Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.
Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.
Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.
This project aims to characterize, map, analyze and date recently discovered loess-palaeosol sequences from NE Armenia. These sequences have proved to be especially rewarding because of their thickness (up to 45 m) and the presence of diagnostic tephra layers. The project seeks to derive a standard profile for NE Armenia and thus for the Lesser Caucasus. We will use luminescence technologies to date the loess sections, environmental magnetism to understand soil development, mineralogy to constrain provenance and weathering-potential, and terrestrial Mollusca and biomarkers to evaluate different vegetation formations.
1. Auswaschung von Naehrstoffen (N, P, K, Ca, Mg) aus gedraenten Ackerflaechen, 2. Vergleich der Naehrstoffauswaschung aus 3 Boeden (Loesslehm, Gipskeuper, Urgesteinsverwitterung) mit und ohne Meliorationsduengung an einer Lysimeteranlage, 3. Belastung von Draenwasser bzw. oberflaechennahem Grundwasser durch Naehrstoffe und Schadelemente auf Flaechen, die turnusmaessig mit Klaerschlaemmen, Muellkompost, Guelle und Mist geduengt werden.
Das Vorhaben soll sedimentologische, diagenetische, Umlagerungs- und Formungs-Prozesse der z.T. mächtigen Lößbedeckung des Pleiser Hügellandes unter wechselnden Umweltbedingungen in verschiedenen Zeitscheiben des letzten Glazials rekonstruieren. Materialherkunft und äolische Formung einerseits und erosiv-dendative Überformung andererseits, sowie deren zeitliche Einordnung stehen im Vordergrund; hingegen wird die Modellierung von aktuellen und subrezenten Stoffumsätzen in Teilprojekten des SFB 350 (B13, B15) bearbeitet. Geomorphologische, boden- und sedimentologische, isotopengeochemische und feinstratigraphische Untersuchungen sowie Lumineszenz-Datierungen (TL,OSL) stellen das methodische Inventar. Die Profilaufnahmen und Probennahmen sind abhängig von der erwarteten einzigartigen Aufschlußsituation entlang der ICE-Trasse Köln-Frankfurt. Die Untersuchung soll auch anthropogeographische und geoarchäologische Aspekte der Relief- und Sedimentbildung einbeziehen.
Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.
It has been suggested that dying and decaying fine roots and root exudation represent important, if not the most important, sources of soil organic carbon (SOC) in forest soils. This may be especially true for deep-reaching roots in the subsoil, but precise data to prove this assumption are lacking. This subproject (1) examines the distribution and abundance of fine roots (greater than 2 mm diameter) and coarse roots (greater than 2 mm) in the subsoil to 240 cm depth of the three subsoil observatories in a mature European beech (Fagus sylvatica) stand, (2) quantifies the turnover of beech fine roots by direct observation (mini-rhizotron approach), (3) measures the decomposition of dead fine root mass in different soil depths, and (4) quantifies root exudation and the N-uptake potential with novel techniques under in situ conditions with the aim (i) to quantify the C flux to the SOC pool upon root death in the subsoil, (ii) to obtain a quantitative estimate of root exudation in the subsoil, and (iii) to assess the uptake activity of fine roots in the subsoil as compared to roots in the topsoil. Key methods applied are (a) the microscopic distinction between live and dead fine root mass, (b) the estimation of fine and coarse root age by the 14C bomb approach and annual ring counting in roots, (c) the direct observation of the formation and disappearance of fine roots in rhizotron tubes by sequential root imaging (CI-600 system, CID) and the calculation of root turnover, (d) the measurement of root litter decomposition using litter bags under field and controlled laboratory conditions, (e) the estimation of root N-uptake capacity by exposing intact fine roots to 15NH4+ and 15NO3- solutions, and (f) the measurement of root exudation by exposing intact fine root branches to trap solutions in cuvettes in the field and analysing for carbohydrates and amino acids by HPLC and Py-FIMS (cooperation with Prof. A. Fischer, University of Trier). The obtained data will be analysed for differences in root abundance and activity between subsoil (100-200 cm) and topsoil (0-20 cm) and will be related to soil chemical and soil biological data collected by the partner projects that may control root turnover and exudation in the subsoil. In a supplementary study, fine root biomass distribution and root turnover will also be studied at the four additional beech sites for examining root-borne C fluxes in the subsoil of beech forests under contrasting soil conditions of different geological substrates (Triassic limestone and sandstone, Quaternary sand and loess deposits).
Die Böden terrestrischer Ökosysteme sind ein wichtiger Steuerungsfaktor der CO2-Konzentration in der Erdatmosphäre. Bei Modellierung von globalen CO2-Zyklen ist die Forschung der klimarelevanten Gase auf eindeutige Vorstellungen von der Kohlenstoffisotopie des CO2 der Bodenluft und ihrer Veränderungen angewiesen. Die bis heute vorhandenen Daten umfassen nur eine relativ kurzfristige Dynamik (Stunden bis Monate). Die Fragen nach den langfristigen Fluktuationen (Jahrtausende) der d13CWerte im bodenbürtigen Kohlendioxid und den sie kontrollierenden Faktoren sowie nach dem Zusammenhang mit dem CO2-Haushalt der spätquartären Atmosphäre bleiben offen. Ziel des Vorhabens ist es, die pedogenen Karbonate als Archive der langfristigen, spätquartären d13C-Dynamik des CO2 der Bodenluft zu untersuchen. Dem Arbeitskonzept liegen Modellvorstellungen der Produktion und Diffusion der 13CO2 im Boden zugrunde. Bei den Forschungsobjekten handelt es sich um laminierte Kalkablagerungen (Kalkkutanen) an Steinen aus holozänen Böden (Mediterraneis, Mitteleuropa, Sibirien) und sekundäre Karbonate aus spätpleistozänen Löss-Paläoboden-Sequenzen (Mitteleuropa). Die Untersuchungsmethoden: d13C, d18O, 14C-Altersbestimmung und Mikromorphologie. Bei der Auswertung der Ergebnisse sollen die Ursachen der langfristigen 13CO2-Dynamik der Bodenluft und die sie kontrollierenden Faktoren im Zentrum stehen.
Damit hoeherwertige oder beschraenkt verfuegbare Baustoffe eingespart und gleichzeitig Abfallstoffe wiederverwendet werden koennen, sollen geeignete Mischungen gefunden werden, in denen die Abfallstoffe entweder Mineralstoffersatz oder Bindemittelzusatz darstellen. Die Mischungsverhaeltnisse sind so zu waehlen, dass nicht nur die technischen Vorschriften erfuellt werden (mechanische Festigkeit, Frostsicherheit), sondern auch fuer moegliche Abnehmer der finanzielle Vorteil bei Einsatz der Abfallstoffe gegenueber Industrieprodukten deutlich wird. Nach Untersuchung der Ausgangsstoffe soll erreicht werden: 1. Bodenverbesserung: a) Loess und Braunkohlenflugasche, B) Loess und Huettensand; 2. Verfestigung von Abfallstoffen: a) Waschberge und Zement, b) Muellasche und Zement, c) Vorsiebmaterial und Zement; 3. Verfestigung von Abfallstoffen: a) Sand und Flugasche, b) Sand und Huettensand und Kalk, c) Vorsiebmaterial und Huettensand und Kalk.
Origin | Count |
---|---|
Bund | 186 |
Land | 38 |
Wissenschaft | 8 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 8 |
Förderprogramm | 174 |
Taxon | 1 |
Text | 21 |
unbekannt | 25 |
License | Count |
---|---|
geschlossen | 39 |
offen | 190 |
Language | Count |
---|---|
Deutsch | 204 |
Englisch | 33 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 5 |
Datei | 7 |
Dokument | 26 |
Keine | 163 |
Unbekannt | 1 |
Webdienst | 4 |
Webseite | 46 |
Topic | Count |
---|---|
Boden | 229 |
Lebewesen und Lebensräume | 211 |
Luft | 156 |
Mensch und Umwelt | 224 |
Wasser | 173 |
Weitere | 218 |