Das Projekt "Erosion von Bentonit unter In-situ Bedingungen durch Einwirkung natürlicher Wässer in geologischen Tiefenlagern, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung.
Das Projekt "Erosion von Bentonit unter In-situ Bedingungen durch Einwirkung natürlicher Wässer in geologischen Tiefenlagern, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften.
Das Projekt "Entwicklung selbstformender, geschwungener Holzmöbel, Teilvorhaben 2: Materialcharakterisierung und Langzeitverhalten der selbstformenden Elemente" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Forstwissenschaften, Institut für Forstnutzung und Forsttechnik, Professur für Forstnutzung.Sitzmöbel bestehen vielfach aus gekrümmten Komponenten. Bei Sitzmöbeln aus Holz werden die Krümmungen durch externe Kräfte mittels individuell geformter Presswerkzeugen realisiert. Das Projekt hat zum Ziel, gekrümmte Holzkomponenten für Sitzmöbel in einem neuartigen Selbstformungsprozess zu realisieren. Der Prozess beruht auf der anisotropen Struktur des Holzes, die sich in dem anisotropen Schwindverhalten niederschlägt. Bei einem Bilayer mit kreuzweiser Anordnung der zwei verleimten Schichten führt dies im Trocknungsprozess zu einer Krümmung, die 'in das Material' programmiert und vorhergesagt werden kann. Es sollen Sperrmechanismen entwickelt werden, die bei vorgegebener Krümmung einrasten und die durch Inhomogenität in der Holzanatomie ausgelöste Krümmungsvariabilität stark eingrenzen und dadurch Präzision und Formstabilität gewährleisten. Die gekrümmte Form wird ohne externe Kräfte und Presswerkzeuge realisiert. Dies ermöglicht eine flexible Produktion mit unterschiedlichen Krümmungen und Geometrien für kleine und mittlere Unternehmen. Durch die Verlagerung des Trocknungsprozesses unmittelbar vor die Nutzung des Möbels können diese im noch flachen Zustand transportiert werden, was zu einer signifikanten Reduktion des Transportvolumens führt. Zusammen mit einem digitalen Design und einer neuen Formensprache ist es übergeordnetes Ziel des Projekts, mithilfe der Selbstformungstechnologie eine ökonomische, kundenzentrierte Individualisierung im Möbelbau zu ermöglichen, einer der Kernpunkte von 'Industrie 4.0'.
Das Projekt "Hybride Holzbrücken mit Klebverbund - Qualitätssicherung und Zustandserfassung mittels integrierter Sensoren, Teilvorhaben 2: Erforschung des Feuchteeinflusses auf den Holz-Beton-Verbund und die Klebfuge" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Fachhochschule Erfurt, Fachrichtung Bauingenieurwesen.Straßenbrücken in Holz-Beton-Verbundbauweise (HBV) stellen ökologisch und ökonomisch sinnvolle Alternativen zu Brücken in konventionellen Massivbauweisen dar. Dies gilt insbesondere für baupraktisch häufig vorkommende Überbaustützweiten bis ca. 30 Meter. Das Verbundvorhaben zielt darauf ab, eine neuartige HBV-Bauweise mit flächiger Verklebung zwischen Beton und Holz für den Brückenbau zu etablieren. Dies erfordert die Entwicklung einer baupraktisch robusten Herstellungstechnologie und Klebfugenausführung sowie die Erforschung des mechanischen Langzeitverhaltens der Klebfuge unter Temperatur- und Feuchteeinflüssen. Zur Detailanalyse wird ein neuartiger Sensoransatz erforscht, der auch zur Zustandsüberwachung genutzt werden soll. Zur Erreichung der Arbeitsziele von HBVSens werden die Kompetenzen der Kooperationspartner durch enge Zusammenarbeit innerhalb von drei Teilprojekten gebündelt. Teilvorhaben 2 fokussiert auf die Erforschung der Auswirkungen hygrischer Beanspruchung auf HBV-Bauteile und deren Verbundfuge. Ein Teilaspekt ist die Erforschung der Holzfeuchteentwicklung über den Bauteilquerschnitt und die Definition von Feuchteprofilen anhand der Bewertung verschiedener mikroklimatischer Einflussgrößen (z.B. Kondensatbildung in der Verbundfuge). Unter Ansatz der Feuchteprofile sind Spannungs- und Dehnungsanalysen in den Teilquerschnitten durchzuführen und eine Bewertung des Feuchteeinflusses auf die Tragfähigkeit der Hybridbauteile abzuleiten. Darüber hinaus erfolgt eine Analyse der Dauerhaftigkeit der Klebfuge infolge zyklisch wechselnder hygrischer Beanspruchung. Ein weiterer Teilaspekt ist die Untersuchung der Anwendbarkeit innovativer feuchtesensitiver faseroptischer Sensorik zur experimentellen, aber auch praktischen Anwendung. Die Anwendung der Bauweise in der Praxis soll durch die Erarbeitung von Anwendungsempfehlungen und durch die Ergänzung der geklebten HBV-Bauweise in vorhandenen Regelwerken des Ingenieurbaus gefördert werden.
Das Projekt "Steigerung der Konkurrenzfähigkeit von alkalischen Elektrolysebauweisen durch thermisch gespritzte Zellkomponenten, Teilvorhaben: Demonstratorversuch von thermisch gespritzten ELPs unter dynamischen Lastwechseln" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: EBZ SysTec GmbH.
Das Projekt "Ressortforschungsplan 2023, Weiterentwicklung des Standes von Wissenschaft und Technik bei der Sicherheit der Behandlung bestrahlter Brennelemente, Wärme entwickelnder radioaktiver Abfälle und radioaktiver Abfälle mit vernachlässigbarer Wärmeentwicklung" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit , Bundesamt für die Sicherheit der nuklearen Entsorgung (BMU,BASE). Es wird/wurde ausgeführt durch: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Das Projekt "Hybride Holzbrücken mit Klebverbund - Qualitätssicherung und Zustandserfassung mittels integrierter Sensoren, Teilvorhaben 3: Erforschung der faseroptischen Sensorik und Messtechnik" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar.Straßenbrücken in Holz-Beton-Verbundbauweise (HBV) stellen ökologisch und ökonomisch sinnvolle Alternativen zu Brücken in konventionellen Massivbauweisen dar. Dies gilt insbesondere für baupraktisch häufig vorkommende Überbaustützweiten bis ca. 30 Meter. Das Verbundvorhaben zielt darauf ab, eine neuartige HBV-Bauweise mit flächiger Verklebung zwischen Beton und Holz für den Brückenbau zu etablieren. Dies erfordert die Entwicklung einer baupraktisch robusten Herstellungstechnologie und Klebfugenausführung sowie die Erforschung des mechanischen Langzeitverhaltens der Klebfuge unter Temperatur- und Feuchteeinflüssen. Zur Detailanalyse und Zustandserfassung der Verbundfuge wird durch die MFPA Weimar ein neuartiger Sensoransatz erforscht. Ziel hierbei ist die Integration sehr dünner faseroptischer Sensoren, um Dehnungen in der Verbundfuge ortsaufgelöst über die gesamte Sensorfaserlänge zu analysieren. Um dies zu ermöglichen bedarf es der Erforschung und Bewertung der Einsatzmöglichkeiten der faseroptischen Sensorik und Messtechnik für die Holz-Beton-Verbundweise. Dies umfasst diverse mechanische und thermo-mechanische Untersuchungen sowie die Sensordatenvalidierung an Kleinteilproben, HBV-Bauteilen mit integrierter Sensorik und einem Großdemonstrator unter Umgebungseinflüssen. Ein integrierter, verteilt-messender Sensor könnte somit zukünftig Änderungen in der Verbundfuge erfassen, Informationen zum Langzeitverhalten der Klebfuge unter mechanischen und klimatischen Beanspruchungen liefern und damit einen maßgeblichen Beitrag zur Optimierung der HBV-Bauweise sowie zur Sicherung der Bauwerkszuverlässigkeit leisten.
Das Projekt "Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling" wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Massivbau und Baustofftechnologie (IMB), Abteilung Baustoffe und Betonbau.Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Im Teilprojekt 'Materialanalyse und Umweltauswirkungen' werden zunächst durch das KIT-Institut für Industriebetriebslehre und Industrielle Produktion (IIP) relevante Stoffströme aufgezeigt. Am KIT-Institut für Massivbau und Baustofftechnologie (IMB/MPA/CMM) finden vertiefende Untersuchungen an den hergestellten Bindemitteln und den hergestellten Betonen statt, um sie ausführlich hinsichtlich ihres Kurz- und Langzeitverhaltens zu charakterisieren. Aufbauend auf den Arbeitspaketen aller Projektpartner führt das IIP eine begleitende Ökobilanzierung und Systemanalyse durch, um die Potentiale des neuartigen Betonzusatzstoffs fundiert aufzuzeigen. Hierbei wird der Antragsteller durch den Zement- und Transportbetonhersteller TBS, das Mineral- und Betonlabor mbl sowie das Recyclingunternehmen Scherer+Kohl, die Rudolf Peter GmbH & Co. KG und das Aufbereitungstechnikunternehmen Gebr. Pfeiffer (assoziierte Industriepartner) unterstützt.
Das Projekt "Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling, Teilvorhaben: Materialanalyse und Umweltauswirkungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Massivbau und Baustofftechnologie (IMB), Abteilung Baustoffe und Betonbau.Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Im Teilprojekt 'Materialanalyse und Umweltauswirkungen' werden zunächst durch das KIT-Institut für Industriebetriebslehre und Industrielle Produktion (IIP) relevante Stoffströme aufgezeigt. Am KIT-Institut für Massivbau und Baustofftechnologie (IMB/MPA/CMM) finden vertiefende Untersuchungen an den hergestellten Bindemitteln und den hergestellten Betonen statt, um sie ausführlich hinsichtlich ihres Kurz- und Langzeitverhaltens zu charakterisieren. Aufbauend auf den Arbeitspaketen aller Projektpartner führt das IIP eine begleitende Ökobilanzierung und Systemanalyse durch, um die Potentiale des neuartigen Betonzusatzstoffs fundiert aufzuzeigen. Hierbei wird der Antragsteller durch den Zement- und Transportbetonhersteller TBS, das Mineral- und Betonlabor mbl sowie das Recyclingunternehmen Scherer+Kohl, die Rudolf Peter GmbH & Co. KG und das Aufbereitungstechnikunternehmen Gebr. Pfeiffer (assoziierte Industriepartner) unterstützt.
Das Projekt "Erosion von Bentonit unter In-situ Bedingungen durch Einwirkung natürlicher Wässer in geologischen Tiefenlagern" wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften.
Origin | Count |
---|---|
Bund | 1174 |
Land | 44 |
Wirtschaft | 3 |
Wissenschaft | 6 |
Type | Count |
---|---|
Chemische Verbindung | 52 |
Förderprogramm | 1112 |
Text | 10 |
Umweltprüfung | 1 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 71 |
offen | 1113 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 1161 |
Englisch | 80 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 5 |
Keine | 561 |
Unbekannt | 1 |
Webseite | 621 |
Topic | Count |
---|---|
Boden | 870 |
Lebewesen & Lebensräume | 855 |
Luft | 746 |
Mensch & Umwelt | 1185 |
Wasser | 727 |
Weitere | 1185 |