Bild: SenMVKU Überblick Die Region "Industriegebiet Spree" - das heutige ökologische Großprojekt Berlin - befindet sich im Süd-Osten von Berlin und umfasst mit einer Fläche von mehr als 19 km² die größte zusammenhängende Industrieregion der Hauptstadt. Weitere Informationen Bild: Tauw GmbH Regionales Grundwassermonitoring Das regionale Grundwassermonitoring dient der Überwachung der Grundwasserbeschaffenheit in den sogenannten Transfergebieten von Schadstoffen zwischen altlastenverunreinigten Industrieflächen sowie den Brunnengalerien der Wasserwerke Johannisthal und Wuhlheide. Weitere Informationen Bild: C. Blach Berliner Batterie- und Akkumulatorenfabrik Das Grundstück der heutigen BAE Berliner Batterie GmbH wird seit ca. 1899 industriell zur Produktion von Akkumulatoren und Batterien genutzt. Kennzeichnend für das Grundstück war eine flächenhafte Verbreitung von Belastungen des Bodens durch Blei. Weitere Informationen Bild: Tauw GmbH, Berlin Dachpappenfabrik Oberschöneweide 1894 - 1945 wurde der Standort durch die teerverarbeitende Industrie zur Produktion von Dachpappe, Asphalt und anderen Mineralölprodukten genutzt. Durch Kriegseinwirkungen, Havarien, Leckagen und Handhabungsverlusten kam es zu Verunreinigungen des Bodens und Grundwassers durch flüssige Teerphase. Weitere Informationen Bild: envi sann GmbH, Berlin Haushaltsgeräteservice Von 1940 bis 1945 erfolgte die Produktion von Farben durch eine Lackfabrik. Von 1945 bis 1995 diente der Standort der Endmontage und Reparatur von Haushaltsgeräten. In Vorbereitung einer Erweiterung des Gebäudebestandes erfolgte 1980 die Bergung des Tanklagers, wodurch es zu Schadstoffaustritten kam. Weitere Informationen Bild: C. Blach Kabelwerk Oberspree 1896 wurden die Kabelwerke Oberspree als Tochter der AEG gegründet. 1993 erfolgte die Ausgliederung von nicht betriebsnotwendiger Fläche. Kennzeichnend für das Grundstück war eine großflächige Verbreitung von As- und CN-haltigen Industrieschlämmen. Weitere Informationen Bild: Firma TAUW GmbH Medizinischer Gerätebau Von 1910 bis 1945 produzierten die Albatroswerke Flugzeugteile. Nach dem Weltkrieg II bis 1990 wurde die Fläche zur Produktion von medizinischen Geräten genutzt. Von 1992 bis 1994 durchgeführten Erkundungen belegten auf dem Standort massive Belastungen der Bodenluft und des Grundwassers mit LCKW. Weitere Informationen Bild: ARGE IUP/ISAC Tanklager "Staatsreserve" Der Standort des ehemaligen Tanklagers im Bezirk Treptow-Köpenick wurde von 1911 bis 1975 als Treibstofflager bzw. als Großtanklager der Staatsreserve genutzt. Im Zuge des Tanklagerrückbaus (1975) wurden 28 Einzeltanks und diverse Leitungssysteme entfernt sowie ein Bodenaustausch realisiert. Weitere Informationen Bild: Büro f. Umweltplanung, Berlin Transformatorenwerk Oberschöneweide Das Grundstück wurde seit 1899 bis 1996 im wesentlichen als Transformatorenwerk (Großtransformatoren, Leistungsschalter/-trenner) industriell genutzt. Kennzeichnend für das Grundstück war eine großflächige, dem Grundwasser aufschwimmende Ölphase. Weitere Informationen Bild: C. Blach Transformatorenwerk Rummelsburg Das Grundstück wurde seit den 20er-Jahren bis 1953 durch die Elektrometallurgischen Werke Rummelsburg bzw. Berliner Elektrizitätswerke genutzt. Im Rahmen der Erkundungsmaßnahmen wurden Boden- und Grundwasserkontaminationen durch MKW, Cyanide und untergeordnet Schwermetalle und BTEX festgestellt. Weitere Informationen Bild: IUP VEB Lacke und Farben Das Gelände ist Teil eines seit 1871 durch die chemische Industrie- und Farbenproduktion geprägten Industriebereiches im Bezirk Treptow-Köpenick. Am Standort gelangten Schadstoffe über Havarien, Handhabungsverluste und als Aufschüttungsmaterial nach Kriegsschäden in den Boden und in das Grundwasser. Weitere Informationen Bild: SenMVKU Sicherung des Wasserwerks Johannisthal 2001 wurde die Trinkwassergewinnung vorübergehend eingestellt. Im Einzugsgebiet des Wasserwerks stellen im Wesentlichen die Einträge von Arsen, Cyaniden sowie LCKW aus Altlastengrundstücken und Pflanzenschutzmitteln eine akute Gefahr für die Rohwassergüte der Förderbrunnen dar. Weitere Informationen Bild: Tauw GmbH Sicherung des Wasserwerks Wuhlheide Kriegseinwirkungen, Handhabungsverlusten und mangelndem Umweltbewusstsein verursachten über Jahrzehnte hinweg Schaden in Boden und Grundwasser. Insbesondere LCKW, FCKW, BTEX und Aniline stellen aufgrund ihrer hohen Mobilität im Grundwasser eine Gefahr für die Trinkwassergewinnung dar. Weitere Informationen Bild: IUP (2918), Drohnenflug im Rahmen des Altlastensymposiums 2018 Werk für Fernsehelektronik Aufgrund der Mobilität der LHKW-Verbindungen sowie des immer noch hohen Schadstoffpotentials im FCKW-Quellbereich ergibt sich eine Gefährdungssituation für das Grundwasser im Abstrom des Grundstücks sowie für das Wasserwerk Wuhlheide. Weitere Informationen
Nickel gilt für manche Tiere, Pflanzen und Mikroorganismen als essentielles Spurenelement; für den Menschen ist dies nicht sicher nachgewiesen. Die Ni-Konzentration in der oberen kontinentalen Kruste (Totalgehalte) beträgt 19 mg/kg, kann aber in den unterschiedlichen Gesteinstypen stark schwanken. Die mittleren Ni-Gehalte (Median) der sächsischen Hauptgesteinstypen variieren von 1 bis 1 900 mg/kg, der regionale Clarke des Erzgebirges/Vogtlandes beträgt 23 mg/kg. Für unbelastete Böden gelten Ni-Gehalte von 5 bis 50 mg/kg als normal. Zusätzliche geogene Ni-Anreicherungen in Böden sind vor allem im Bereich der Ni-Verwitterungslagerstätten (Haupterzmineral Garnierit) über Serpentiniten im Granulitgebirge und dessen Schiefermantel anzutreffen, die jedoch nur geringe Flächen einnehmen. Bei den Ganglagerstätten besitzen die Vererzungen der Quarz-Arsenid-Assoziation ("Bi-Co-Ni-Ag-U-Formation") eine nur geringe umweltgeochemische Relevanz. Auch ein Einfluss der Ni-Mineralisation von Sohland/Spree ist im vorliegenden Maßstab nicht erkennbar. Anthropogene Ni-Einträge erfolgen vor allem durch die Eisenmetallurgie bzw. durch Ni-verarbeitende Industrien (Legierungen, Apparatebau, Lacke, Kunststoffe) und durch die Verbrennung fossiler Energieträger. Weitere nennenswerte Ni-Einträge sind vor allem mit den Abwässern in aquatische Ökosysteme möglich (z. B. Klärschlamm). Die regionale Verbreitung erhöhter Ni-Gehalte in den sächsischen Böden wird vor allem durch die geogene Spezialisierung der Substrate bestimmt. Aufgrund der erhöhten Ni-Gehalte der Serpentinite (1 900 mg/kg), der tertiären Basalte (120 mg/kg), Amphibolite und Gabbros (110 mg/kg) und der devonischen Diabase (80 mg/kg) kommt es entsprechend der Verbreitung dieser Substrate, teils zu flächenhaften, teils zu punktförmigen anomal hohen Ni-Gehalten im Oberboden. Durch Einschaltungen von Metabasiten in die Phyllit- und Glimmerschieferfolgen, sowie wegen der schwach erhöhten Ni-Gehalte in diesen Gesteinen selbst (30 bis 40 mg/kg), treten das Vogtland und das Westerzgebirge als Gebiete erhöhter Ni-Gehalte im Kartenbild deutlich in Erscheinung. Analog zum Cr, kommen über den Substraten der sauren Magmatite und Metamorphite, der Sandsteine der Elbtalkreide sowie der periglaziären Decksedimente die niedrigsten Ni-Gehalte in den Böden vor. Bei den Auenböden lassen sich hinsichtlich der Ni-Gehalte deutliche Beziehungen zum geologischen Bau der Gewässereinzugsgebiete erkennen. Während in den Auenböden der Weißen Elster, des Muldensystems und der Elbe (Einzugsgebiet Erzgebirge, Vogtland) mittlere und z. T. schwach erhöhte Gehalte auftreten, sind die Auenböden u. a. der Schwarzen Elster und Spree (Einzugsgebiet Lausitz) relativ Ni-arm. Dazu tragen sicher auch die geringere Besiedlungsdichte und die niedrigere Dichte von Industriestandorten in der Lau-sitz bei. Problematisch ist die Umrechnung von Ni-Totalgehalten in Ni-Königswassergehalte (KW). Praktische Erfahrungen bei den Bodenuntersuchungen zeigen, dass die KW-Gehalte gegenüber den Totalgehalten in Abhängigkeit von der Bindungsform in den Substraten um ca. 10 bis 30 % niedriger sind. Die in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgelegten Prüfwerte für den Wirkungspfad Boden-Mensch (KW-Gehalte) werden in Sachsen nur z. T über den Diabasen und den kleinräumig auftretenden Serpentiniten überschritten. Gefährdungen können aber hier weitgehend ausgeschlossen werden, da das Ni silikatisch gebunden vorliegt und eine Freisetzung nicht zu befürchten ist. Der Ni-Transfer Boden-Pflanze auf Grünlandflächen ist unbedeutend; der Maßnahmenwert von 1 900 mg/kg wird nicht erreicht.
Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
Stärke ist ein pflanzlicher Reservestoff, der in Form von Stärkekörnern in Speicherorganen von Pflanzen (Körner, Knollen, Wurzeln oder Mark) angereichert wird. Stärke wird sowohl im Lebensmittel - als auch im technischen Bereich in breitem Umfang eingesetzt. Die landwirtschaftliche Erzeugung von stärkehaltigen Rohstoffen erfolgt in Deutschland durch den Anbau von Kartoffel, Weizen und Körnermais. In der Zukunft könnten die Markerbse und Neuzüchtungen mit sehr hohem Amylose- ("Amylo-Mais") oder Amylopektinanteil (z. B. Amylose-freie Kartoffel) Bedeutung erlangen, da sich hierdurch verarbeitungs- und anwendungstechnische Vorteile ergeben. Hinsichtlich der Verwendung werden drei wesentliche Produktlinien unterschieden - native Stärke (Papier, Pappe, Leime, Kleber, Gipskartonplatten, Textilverarbeitung, Kosmetika), - modifizierte Stärke (Lacke, Streichfarben, Bindemittel (Quellstärken), kationische Stärken, Papier, Pappe, Tabletten, Stärkeether und -ester) etc. sowie - Verzuckerungsprodukte (Tenside, Sorbit, Kunststoffe, Vitamin C, Alkohole, Biotechnologie).
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
The FTRO31 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FT): Aerodrome (VT >= 12 hours) A1A2 (RO): Romania (The bulletin collects reports from stations: LRBS;BANEASA INT;LRCK;MIHAIL KOGALNICEANU INT;LROP;HENRI COANDA INT;LRSB;SIBIU INT ;LRTR;TIMISOARA TRAIAN VUIA;)
The SARO31 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (RO): Romania (The bulletin collects reports from stations: LRBS;BANEASA INT;LRCK;MIHAIL KOGALNICEANU INT;LROP;HENRI COANDA INT;LRSB;SIBIU INT ;LRTR;TIMISOARA TRAIAN VUIA;)
The ISND04 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10042;Schönhagen (Ostseebad);10093;Putbus;10097;Greifswalder Oie;10129;Bremerhaven;10130;Elpersbüttel;10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;) (Remarks from Volume-C: SYNOP)
The ISAD04 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISA): Routinely scheduled observations for distribution from automatic (fixed or mobile) land stations (e.g. 0000, 0100, … or 0220, 0240, 0300, …, or 0715, 0745, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10042;Schönhagen (Ostseebad);10093;Putbus;10097;Greifswalder Oie;10129;Bremerhaven;10130;Elpersbüttel;10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;) (Remarks from Volume-C: SYNOP HALF HOURLY H+30)
The CSDL04 TTAAii Data Designators decode as: T1 (C): Climatic data T1T2 (CS): Monthly means (surface) A1A2 (DL): Germany (The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10042;Schönhagen (Ostseebad);10093;Putbus;10097;Greifswalder Oie;10129;Bremerhaven;10130;Elpersbüttel;10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;)
Origin | Count |
---|---|
Bund | 1625 |
Europa | 1 |
Land | 577 |
Zivilgesellschaft | 7 |
Type | Count |
---|---|
Chemische Verbindung | 9 |
Ereignis | 11 |
Förderprogramm | 1329 |
Gesetzestext | 2 |
Messwerte | 466 |
Software | 1 |
Taxon | 1 |
Text | 281 |
Umweltprüfung | 16 |
unbekannt | 70 |
License | Count |
---|---|
geschlossen | 238 |
offen | 1818 |
unbekannt | 128 |
Language | Count |
---|---|
Deutsch | 2009 |
Englisch | 261 |
andere | 1 |
Resource type | Count |
---|---|
Archiv | 569 |
Bild | 1 |
Datei | 114 |
Dokument | 176 |
Keine | 1040 |
Multimedia | 2 |
Unbekannt | 3 |
Webdienst | 3 |
Webseite | 994 |
Topic | Count |
---|---|
Boden | 1667 |
Lebewesen & Lebensräume | 1647 |
Luft | 1584 |
Mensch & Umwelt | 2184 |
Wasser | 1460 |
Weitere | 2077 |