Das Projekt "Land Cover Change Assessment in Catchments of the Lower Mekong Basin" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Burckhardt-Institut, Abteilung Waldinventur und Fernerkundung durchgeführt. Since 1950, the riparian countries of the Mekong River have undergone a dynamic change in land-use. Extensive areas of forest have been logged and cleared for agriculture. Hamilton (1987) emphasizes the role of scale in measuring the impacts of land-use practices. They can be classified into three categories based on the affected area: local level, medium level and macro level. Impacts occur at the local scale in the area where land-use takes place, caused e.g. by soil erosion, new fallow zones or areas showing declines in soil fertility and productivity. Impacts at the medium or macro scale are e.g. sedimentation and siltation of riverbeds, reservoirs and irrigation systems, frequency of low flows and floods, deposition of chemical residues in rivers and lakes. These last-mentioned impacts are more difficult and complex to manage. There are only few empirical studies on the relationship between the removal of forest and land-use changes regarding water yield (low flows, floods), soil erosion, sedimentation and nutrient load of streams within the geographical context of the Lower Mekong Basin. Quantitative information is needed to support decisions in watershed management which includes management of all natural resources within a watershed for the protection and production of water resources while maintaining environmental stability. Objectives: In the framework of two master theses a time series of land cover changes from the 1950s to 2000 will be processed and analysed for the Nam Ton Pilot catchment in Laos PDR using remote sensing and GIS. The following materials are available at MRCS: Landsat TM and ETM+ images, SPOT images, aerial photos: 1:20,000 and 1:50,000 scale
Das Projekt "E 4.1: Quality and food safety issues in markets for high-value products in Thailand and Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrar- und Sozialökonomie in den Tropen und Subtropen durchgeführt. The production and marketing of high-value agricultural commodities - such as fruits, vegetables, and livestock products - has been an important source of cash income for small-scale farmers in the northern mountainous regions of Thailand and Vietnam. However, against the background of recent free trade agreements and market liberalization, there is increasing national and international competition, partly leading to significant price decreases. Given structural disadvantages of farmers in northern Thailand and Vietnam, it will be very difficult for them to achieve and maintain a competitive position in markets for undifferentiated high-value products. Therefore, product differentiation - in terms of health attributes (e.g., low-pesticide residues, free from diseases and pathogens), taste (e.g., indigenous livestock breeds), time (e.g., off-season production), or processing characteristics (e.g., packaging, drying, canning) - could be a promising alternative. Quality and safety attributes play an increasing role in domestic and international food trade. The additional value generated could lead to sustainable income growth in the small farm sector, but this potential will only materialize when appropriate institutional mechanisms help reduce transaction costs and allow a fair distribution of benefits. This subproject seeks to analyze how the production and marketing of high-value agricultural products with quality and safety attributes can contribute to pro-poor development in northern Thailand and Vietnam. Quality and safety attributes can only generate value when they directly respond to consumer demand. Furthermore, since they are often credence attributes, the product identity has to be preserved from farm to fork. Therefore, the analysis will cover the whole supply chain, from agricultural production to final household consumption. Interview-based surveys of farmers, intermediate agents, and consumers will be carried out in Thailand, and to a limited extent also in Vietnam. The data will be analyzed econometrically with regard to the structure of high-value markets, trends and their determinants, and efficiency and equity implications of different institutional arrangements (e.g., contract agriculture, supermarket procurement). Since in northern Vietnam, the marketing of high-value products is a relatively recent activity, markets for more traditional crops will be analyzed as well, to better understand the linkages between different cash-earning activities in the semi-subsistent farm households. Apart from their direct policy relevance, the results will contribute to the broader research direction of the economics of high-value agricultural markets in developing countries. Moreover, they will generate useful information for other subprojects of the Uplands Program.
Das Projekt "German Eco-Cycle and Waste Policies: The Current State of German Mandatory Deposit System and End-of-life-Vehicles (Automotive Shredder Residue - ASR)" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt.
Das Projekt "Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften durchgeführt. Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
Das Projekt "G 1.1: Assessment of Innovations and Sustainable Strategies" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Landwirtschaftliche Betriebslehre durchgeführt. Farm households, whose living standard largely depend on the successful management of natural resources, have a low per capita income and are in danger of further impoverishment due to unsustainable resource management. Investigations in the first phase confirmed the hypothesis. A great number of farms were analyzed and clustered in representative types in both countries. Sustainability was measured using a sustainability index, which indicates tremendous environmental effects and variation between individual farms and ethnic groups.Sub-project G1.1 will follow three major tasks. The first is to evaluate sustainability strategies on the farm and farming system level, as it was done in the previous phase, but on the basis of a significantly extended data base. The second is to aggregate farm household data to the regional level. For this, a comparative-static approach is chosen. The third is to develop a multi-agent-based simulation model. Multi-agent simulation models (MAS) as well as GIS-tools are gaining increasing importance as tools for simulating future agriculture resource use, since they allow the integration of a wide range of different stakeholder's perceptions. It becomes possible to simulate the dynamic effects of changing land use patterns, environmental policy options, and technical innovation together with environmental constraints and structural change issues. The MAS approach is used to model heterogeneous farm-household and political decision makers perspectives by capturing their socio-economic, environmental, and spatial interactions explicitly. The integration of economic and spatial processes facilitates the consideration of feedback effects and the efficient use of scarce land resources. The simulation runs of the model will be carried out with a socio-economic and GIS data set, which is provided by the previous project phase in the attempt to generate effective ways of land use resource management. Land use efficiency is strongly influenced by the overall land allocation policy analyzed in project F1. Therefore, this is an important area further integrated research using MAS in combination with GIS as modeling tools.To achieve a continuous integration of results in the best possible way, a computer-based discussion/communication platform is developed. This serves as the conceptual basis for the development of the final multi-agent simulation model. Results of the discussion/communication platform and the agent-based simulation model will continuously be passed on to downstream sub-projects to be integrated into the ongoing research activities.
Das Projekt "Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.
Das Projekt "Ecological Land Use Planning and Sustainable Management of Urban and Sub-urban Green Areas in Kota Kinabalu, Malaysia" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Burckhardt-Institut, Professur für Naturschutz und Landschaftspflege durchgeführt. Malaysia has been identified as one of the worlds mega diverse countries being extremely rich in biodiversity. Tropical rainforests, the oldest and most diverse ecosystems on earth, still cover an average 60 Prozent of the country (Soepadmo, 1998). The rainforests are estimated to contain about 12,500 species of flowering plants, and more than 1,100 species of ferns and fern allies (MSET, 1998). The dominating plant family is dipterocarp trees many of which produce commercial timber being native to Borneo as well as to Peninsular Malaysia, Indonesia, Philippine, Thailand etc. Large portions of these species are endemic and uniqueto the Malaysian archipelago.There is also great diversity in fauna, including about 300 species of wild mammals, 700-750 species of birds, 350 species of reptiles, 165 species of amphibians and more than 300 species of freshwater fish. Endemism in flora and fauna is high. As with other cultures, it is assumed that much of the traditional knowledge about these flora and fauna are heritage of the many traditional societies and communities that are dependent on them for their livelihood (Soepadmo, 1998).Unfortunately, much of Sabahs natural vegetation has been altered and degraded due to unsustainable and destructive human practices. Their existence continues to be threatened. Certain forest types are in danger of being totally eradicated from Sabah, while many plant species will likely disappear before they have ever been described. The fragmentation of natural forests also threatens the viability of various wildlife populations. The State is undergoing rapid development and the transformation of rural areas into urban is also accelerating. Many green areas are lost which causes serious threats to biodiversity in the country, because green areas play a very important role in buffering negative impacts on conservation areas.The objective of this study is to provide the information for developing a concept for sustainable urban green management in Kota Kinabalu district as well as to judge the ecological sustainability and to describe the importance of urban green area for the public. A focus is placed on the terrestrial and aerial inventory of the natural resources, including trees, birds, and biotopes. Furthermore, the study tries to explore the perception and attitude of local people, concerning urban forests and green areas. It also explores and investigates the possibilities for implementing an urban green management concept.The terrestrial data collection accordingly comprises of four fields: (1) tree inventory/survey, (2) bird survey/observation, (3) public perception survey, and (4) the mapping and classifying of urban forest functions.i).
Das Projekt "FOREST DRAGON - 3: Forest Ecosystem Mapping within China" wird vom Umweltbundesamt gefördert und von Universität Jena, Department for Earth Observation durchgeführt. The overall goal of the FOREST DRAGON 3 project is to advance understanding in forest ecosystems mapping within China. In addition, methodological developments towards the synergy of different sensors and techniques are proposed. Furthermore, a profound study will be carried out, in which a Decision Support System (DSS) will be built around web services providing decision-support on the mixture of eco-system services in local to regional scale integrating space and airborne remote sensing data. The eight objectives of the FOREST DRAGON 3 project are 1) the investigation of scaling effects in forest ecosystem mapping with SAR data, 2) the long-term analysis of forest GSV and forest structure over Northeast China based on SAR data, 3) linking forest DRAGON products with existing land use, land cover and/or fire products and 4) the synergy of optical and radar data for mapping forest ecosystems, 5) adapt current forest mapping algorithms to Eastern Russia, 6) adapt current and develop new forest mapping algorithm in Continental Southeast Asia, 7) use the Sentinels-1/2 data for forest map updating, 8) developing a modeling approach for forest services using space data as input for multi-criteria DSS in mountainous forests in China using earth observation. Under-pining the models will be the technology of remote sensing and existing spatial geo-data to establish or/and enhance forest, land cover and landform information. The project will deliver theoretical results as well as wall-to-wall maps of forest parameters for China and neighboring countries. Furthermore, this study will result in a new methodological base for DSS in forest resource management for mountain forest areas in China. This will be pursued through a case study in pilot region(s) in E and NE China.
Das Projekt "C 4.1: Impact of land-use intensification on land -use dynamics and environmental services of tropical mountainous watersheds" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut), Fachgebiet Pflanzenbau in den Tropen und Subtropen (490e) durchgeführt. Changing socio-economic conditions and the introduction of new technologies are rapidly altering land use in Vietnam and Thailand. In both countries farmland is often characterized by relatively steep slopes and is thus highly susceptible to land degradation by soil erosion. Intensification of agricultural systems has led to higher systems productivity but with associated increased resource use and degradation/pollution risks. The goal of this subproject is to comprehend the biophysical linkages and drivers of land-use changes in upland areas of Vietnam and Thailand and their impact on systems productivity, sustainability and environmental services. This can be only assessed by an approach, integrating the various systems and processes at stake and looking at their interconnectivity at landscape level. Of special interest is thus quantification and modelling of the interrelationships and feedback mechanisms between agricultural components within these complex ecosystems. Subproject C4.1 will develop a spatially explicit, integrated dynamic biophysical model for land use change impact assessment (LUCIA) to understand systems relationships at the landscape level and subsequently link this landscape model to the multi-agent-system (MAS) model of G1.2 (Innovations and Sustainability Strategies). In Vietnam, subproject C4.1 will investigate how nutrient and carbon losses and associated soil degradation in uplands will impact on lowland paddy rice and fish production systems. In North Thailand, an existing crop/tree model will be improved to assist in assessing the impact off-season fruit production technologies or management options on plant productivity, resource use and carbon sequestration and its modules integrated in the MAS model. The integrated biophysical and MAS models will allow assessing alternative options so that policy-relevant conclusions can then be drawn regarding the promotion of improved conservation and management systems, adapted to both the local populations and systems of governance in tropical humid mountainous watersheds from Thailand and Vietnam.
Das Projekt "Upwind: Development of Improved Wind Turbine Noise Prediction Tools for Low Noise Airfoil Design" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Aerodynamik und Gasdynamik durchgeführt. The noise regulations of various countries urge wind turbine manufacturers to reduce the aerodynamical noise emission of their turbines. To reduce the greenhouse gas emission, wind energy has been put in a very front position. EWEA estimates 12percent of worlds energy may come from wind turbines by the year 2020 (approx. 1,260,000 MW). This means wider deployment of wind turbines, at lower wind speed sites i.e. close to people & transmission lines. To reduce the transmission cost between production site and customer, onshore installations are still a cheaper solution. One of the biggest barriers for developing onshore turbines is the noise which has a negative impact on people's daily life. Thus, the goal of developing onshore wind turbines is to design silent wind turbines and silent wind farms and at the same time have a good aerodynamic efficiency. Noise emitted from an operating wind turbine can be divided into two parts, mechanical noise and flow induced noise. Mechanical noise can sufficiently be reduced by conventional engineering approaches but flow-induced noise is more complex and need more focus. The noise mechanisms associated with flow-induced noise emission have different sources. These are, inflow turbulence noise, tip noise, laminar boundary layer separation noise, blunt trailing-edge noise (BTE) and for turbulent boundary-layer trailing-edge interaction noise (TBL-TE). Acoustic field measurements within the European research project SIROCCO showed that the TBL-TE noise is the most dominant noise mechanism for modern wind turbines. Thus, accurate prediction and reduction of the TBL-TE noise is the main focus of the acoustics airfoil design methods for wind turbine rotor blade. For developing 'silent' airfoils, a routinely design fast, less expensive and accurate prediction methodology is desired. In this respect, simplified theoretical model would be the first candidate, and therefore the main goal is development of an accurate and efficient noise prediction model for the low noise wind turbine blade design.
Origin | Count |
---|---|
Bund | 207 |
Type | Count |
---|---|
Förderprogramm | 207 |
License | Count |
---|---|
open | 207 |
Language | Count |
---|---|
Deutsch | 207 |
Englisch | 199 |
Resource type | Count |
---|---|
Keine | 161 |
Webseite | 46 |
Topic | Count |
---|---|
Boden | 181 |
Lebewesen & Lebensräume | 197 |
Luft | 147 |
Mensch & Umwelt | 207 |
Wasser | 167 |
Weitere | 207 |