API src

Found 130 results.

Die Bildung und Entwicklung des Erdmantels im Archaikum; Subkalzische Granate und Eklogite als älteste Zeitzeugen

Das Projekt "Die Bildung und Entwicklung des Erdmantels im Archaikum; Subkalzische Granate und Eklogite als älteste Zeitzeugen" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Geowissenschaften, Facheinheit Mineralogie, Abteilung Petrologie und Geochemie durchgeführt. Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.

Teilprojekt D02: Datierung von Evaporiten

Das Projekt "Teilprojekt D02: Datierung von Evaporiten" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Ziel dieses Projekts ist es, die 176Lu-176Hf und 238U-230Th Methodik für die Anwendung an Evaporitmineralen (Karbonat, Anhydrit, Gips, Bassanit) zu entwickeln. In Kombination würden diese Methoden das gesamte zu erwartendene Alterspektrum in der Atacama Wüste abdecken (einige Zehntausend bis Zehnermillionen Jahre).

Biota, Brüche und Schwellenwerte: Emergente Selbstorganisation in der Entwicklung von Landschaften?

Das Projekt "Biota, Brüche und Schwellenwerte: Emergente Selbstorganisation in der Entwicklung von Landschaften?" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Dieser Antrag stellt ein Fortsetzung unser laufenden Arbeiten aus der ersten Phase des EarthShape SPP dar, in denen wir den biotischen Einfluss auf Sedimentransport und die Einschneidung von Flüssen untersuchen. Unsere Untersuchungen zielen auf den kombinierten Einfluss von Abflussvariabilität und Erosions-Schwellenwerte bei der Flusseinschneidung ab. Während der ersten Phase haben wir den EarthShape Klima- und Vegetationsgradienten ausgenutzt um eine biotische Signatur in der Abflussvariabilität und Erosionseffiezienz zu ermitteln. Unsere Ergebnisse und Geländebeobachtungen haben gezeigt, dass es sowohl entlang als auch quer zum EarthShape Gradienten enorme räumliche Variabilität in der Größe des Flusssediments (Erosions-Schwellenwerte) sowie in der Regolithmächtigkeit gibt. Innerhalb einzelner EarthShape Studienorte, scheinen die beobachteten räumliche Gradienten in der Regolithmächtigkeit, Gradienten in der Bruchdichte im Anstehenden zu folgen. Wir stellen daher die Hypothese auf, dass Biota, durch ihren Einfluss auf die chemische Verwitterung, auch die Sedimentgröße beeinflusst, doch dass dieser Einfluss durch die Bruchdichte begrenzt wird. Unsere Daten zeigen darüber hinaus, dass die Denudationsraten in den EarthShape Studienorten sehr gering sind (ca. 10 m/Myr). Das bedeutet, dass die Landschaften die wir studieren über Zeiträume von mehreren Millionen Jahren entstanden sind, während derer die Umweltbedingungen höchstwahrscheinlich andere waren als die heutigen. Um die biotischen Einflüsse auf chemische Verwitterung, Sedimentgröße und damit Erosions-Schwellenwerte zu entschlüsseln und gleichzeitig Scheinkorrelationen zu vermeiden, erkennen wir den potenziell wichtigen Einfluss der Bruchdichte sowie die zeit-abhängige Natur der Landschaftsentwicklung an. In diesem Projekt wollen wir daher (1) den Zusammenhang zwischen Bruchdichte, Regolithmächtigkeit, und Sedimentgröße quantifizieren, (2) räumliche und zeitliche Variabilität von Hangerosionsraten unterhalb der Einzugsgebiet-Skala erfassen, sowie (3) diese Beobachtungen in Landschafts-entwicklungsmodellen kombinieren, um den Einfluss der Biota auf die Flusseinschneidung zu quantifizieren. Dabei werden wir die Daten und Beobachtungen aller Projekte der ersten Phase mit neuen Geländemessungen in einem neuen Modellierungsansatz kombinieren, in dem wir explizit auf hydrologische und topographische Einflüsse auf die chemische Verwitterung und Sedimentgröße eingehen. Unsere Ergebnisse werden ein Schlüssel für die Bewertung der Vergleichbarkeit der EarthShape Studienorte sein und unser Modellierungsansatz wir eine neue Schnittstelle bereitstellen um die unterschiedlichen wissenschaftlichen Ansätze des EarthShape Programms zu integrieren.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP)

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP)" wird vom Umweltbundesamt gefördert und von Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaften, Arbeitsgruppe Marine Geophysik und Hydroakustik durchgeführt. Das internationale ICDP (International Continental Scientific Drilling Program) ist das Programm zur Realisierung von wissenschaftlichen Bohrprojekten auf den Kontinenten. Zentrale Fragstellungen beinhalten i) aktive Störungen und Erdbeben, ii) globale Zyklen und Änderungen der Umweltbedingungen, iii) Wärme- und Masse-Transfer, iv) die tiefe Biosphäre, und v) katastrophale Ereignisse - Impakt Krater und Prozesse. Deutsche Wissenschaftler/innen sind an ca. 75% aller ICDP Bohrung als Pis oder Co-Pis beteiligt. Die Finanzierung im Rahmen des DFG Infrastrukturschwerpunktprogramms 'SPP 1006 - ICDP Deutschland' stellt die Grundlage für die zentrale Rolle von deutschen Wissenschaftlern/innen in diesen Bohrprojekten dar. Die Zielsetzung dieses Antrages ist die Fortsetzung der Arbeiten des nationalen ICDP Koordinationsbüros. Es sollen auf nationaler Ebene Initiativen und Projekte koordiniert, die Kommunikation auf nationaler und internationaler Ebene intensiviert (z.B. Bekanntmachung und Unterstützung von Workshops und wissenschaftlichen Treffen), sowie deutsche Wissenschaftler/innen bei der Erarbeitung neuer internationaler Initiativen unterstützt werden. Das Koordinationsbüro dokumentiert ebenfalls den Verlauf von laufenden nationalen und internationalen ICDP Aktivitäten mit deutscher Beteiligung. Die Zusammenarbeit mit dem IODP soll vertieft werden. Ein Schwerpunkt der Arbeiten in der kommenden Förderperiode wird die weitere Verbesserung eines informativen Web-basierten Informations-System für das deutsche ICDP sein. Dieses System ist die Basis für die Informationen, die über die ICDP Deutschland Webseite verteilt wird.

Teilprojekt Z04: Analytischer Service

Das Projekt "Teilprojekt Z04: Analytischer Service" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Fachgruppe Physik, Institut für Kernphysik durchgeführt. Neun der neunzehn geplanten Teilprojekte verwenden kosmogene Nuklide und Radiokarbondatierung für Alters- und Prozessratenbestimmungen. Diese Methoden haben gemein, dass sie mittels Beschleunigermassenspektrometrie (AMS) durchgeführt werden und einer speziellen Probenaufbereitung bedürfen. Dieses Projekt liefert das Personal, um routinemäßig hochqualitative Analysen für die erwarteten mehr als 1000 AMS-Proben innerhalb des SFB durchzuführen; sowie die Expertise zur Planung geeigneter Probenahmestrategien und zur Interpretation der Daten.

DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen

Das Projekt "DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die meisten Ökosysteme der Erde kommen in der 'tiefen Biosphäre' in permanenter Dunkelheit vor. Die Verwitterungszone - der unterirdische Teil der 'Critical Zone' - bildet einen aktiven Teil dieses Lebensraums. Wir werden die Formung dieser Zone mittels innovativer Isotopen- und geochemischer Methoden erforschen. Dieses Vorhaben ist Teil der 'DeepEarthshape' Projektgruppe, die Geochemie, Mikrobiologie, Geophysik, Geologie und Biogeochemie verbindet. 'DeepEarthshape' beruht auf den Erkenntnissen der ersten EarthShape Phase. An allen vier untersuchten Standorten ist die Verwitterungszone so tief, dass deren Basis in keinem der Bodenprofile angetroffen wurde. Jedoch wurden im gesamten Saprolith beträchtliche Mengen an mikrobieller Biomasse gefunden.Die Frage ist nun: wie trägt Niederschlag und Pflanzenbedeckung entlang des Earthshape-Transekts zur Formung der tiefen Verwitterungszone bei? Folgende Hypothesen werden geprüft: 1) die Verwitterungsfronten an den EarthShape-Standorten sind heute aktiv; 2) die Massenverluste durch Erosion und chemische Verwitterung werden durch die Abtiefung der Verwitterungsfront ausgeglichen; und 3) die Verwitterungszone umfasst eine Reihe von unterscheidbaren, komplexen Fronten, die unterschiedliche biogeochemische Prozesse widerspiegeln (z. B. Wasserinfiltration, Eisenoxidation, mikrobielle Aktivität und organischem Kohlenstoffkreislauf).Im Mittelpunkt aller DeepEarthshape Projekte steht eine Bohrkampagne, die durch geophysikalische Bildgebung der tiefen 'Critical Zone' ergänzt wird. An allen vier Standorten werden wir Bohrkerne entnehmen, die durch Boden und Saprolith hindurch bis in das unverwitterte Ausgangsgestein führen. Durch die innovative Kombination von Methoden der Uran-Zerfallsreihen (Bestimmung der Abtiefunggeschwindigkeit der Verwitterungsfront) mit in situ kosmogenem Beryllium-10 (Bestimmung der Abtragungsrate) werden wir das Gleichgewicht zwischen der Produktion von verwittertem Material in der Tiefe und dessen Verlust an der Oberfläche ermitteln. Zusätzlich werden wir die Tiefenverteilung von meteorischem kosmogenen 10Be als Proxy für die Wasserinfiltration und die des stabilen 9Be als Proxy für die silikatische Verwitterung in der Tiefe verwenden. Wir werden die mineralogische und chemische Zusammensetzung der Kerne beschreiben und Elementabreicherung, Dichte, Porosität, Öberfläche und den Redoxzustand von Eisen messen, um die Verwitterungsfronten zu lokalisieren. Mit den Ergebnissen können wir den Einfluss von Klima und Vegetation auf die Bildungsmechanismen der einzelnen Verwitterungsfronten bestimmen. Der relative Einfluss dieser zwei Faktoren wird anhand eines Massenbilanzmodells ermittelt, welches Verwitterungskinetik und Nährstoffbedarf der nachwachsenden Pflanzenmasse verknüpft. Dieses Vorhaben leitet somit einen Beitrag, mit dem der Einfluss der tiefen Biosphäre und der tiefen 'Critical Zone' auf den CO2-Entzug aus der Atmosphäre und damit das Klima der Erde bilanziert werden kann.

Teilprojekt D03: Stabile Isotope: Entwicklung eines Paleo-Feuchtigkeit Proxys über die Sauerstoffisotopen-zusammensetzung von Kristallwasser in Calciumsulfaten

Das Projekt "Teilprojekt D03: Stabile Isotope: Entwicklung eines Paleo-Feuchtigkeit Proxys über die Sauerstoffisotopen-zusammensetzung von Kristallwasser in Calciumsulfaten" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Dieses Projekt untersucht die 16O-17O-18O and the H-D Isotopensysteme im Kristallwasser von Gips (CaS04-2H20) und Bassanit (CaS04-2H20). Ziel ist der prinzipielle Nachweis, ob es möglich ist aus der Isotopie des Kristallwassers atmosphärische Parameter, wie z.B. die Luftfeuchtigkeit zum Zeitpunkt der Mineral(um)bildung, zu rekonstruieren.

Teilprojekt D01: Kosmogene Nuklide: Datierung alter kontinentaler Sedimente in Trockengebieten

Das Projekt "Teilprojekt D01: Kosmogene Nuklide: Datierung alter kontinentaler Sedimente in Trockengebieten" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Ziel ist es, Methoden zu entwickeln, die geeignet sind alte Sedimente in Trockengebieten verlässlich zu datieren: (i) Entwicklung einer Methode um mittels kosmogenen 10Be and 53Mn terrestrische Alter von Mikrometeoriten (aus Trockenseesedimenten und der Gipsstaubbedeckung der Landschaft) zu bestimmen, (ii) Entwicklung und Anwendung der 10Be/21Ne-Bedeckungalterdatierung an Grobsedimenten, (iii) Entwicklung einer kosmogenen 21,22Ne Methode um Halit (Steinsalz) in Oberflächensedimenten (z.B. fossile Salzseen) zu datieren. Erwartete erschließbare Altersbereiche: ca. 1 bis 22 Ma bzw. ca. 0.5 bis 10 Ma, für 53Mn und 10Be/21Ne Bedeckungsaltersdatierung, es gibt keine theoretische Obergrenze für 21,22Ne.

DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)

Das Projekt "DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Dieses Projekt ist Teil des interdisziplinären DeepEarthshape Verbunds zur Untersuchung der Verwitterungs- bzw. kritischen Zone (CZ) mit Bohrungen und geophysikalischen, geochemischen und mikrobiologischen Untersuchungen. Die CZ ist der oberste Teil der Erdkruste, wo Gesteine durch den Einfluss von Luft, Wasser oder biologischen Organismen mechanisch bzw. chemisch zersetzt werden. Die Mächtigkeit hängt vom Gleichgewicht zwischen Erosion und tiefen Verwitterungsprozessen ab. Die geochemische Charakterisierung der CZ hat gezeigt, dass sie viel tiefer ist als erwartet (ca. 30m). Obwohl in geringen Tiefen (1-2m) beachtliche Mengen an mikrobieller Biomasse und DNA gefunden wurden, die mit der Verwitterung zusammenhängen könnten, ist unser Verständnis der CZ und ihrer Prozesse immer noch begrenzt. Unklar sind die Tiefe der Verwitterung, die Prozesse und ihre jeweiligen Verursacher. Da die Eigenschaften der CZ mit dem Klima in Verbindung zu stehen scheinen, werden im Rahmen der DFG SPP 1803 vier Untersuchungsgebiete vorgeschlagen, die verschiedenen Klimazonen mit unterschiedlicher Vegetation, Niederschlagsmengen und Erosion angehören. Die langgestreckte Küste Chiles ist ein idealer Ort, um klimatische Abhängigkeiten im gleichen geologischen Komplex, der Küstenkordillere, zu untersuchen. Durch den Vergleich der Ergebnisse aus diesen vier Untersuchungsgebieten sollen schließlich Hypothesen für die CZ getestet werden, wie z.B. eine mögliche Verknüpfung der Verwitterungsfront mit rezenten klimagetriebenen Prozessen und der Erosion an der Oberfläche durch eine biogeochemische Rückkopplung oder mikrobielle Aktivität im tiefen Regolith durch organische Substanzen, die die Verwitterung vorantreiben. Die oberflächennahe Geophysik entwickelt sich zu einem wesentlichen Bestandteil der CZ-Untersuchungen, um hydro-geomorphologische und Verwitterungsfront-Modelle zu testen. Hier schlagen wir kombinierte geophysikalische Experimente mit P- und S-Wellen Seismik und flachen elektromagnetischen (Radiomagnetotellurischen) Messungen entlang von ca. 500m langen Profilen an allen vier Standorten vor. Die Hauptziele dieser geophysikalischen Experiment, sind a) die Abbildung der Tiefe der CZ und ihrer räumlichen Variation; b) der Zusammenhang von physikalischen Parametern mit denen, die in den Bohrkernen gefunden wurden; c) die Beurteilung, ob Bohrlochergebnisse für einen größeren Raum repräsentativ sind; d) der Vergleich von geophysikalischen Abbildern der CZ mit denen der hydro-geomorphologischen Modelle; e) das Bestimmen der Tiefe des Grundwasserspiegels und der Einfluss von Störungssystemen, die Wegsamkeiten für meteorische Wässer darstellen; f) die Kopplung seismischer Geschwindigkeiten mit elektrischen Leitfähigkeiten, um zuverlässige Schätzungen der Porosität zu erhalten und g) eine konsistente geologische Interpretation verschiedener geophysikalischer, geochemischer und mikrobiologischer Beobachtungen abzuleiten.

Teilprojekt C04: Gipswüste & atmosphärischer Eintrag

Das Projekt "Teilprojekt C04: Gipswüste & atmosphärischer Eintrag" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Department für Geowissenschaften, Institut für Geologie und Mineralogie, Abteilung Kristallographie durchgeführt. Dieses Projekt konzentriert sich auf die Quellen und Raten atmosphärischer Deposition, sowie die Art und Kinetik von Phasenübergängen. Nitrate und Sulfate sind Ziele für die Bestimmung ihrer Quellen und Ablagerungsraten. Die wasserhaltigen und wasserfreien Polymorphe von Calciumsulfat sind das Hauptziel, um Phasenbeziehungen (als Funktion der Temperatur und der Wassermobilität) und die Kinetik der Transformation (Lösung/Fällung, Phasentransformation) zu untersuchen. Oberflächenelemente und untiefe Bodenelemente (Polygone, Krusten, Knollen, Keile) deuten auf die weit verbreitete, klimabedingte Transformationen von Sulfaten hin, die es zu untersuchen gilt.

1 2 3 4 511 12 13