API src

Found 147 results.

Similar terms

s/lemd/LED/gi

Technik und Energieeinsparung

Die Berliner Verkehrsampeln werden von der Abt.Verkehrsmanagement überwacht. Die meisten Ampeln sind über Kabelverbindungen an einen Verkehrsrechner angeschlossen. Sie sammeln die Daten der Lichtsignalanlagen und leiten sie an die Verkehrsregelungszentrale der Abt. Verkehrsmanagement weiter. Verkehrsrechner In Berlin werden 12 Verkehrsrechner betrieben. Ampeln, die keine Kabelverbindung zu einem Verkehrsrechner haben, werden über Funk überwacht. Die Verkehrsrechner erfüllen aber noch eine andere Funktion. Bei modernen Lichtsignalanlagen laufen die Signalprogramme in einem eigenen Steuergerät. Bei älteren Ampeln fehlt dieses Gerät. Sie werden deshalb vom Verkehrsrechner gesteuert. Der Nachteil ist: Wird die Verbindung zum Verkehrsrechner unterbrochen, fällt die Ampel aus. Moderne Ampeln arbeiten dagegen auch bei solchen Störfällen weiter. Bei den meisten Ampeln in Berlin leuchten heute noch in Reflektoren eingesetzte Glühlampen hinter den farbigen Streuscheiben. Neuere Ampeln arbeiten dagegen mit Leuchtdioden oder LEDs (eine Abkürzung des englischen “Light Emitting Diode”). LED-Displays verbrauchen sehr viel weniger Energie und halten bis zu 20 Mal länger als herkömmliche Glühlampen. Das macht die Instandhaltung der Ampeln spürbar billiger. An LED-Displays können zudem keine Phantombilder entstehen. Um Phantombilder auch bei traditionellen Ampeln so gut als möglich zu verhindern, werden an Berliner Straßen, die in Ost-West-Richtung verlaufen, spezielle Blenden in den Signalgebern eingesetzt.

Untersuchung ökotoxischer Effekte von faser- und plättchenförmigen neuartigen Materialien für die Ableitung angepasster Prüfstrategien

Faser- und plättchenförmige neuartige Materialien wie beispielswiese Kohlenstoffnanoröhrchen, Graphene oder MXene weisen außergewöhnliche mechanische, elektronische, optische und chemische Eigenschaften auf. Sie werden daher für eine Vielzahl von Anwendungen untersucht. Diese umfassen beispielsweise optoelektronische Anwendungen (z.B. Solarzellen, Leuchtdioden), Sensortechnik, Verbundmaterialien (z.B. für elektrische Leitfähigkeit, EMV-Abschirmung), Energiespeicherung, Katalysatoren oder Textilien (z.B. für elektrische Leitfähigkeit, Flammschutz). Faser- und plättchenförmige neuartige Materialien können aufgrund ihrer Eigenschaften methodische Herausforderungen für die regulative Risikobewertung gemäß EU-Chemikalienrecht mit sich bringen. Welche Mechanismen zur ökotoxischen Wirkung dieser Materialien beitragen, ist wenig untersucht. Zudem besteht die Besorgnis, dass mögliche ökotoxische Wirkungen der Materialien über die klassischen Methoden nicht ausreichend aufgeklärt werden können. Somit besteht der Bedarf geeignete Prüfstrategien zu entwickeln, die es ermöglichen relevante Mechanismen und (sub)letale Effekte zu identifizieren, die eine spezifische Einschätzung des ökotoxischen Potentials faser- und plättchenförmiger neuartiger Materialien erlauben. In dem Vorhaben sollen daher besondere Wirkmechanismen und relevante (sub)letale Effekte dieser Materialien recherchiert werden. Davon ausgehend soll abgeleitet werden, welche Prüfsysteme zum Einsatz kommen müssen, um spezifische Aussagen zur Ökotoxikologie dieser Materialien vornehmen zu können. Ausgewählte Prüfsysteme sollen exemplarisch anhand von ausgewählten faser- und plättchenförmigen Materialien erprobt und adaptiert werden. Auf diese Weise sollen Empfehlungen abgeleitet werden, wie nicht-klassische Effekte im Rahmen der Umweltrisikobewertung solcher Materialien berücksichtigt werden könnten und welche weiteren Schritte vorgenommen werden müssten.

Schwerpunktprogramm (SPP) 2451: Lebende Materialien mit adaptiven Funktionen, Teilprojekt: Konstruktion adaptiver Vibrio natriegens-Stämme für hybride Leuchtdioden

Heutige biologische und einstellbare Leuchtmittel, die lebende Bausteine integrieren, sind im Wesentlichen auf Zellen beschränkt, die Biochemilumineszenz mit begrenzter Stabilität und Lichtausbeute nutzen (d. h. einige Tage bei Lichtausbeuten <5 lm/W). Tatsächlich gibt es keine Beispiele für lebende Leuchtmittel, die Photonenumwandlungssysteme zur Manipulation von Licht nutzen. Wir haben kürzlich eine neue Methode zur Herstellung lebender Farbfiltern mit Vibrio natriegens entwickelt. Dieses Bakterium weist (I) ein vielversprechendes Potenzial für die Biotechnologie mit einer außerordentlich hohen Wachstums- und Substratverbrauchsrate, (II) einen bereits sehr guten Ertrag bei der Expression hochwertiger fluoreszierender Proteine (FP) und (III) eine vielversprechende Kompatibilität mit Matrizen, die für Leuchtmittel von großem Interesse sind, auf. Tatsächlich haben vorläufige Experimente Leuchtmittel erzeugt die eine bessere Leistung aufweisen als diejenigen die mit denselben FP in Referenzmatrizen hergestellt wurden. Die aktuellen Hindernisse hängen mit dem Mangel an grundlegendem Wissen zusammen, um (I) die Expression beliebiger FP erfolgreich zu optimieren, (II) die Widerstandsfähigkeit und Kompatibilität in den Matrizen zu verbessern, (III) eine Anpassungsfähigkeit an externe Reize einzuführen und (IV) die besten Leuchtmittelarchitekturen und Betriebsarten zur Maximierung der Leuchtmittelleistung zu erstellen. Das ENABLED-Projekt wird all diese offenen Fragen bearbeiten und dabei die Disziplinen Metabolic Engineering, Synthetische Biologie, Materialwissenschaft und Biooptoelektronik miteinander verbinden. ENABLED wird insbesondere grundlegende Konstruktionsregeln für die Entwicklung von V. natriegens-Stämmen mit (I) optimierter flexibler Einzel- und Doppelemission, (II) verbesserter Widerstandsfähigkeit in Farbfiltern, um ihre Wiederverwertbarkeit nach der Verwendung in Leuchtmitteln zu ermöglichen, und (III) einer Anpassungsfähigkeit an die Temperatur in Farbfiltern, um die Zellregeneration nach der Verwendung in den Leuchtmitteln zu ermöglichen. Dies wird es uns ermöglichen, eine neue Familie von Regenbogen- und weißen Bakterien-Hybrid-Leuchtdioden einzuführen, die bislang nicht zur Verfügung stehen.

Chemie Interaktiv

Im Rahmen des Projekts Chemie Interaktiv wurden bisher mehr als 100 verschieden umfangreiche Flash-Animationen zu etablierten (galvanische Zellen, NaCl-Synthese) und innovativen Fachinhalten (z.B. photogalvanischen Zellen, organischen Leuchtdioden, Photostationarität) konzipiert, programmiert, getestet und optimiert. Die Animationen erstrecken sich über kurze Flash-Folien, größere lineare und verzweigte Lernnetze bis hin zu sehr umfangreichen Hypermedia-Bausteinen mit integrierten Videos und interaktiven Aufgabenstellungen. Sie sind überwiegend auf Deutsch, zum Teil aber auch deutsch und englisch formuliert und so international einsetzbar. Die Flash-Animationen werden über den Server der Wuppertaler Chemiedidaktik und das dafür eingerichtete Internet Portal www.chemie-interaktiv.net veröffentlicht. Allein auf letzterem wurden pro Monat Daten von durchschnittlich 21 GB Transfervolumen aufgerufen, was einer Zahl von durchschnittlich 500 Dateien pro Tag entspricht (Erhebungszeitraum: Januar - Juni 2009) wobei es sich zu 80% um deutsche, zu 15% um österreichische und schweizerische Nutzer und zu 5% um Nutzer aus dem englischsprachigen Ausland handelt. Bildungsportale wie 'Lehrer-Online', der 'Hamburger Bildungsserver', der 'Landesbildungsserver Baden-Württemberg', der 'Hessische Bildungsserver', der 'deutsche Bildungsserver' u.a. haben inzwischen dazu Kurzkommentare, Beschreibungen und z.T. auch didaktische Erläuterungen auf ihren Internetseiten verfasst und die Elemente von Chemie Interaktiv durch entsprechende Hyperlinks mit ihren Homepages verknüpft. Ferner wurde im Rahmen des BMBF geförderten Projekts 'Naturwissenschaften entdecken' anlässlich des Wissenschaftsjahres 2009 - Expedition Deutschland ein Materialordner mit Handreichungen für Lehrkräfte zu Themen des Wissenschaftsjahres erstellt, in dem Medien aus dem Projekt Chemie Interaktiv veröffentlicht sind.

Donau-Ries (Lkr): Nachhaltigkeit

In diesem Datensatz finden Sie Initiativen und Projekte aus dem Landkreis Donau-Ries zum Thema Nachhaltigkeit - sei es zum Mitmachen oder als Inspiration zum Nachahmen! Diese Best Practices werden von Bürgerinnen und Bürgern, Vereinen und Nachhaltigkeitsinitiativen, dem Landkreis und Landkreiskommunen, aber auch Unternehmen auf freiwilliger Basis eingestellt und regelmäßig aktualisiert.

KMU-innovativ: Multi-Chromatische-LED Plattform (MuCh-LED Plattform)

KMU-innovativ: Multi-Chromatische-LED Plattform (MuCh-LED Plattform), Teilvorhaben: Erforschung und Evaluierung einer Multi-Chromatischen-LED Plattform

GTS Bulletin: SAEU31 EDZW - Surface data (details are described in the abstract)

The SAEU31 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (EU): Europe (The bulletin collects reports from stations: LEMD;MADRID BARAJAS INT ;LROP;HENRI COANDA INT;LYBE;BELGRADE NIKOLA TESLA ;LEVC;VALENCIA ;LDZA;ZAGREB ;LEBL;BARCELONA INT ;LPPT;LISBON PORTELA ;LHBP;BUDAPEST LISTZ FERENC INTL ;) (Remarks from Volume-C: COMPILATION FOR REGIONAL EXCHANGE)

openSenseMap: Sensor Box S02-SDS011-10313983 (DG)

Konfiguration: NodeMCU (V3; 01.04.2019) + SDS011 (PM10, PM2.5 | 01.04.2019) + DHT22 (T, RH | 01.-19.04.2019) + BME280 (T, RH, P | 04.04.2019) + SSD1306 (OLED | 19.04.2019) Bedingungen: 5 min Takt, 10 m von Straße, 2 m Höhe (= 278 m NHN), Büro SW, Tallage, Waldgebiet

openSenseMap: Sensor Box Erster Feinstaubsensor in Raum

SDS 011 mit BME280 (Temperatur,Luftfeuchtigkeits und Luftdruck Sensor) und OLED 1,3" Display bei Fragen bitte Mail an: robby.ami3d@online.de

1 2 3 4 513 14 15