungsmessungen, (6) Zusammenfassende Auswertung der Messergebnisse.

Vorhaben: Simulation zur hydraulisch erzeugten Rissausbreitung in einem Untertage-Experiment auf Basis von Spannungsfeldsimulationen und laborativer Gesteinsparameterermittlung

Das Projekt "Vorhaben: Simulation zur hydraulisch erzeugten Rissausbreitung in einem Untertage-Experiment auf Basis von Spannungsfeldsimulationen und laborativer Gesteinsparameterermittlung" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Geologie durchgeführt. Das Projekt STIMTEC konzentriert sich auf die Optimierung von Stimulationsverfahren und die Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch periodische Pumptests und hochauflösendes seismisches 3D-Monitoring analysiert und in Kombination mit numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulisches Testen und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung ihrer diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen. Der Arbeitsplan umfasst folgende Schritte: 1.) Analyse spezifischer Daten aus dem Forschungsbergwerk sowie Literaturrecherche zum Stand von W+T 2.) Numerische Spannungsfeldsimulation 3.) Mechanische Laborversuche Deformationsparametern sowie bruchmechanischen Kennwerten an Freiberger Gneisproben 4.) Numerische Simulation der Rissausbreitung

1 2