Akzeptanzbescheid §23a BImSchG
Das Projekt "Entwicklung von Lithium-Schwefel Feststoffbatterien in mehrlagigen Pouchzellen, SoLiS - Entwicklung von Lithium-Schwefel Feststoffbatterien in mehrlagigen Pouchzellen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie.
Das Projekt "Hocheffiziente, kostengünstige und langlebige Natrium-Ionen-Batterie Zellen" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Nacelle GmbH.Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar.
Das Projekt "Biogeochemie der wichtigsten Elemente im Atlantischen und Pazifischen Ozeane" wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die vorgeschlagene Arbeit zielt darauf ab, das Ozeanographen-Toolkit zur Quantifizierung der Skelettniederschlagsraten in Meeresumgebungen zu verbessern und Veränderungen in der Ökosystemstruktur und -funktion über sehr große räumliche Skalen zu bewerten. Dies basiert auf der Analyse von Veränderungen in der Meerwasserchemie, die durch die Aufnahme von wichtigen Elementen durch verschiedene Meeresorganismen während des Biomineralisierungsprozesses hervorgerufen werden, und der Freisetzung dieser Elemente bei der Auflösung von Skeletten. Der Ansatz nutzt die unterschiedlichen Tendenzen verschiedener Skelettbildungsorganismen, um kleinere Bestandteile in ihre Skelette aufzunehmen. Die Analyse der Konzentrationen der Hauptelemente Kalzium, Strontium, Lithium und Fluor erfolgt entlang von vier langen Ozeantransekten im Atlantik und im Pazifischen Ozean, die auf die Konzentrationen und Isotopenverhältnisse einer großen Anzahl von Spurenelementen, Nährstoffen, Karbonatsystemparametern und Hydrographie analysiert wurden oder werden. Das Vorhandensein der Spurenelementdaten neben den Hauptelementdaten ermöglicht die Quantifizierung der wichtigsten Elementeinräge und den Austrag durch Grenzquellen und Senken (wie Flüsse, hydrothermale, Staub und Sedimente), wodurch Korrekturen der Major-Elementdaten zur Berücksichtigung von Flüssen aus dem Ökosystem ermöglicht werden. Dieses Wissen wird zur Beurteilung des Zustands der marinen Ökosysteme genutzt und kann als Grundlage für Veränderungen dienen, die bei zukünftigen Bewertungen beobachtet werden. Die Anwendung dieses Instruments auf wiederholte räumliche oder zeitliche Untersuchungen wird eine groß angelegte Bewertung des Fortschritts der Auswirkungen der Versauerung der Ozeane auf die Häufigkeit von Kalkbildungsorganismen ermöglichen.
Das Projekt "Erhöhung der Sicherheit von Lithium-Ionen-Batterien durch ein innovatives, ventilgesteuertes Gas- und Thermomanagement, VentBatt - Erhöhung der Sicherheit von Lithium Ionen Batterien durch ein innovatives, ventilgesteuertes Gas und Thermomanagement" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: BorgWarner Akasol GmbH.
Das Projekt "Advanced Applied Materials for Hybrid Solid-State Batteries 2, Teilvorhaben - Herstellung von Festkörperbatterien mit polymerer Trägerstruktur" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Chemische Technologie.
Das Projekt "Wertschöpfungskette Batteriezellproduktion" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: BASF SE.
Das Projekt "Wertschöpfungskette Batteriezellproduktion" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: BASF Schwarzheide GmbH.
Das Projekt "Aufbau einer Zellfertigung für Hochleistungs-Lithium-Ionen-Batterien" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Cellforce Group GmbH.
Das Projekt "Umweltschonende Herstellung von wiederaufladbaren langlebigen Lithium-Polymer-Batterien mit Festkörper-Elektrolyten und extrudierten Elektroden" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: VARTA Microbattery GmbH.Die Microbatterie GmbH, Ellwangen, eine 100 Prozentige Tochter der VARTA AG, errichtet eine Anlage zur großtechnischen Produktion von Lithium-Polymer-Batterien, die insbesondere bei miniaturisierten, transportablen Anwendungen wie z.B. Handies und Notebooks eingesetzt werden sollen. Das Produkt und die Fertigungstechnik sind vollständige Neuentwicklungen. Die Microbatterie GmbH will gesundheitsschädliches Kobalt in der Produktion und im Produkt durch umweltverträgliche Lithium-Mangan-Oxide substituieren. Ferner soll der bisher verwendete Flüssigelektrolyt in einem ersten Schritt zum Teil durch einen umweltverträglicheren ionenleitenden Festkörperelektrolyten und in einem zweiten Schritt durch eine Kombination zweier Festelektrolyte ersetzt werden. Die Polymertechnologie mit der aluminisierten Tütenverpackung macht das Produkt recyclingfreundlich und sicher (keine Auslaufgefahr). Daneben zeichnen sich Lithium-Polymer-Batterien aufgrund ihrer Wiederaufladbarkeit (bis zu 1.000 mal bei den Hauptanwendungsgebieten) durch eine hohe Lebensdauer aus. Aus umweltpolitischer Sicht ist auch die umweltfreundliche Produktionstechnik hervorzuheben. Durch die Einführung eines innovativen Extrusionsverfahrens kann auf die bisher bei der Elektrodenherstellung und der Extraktion eingesetzten Lösemittel, Weichmacher und PTFE-Folien vollständig verzichtet werden. Bei der Extrusion werden die reinen Rezepturen vermischt und direkt als Folie mit einem Extruder hergestellt. Dieses Verfahren arbeitet abluft- und abwasserfrei. Die bei herkömmlichen Verfahren entstehenden Abfälle (Lösemittel, Weichmacher und Folie) können vollständig vermieden werden. Es fallen lediglich Elektrodenstanzabfälle aus Kupfer und Aluminium (5 Prozent der Einsatzmenge) und Gehäuseabfälle aus Aluminium (25 Prozent der Einsatzmenge) an, die stofflich verwertet werden können.
Origin | Count |
---|---|
Bund | 823 |
Kommune | 27 |
Land | 2129 |
Wissenschaft | 29 |
Zivilgesellschaft | 14 |
Type | Count |
---|---|
Chemische Verbindung | 62 |
Förderprogramm | 618 |
Messwerte | 2209 |
Text | 23 |
Umweltprüfung | 7 |
unbekannt | 36 |
License | Count |
---|---|
geschlossen | 1619 |
offen | 1324 |
unbekannt | 12 |
Language | Count |
---|---|
Deutsch | 2912 |
Englisch | 72 |
Resource type | Count |
---|---|
Archiv | 592 |
Bild | 1 |
Datei | 6 |
Dokument | 129 |
Keine | 1978 |
Webdienst | 108 |
Webseite | 958 |
Topic | Count |
---|---|
Boden | 2475 |
Lebewesen & Lebensräume | 2522 |
Luft | 2484 |
Mensch & Umwelt | 2955 |
Wasser | 2350 |
Weitere | 2881 |