Zielsetzung und Anlass des Vorhabens: Restaurator*innen beschäftigen sich mit dem Erhalt von Kunst und Kulturgut, das sich sowohl in Museen oder Archiven befinden kann wie auch als Kunstwerk oder Denkmal im öffentlichen Raum. Letztgenannte sind in besonderen Maße einem Schadensbild ausgesetzt, der Beschädigung durch Graffiti. Die Sprühfarben oder Stifte können dabei originale Oberflächen angreifen und verändern, wodurch die Objekte in ihrer Wirkung gestört werden. Deshalb ist man um die Entfernung solcher Zutaten bemüht und unterschiedliche, auf dem Markt erhältliche Schutzsysteme sollen die Reinigung hierbei ermöglichen. Bisher hat die Forschung vor allem den Schutz von porösen Systemen in der Baudenkmalpflege, bspw. von Steinoberflächen, in den Fokus genommen; Schutzanstriche auf Metalloberflächen im Außenbereich hingegen haben bisher wenig Aufmerksamkeit erhalten. Diese Lücke möchte das Forschungsprojekt schließen und ein Verfahren zum Schutz von beschichteten und unbeschichteten Metalloberflächen im Außenbereich ermitteln, das neben der Schutzwirkung der Anstriche und dem langfristigen Erhalt der Objekte, auch dem Anspruch des Erscheinungsbilds im Sinne der Denkmalpflege wie auch der Umweltverträglichkeit gerecht wird. Ziel des Projektes ist es, Empfehlungen aus Sicht der Konservierung-Restaurierung für die Anwendung von bestehenden Graffiti-Schutz-Systemen auf beschichteten und unbeschichteten Metalloberflächen geben zu können. Maßnahmen der Aufbringung von Schutzschichten werden niemals Schmierereien verhindern, doch sollten diese möglichst objektschonend im Sinne des Denkmalschutzes zu entfernen sein, um Objekte, Menschen und Umwelt zu schonen. Für Objekte aus unbeschichteten Metallen bedeutet dies, dass Eloxierungen, Patinierungen, passivierende Korrosionen etc. nach der Entfernung von Graffiti erhalten bleiben sollten. Abrasive Methoden sind deshalb kritisch zu prüfen, aggressive Lösemittel können Korrosionen verursachen und sind zu hinterfragen. Bei beschichteten Metallobjekten ist die Herausforderung, einen Schutzüberzug aufzubringen, der sich mit dem vorhandenen Farbschichtpaket langfristig verträgt und die den optischen Gesamteindruck nicht verfäkscht.
Zielstellung: Ziel des Vorhabens ist es, die in GerES VI gewonnenen Morgenurinproben der Erwachsenen auf den in Kosmetika eingesetzten Sonnenschutzfilter Octocrylen (OC) und auf die beiden aprotischen Lösungsmittel N-Methyl-2-pyrrolidon (NMP) und N-Ethyl-2-pyrrolidon (NEP), die zur Stoffgruppe der Pyrrolidone gehören, zu untersuchen. Die Entwicklung einer Human-Biomonitoring (HBM)-Methode für OC sowie NMP und NEP erfolgte im Rahmen der BMU/VCI-Kooperation zur Förderung des Human-Biomonitorings. Zusammen mit den Ergebnissen der Befragung der teilnehmenden Erwachsenen liefern die Analysen der Urinproben wesentliche Informationen zur Belastung der in Deutschland lebenden Bevölkerung. Mit diesen Erkenntnissen können Standardwerte für Expositionsanalysen und Risikoschätzungen abgeleitet werden.NMP und NEP wurden schon in den in GerES V erhaltenen Morgenurinproben von Kindern und Jugendlichen analysiert. Die erhaltenen Daten sprechen für eine ubiquitäre Belastung mit NMP und eine nahezu ubiquitäre Belastung gegenüber NEP in der jungen Generation. Um repräsentative Daten für Erwachsene zu erhalten, sollen die Pyrrolidone in GerES VI untersucht werden. Sowohl OC als auch die Pyrrolidone werden erstmals in einer für Deutschland repräsentativen Studie von Erwachsenen untersucht.
Langsame Diffusionsprozesse von Schadstoffen in geringdurchlässigen wasser-gesättigten Gesteinen sind ein wesentlicher Grund für den beschränkten Erfolg vieler Untergrundsanierungen. Zu den immer noch wichtigsten Schadstoffen im Grundwasser zählen die chlorierten Lösemittel, die trotz jahrzehntelanger Sanierungsanstrengungen inzwischen lange Fahnen im urbanen Raum ausbilden. Eine langsame Diffusion bedingt aber auch lange Aufenthaltszeiten in der Gesteinsmatrix und damit können langsame abiotische Abbaumechanismen zum Tragen kommen, die auf Fe2+-haltige Mineralien wie z.B. Eisensulfide, Magnetit oder Phyllosilikate zurückgehen, und bei der Einschätzung des natürlichen Abbaupotentials berücksichtigt werden sollten. Ziel dieses Vorhabens ist es daher, die Transformation von Tri- und Perchlorethen während der Diffusion in Gesteinsproben geklüfteter Aquifere und Aquitarde zu quantifizieren. Weil die Reaktionsraten der Ausgangssubstanzen sehr wahrscheinlich zu klein sind, um im Labor gemessen werden zu können, liegt der Fokus auf der Bestimmung von Transformations- und Abbauprodukten (bspw. teil-chlorierte Ethene, Azetylen, Ethan). Die Experimente zur reaktiven Diffusion müssen mit intakten Gesteinsproben durchgeführt werden, da beim Zerkleinern reaktive Mineralober-flächen (z.B. bei Quarz und Pyrit) entstehen könnten, die zur Dehalogenierung der Ausgangssubstanzen führen könnten. Im Unterschied zu früheren Studien sollen hier die für die Reaktivität verantwortlichen spezifischen Minerale in der Gesteins-matrix identifiziert werden. Die Ergebnisse sind nicht nur für das Langzeitverhalten von chlorierten Lösemitteln im Grundwasser, sondern generell auch für die Endlagerung von radioaktiven Abfällen oder die chemische Verwitterung (Oxidation) von reduzierten Gesteinen relevant.
Die J.W. Ostendorf GmbH & Co KG (JWO-Gruppe) errichtet eine neue Produktionsstätte am Standort Coesfeld zur großtechnischen Anwendung einer neuen Fertigungstechnologie zur umweltfreundlichen Herstellung lösemittelarmer Lacke und Lasuren. Zielsetzung der geplanten Fertigungstechnologie ist es, sowohl die innerbetrieblichen Emissionen bei der Herstellung der Anstrichmittel als auch die anwendungstechnischen Emissionen beim Gebrauch durch den Konsumenten erheblich zu reduzieren. Die Senkung der innerbetrieblichen Emissionen wird vor allem durch eine lagerlose Kleinmengenfertigung erreicht. Deren Kernstück ist die exakte Dosierung der benötigten Basiskomponenten direkt in das Verkaufsgebinde ('Tinting During Filling' - TDF -). bis zu einer Gebindegröße von 0,125 l-Dosen. Die Senkung der anwendungstechnischen Emissionen soll durch Substitution der bestehenden durch lösemittelfreie Rezepturen erreicht werden. Mit der Anwendung der neuen Fertigungstechnologie (das TDF-Verfahren) mit geschlossener Prozessführung werden die innerbetrieblichen Emissionen im Vergleich zu konventionellen Verfahren nochmals deutlich gesenkt: Der Ausstoß flüchtiger organischer Substanzen (VOC), die als Vorläufersubstanzen für den Sommersmog gelten, sinkt um rund 76 Prozent, die Staubbelastung um rund 85 Prozent. Da die Belieferung des Unternehmens künftig mit Tankfahrzeugen erfolgt, werden jährlich rund 200 000 Papiersäcke und 4000 Einweg-Container eingespart. Spüllösungen, die einer speziellen Abwasserbehandlung bedürfen, werden um 66 Prozent reduziert. Um 82 Prozent sinkt die Menge der aufwändig zu entsorgenden Farb- und Lackschlämme. Durch eine energiesparende Mischtechnologie werden über 70 Prozent weniger Energie verbraucht und damit ein deutlicher Beitrag zum Klimaschutz geleistet.
Zielsetzung: Ziel von PeroCycle ist es, ein industrietaugliches Recyclingverfahren für Perowskitmodule zu entwickeln. Da Perowskitmodule umwelt- und gesundheitsschädliches Blei enthalten, sollte bereits jetzt an die Entsorgung der Module nach Erreichen der Lebensdauer gedacht werden. In unserem Projekt sollen Perowskit-Minimodule am ZSW hergestellt und verkapselt werden. Dadurch, dass unterschiedliche Arten von Modulen recycelt werden sollen, wird gleichzeitig die Praxistauglichkeit des Recyclingverfahrens geprüft. Die verkapselten Perowskit-Module sollen bei der FLAXRES GmbH mittels Lichtpulstechnologie aufgetrennt werden. Getestet werden soll eine Auftrennung so, dass der Glas-Polymer-Verbund, und damit das Glas als Ganzes, effektiv vom Absorbermaterial getrennt wird. Somit soll im Gegensatz zum gängigen Schreddern keine Vermischung mit den anderen Materialien erfolgen. Das Glas kann daher erneut zu Flachglas verarbeitet werden. Das Perowskit-Absorbermaterial wird sortenrein eingesammelt und es muss lediglich 1/3000 der Gewichtsmenge eines Moduls chemisch aufbereitet werden. Nach der Trennung der Materialien erfolgt die Entwicklung und Optimierung eines Perowskit-Recyclingverfahrens beim assoziierten Partner Solaveni GmbH. Für den Recyclingprozess werden selbstentwickelte nicht brennbare, kostengünstige und umweltfreundliche Lösungsmittelsysteme eingesetzt, die den Einsatz von toxischen Lösungsmitteln obsolet machen und auf den Einsatz von extremen Bedingungen, wie bspw. hohe Temperaturen verzichten. Dieser Ansatz soll es ermöglichen, die Kosten und die Umweltauswirkungen zu minimieren, indem der Energieverbrauch und die Abfallproduktion reduziert und die Kreislaufwirtschaft gefördert wird. Das angedachte Verfahren umfasst chemische und physikalische Bearbeitungsverfahren, wobei mindestens 90% der alten Absorbermaterialien zurückgewonnen werden sollen, die nach dem Recyclingprozess eine Reinheit von >=99% aufweisen. Am ZSW sollen aus den recycelten Absorbermaterialien (sowie mit den recycelten TCO-beschichteten Gläsern) neue Perowskitmodule hergestellt werden. Die Module aus den recycelten Materialien sollen mindestens 90% des Wirkungsgrads der frisch hergestellten Referenzproben aufweisen.
Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst in kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 2 ist die Untersuchung des Elektronentransfers und die Genexpressionsanalyse. Dafür soll die Biofilmbildung auf der Elektrode und die mögliche Ausbildung von Nanodrähten analysiert werden, die einen direkten Elektronentransfer ermöglichen. Unterschiede zwischen nativen und synthetischen Biofilmen werden untersucht. Erhaltene Erkenntnisse werden auf den Produktionsprozess im Bioreaktor übertragen und der Einfluss des angelegten Potentials auf die Genexpression analysiert.
Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst ein kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 1 ist die technische Etablierung des neuen Reaktorsystems. Dies insbesondere durch Überarbeitung eines Bioreaktors für den Einsatz mit Elektroden unter besonderer Berücksichtigung von Korrosion im Reaktorraum. Neben den konstruktiven Ansätzen umfasst dies die Erschaffung und Charakterisierung neuer Elektodenoberflächen aus elektrisch leitfähigen, biokompatiblen Hydrogelen. Zugrundeliegende Stoffstrombilanzen werden in ein Modell überführt, um Signifikanzanalysen durchzuführen.
Origin | Count |
---|---|
Bund | 1687 |
Kommune | 28 |
Land | 1509 |
Wissenschaft | 12 |
Zivilgesellschaft | 19 |
Type | Count |
---|---|
Chemische Verbindung | 223 |
Daten und Messstellen | 1465 |
Ereignis | 1 |
Förderprogramm | 1342 |
Gesetzestext | 1 |
Text | 112 |
Umweltprüfung | 15 |
unbekannt | 45 |
License | Count |
---|---|
geschlossen | 380 |
offen | 2796 |
unbekannt | 28 |
Language | Count |
---|---|
Deutsch | 3083 |
Englisch | 196 |
Resource type | Count |
---|---|
Archiv | 1465 |
Bild | 3 |
Datei | 43 |
Dokument | 72 |
Keine | 1292 |
Multimedia | 2 |
Unbekannt | 2 |
Webseite | 1845 |
Topic | Count |
---|---|
Boden | 2658 |
Lebewesen und Lebensräume | 2491 |
Luft | 2441 |
Mensch und Umwelt | 3204 |
Wasser | 2309 |
Weitere | 2946 |