Das Projekt "Teilvorhaben 4: HZDR" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Ressourcenökologie durchgeführt. Ziel des Vorhabens ist die Entwicklung optimierter Extraktionsverfahren von Seltenen Erdelementen (Rare Earth Elements - REE) aus Ionenadsorptionstonen (Ion-Adsorption Clays IAC), diese REE-reichen Lateritböden gelten derzeit als Hauptquelle für kritische Technologiemetalle. Im Mittelpunkt der Untersuchung stehen die: (a) geotechnische Aufbesserung der Permeabilität von IAC für eine effiziente und umweltgerechte Laugung, (b) Entwicklung von bio-hydrometallurgischen Extraktionsverfahren sowie Entwicklung und Etablierung eines neuen Biomining-Verfahrens zur selektiven und nachhaltigen Gewinnung von REE (in situ & ex situ), (c) Prozesssimulation zur Extraktion und Separation adsorptiv gebundener REE als Grundlage einer Entwicklung/Optimierung sowie Bewertung der Verfahren unter Verwendung qualitätsgesicherter thermodynamischer und experimenteller Daten. Das Ziel der numerischen Prozesssimulation ist eine gezielte Optimierung der verwendeten hydrometallurgischen Extraktions- und Separationsverfahren hinsichtlich Aufbereitungskosten und Umweltrelevanz. Bio-hydrometallurgische Verfahren können die derzeit angewendete Ammoniumsulfat- und schwefelsaure Laugung ersetzen und eine nachhaltigere Metallgewinnung ermöglichen. Die geotechnische Aufbesserung der Permeabilität von Lateritböden mithilfe von verflüssigtem CO2 bietet die Option für eine effiziente hydrometallurgische und biochemische Extraktion.
Das Projekt "Teilvorhaben 3: Biosorption und Bioakkmulation" wird vom Umweltbundesamt gefördert und von GMBU e.V. - Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. durchgeführt. Ziel des Vorhabens ist die Entwicklung optimierter Extraktionsverfahren von Seltenen Erdelementen (Rare Earth Elements - REE) aus Ionenadsorptionstonen (Ion-Adsorption Clays IAC), welche derzeit als Hauptquelle für kritische Technologiemetalle, wie z.B. 'schwere REE', gelten. Im Mittelpunkt der Untersuchung stehen die: (a) geotechnische Aufbesserung der Permeabilität von Ionenadsorptionstonen (REE-reiche Lateritböden) für eine effiziente und umweltgerechte Laugung, (b) Entwicklung von bio-hydrometallurgischen Extraktionsverfahren sowie Entwicklung und Etablierung eines neuen Biomining-Verfahrens zur selektiven und nachhaltigen Gewinnung von REE, (c) Prozesssimulation zur Extraktion und Separation adsorptiv gebundener REE als Grundlage zur Entwicklung/Optimierung sowie Bewertung der Verfahren unter Verwendung thermodynamischer und experimenteller Daten. Das Ziel der numerischen Prozesssimulation ist eine Optimierung der verwendeten hydrometallurgischen Extraktions- und Separationsverfahren hinsichtlich Aufbereitungskosten und Umweltrelevanz. Biohydrometallurgische Verfahren können die derzeit angewendete Ammoniumsulfat- und schwefelsaure Laugung ersetzen und eine nachhaltigere Metallgewinnung ermöglichen. Die geotechnische Aufbesserung der Permeabilität von Lateritböden mithilfe von verflüssigtem CO2 bietet die Option für eine effiziente hydrometallurgische und biochemische Extraktion.
Das Projekt "Teilvorhaben 5: Herstellung/Bereitstellung des biogenen Materials" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung durchgeführt. Ziel des Vorhabens ist die Entwicklung optimierter Extraktionsverfahren von Seltenen Erdelementen (Rare Earth Elements - REE) aus Ionenadsorptionstonen (Ion-Adsorption Clays IAC), welche derzeit als Hauptquelle für kritische Technologiemetalle, wie z.B. 'schwere REE', gelten. Im Mittelpunkt der Untersuchung stehen die: (a) geotechnische Aufbesserung der Permeabilität von Ionenadsorptionstonen (REE-reiche Lateritböden) für eine effiziente und umweltgerechte Laugung, (b) Entwicklung von bio-hydrometallurgischen Extraktionsverfahren sowie Entwicklung und Etablierung eines neuen Biomining-Verfahrens zur selektiven und nachhaltigen Gewinnung von REE, (c) Prozesssimulation zur Extraktion und Separation adsorptiv gebundener REE als Grundlage zur Entwicklung/Optimierung sowie Bewertung der Verfahren unter Verwendung thermodynamischer und experimenteller Daten. Das Ziel der numerischen Prozesssimulation ist eine Optimierung der verwendeten hydrometallurgischen Extraktions- und Separationsverfahren hinsichtlich Aufbereitungskosten und Umweltrelevanz. Biohydrometallurgische Verfahren können die derzeit angewendete Ammoniumsulfat- und schwefelsaure Laugung ersetzen und eine nachhaltigere Metallgewinnung ermöglichen. Die geotechnische Aufbesserung der Permeabilität von Lateritböden mithilfe von verflüssigtem CO2 bietet die Option für eine effiziente hydrometallurgische und biochemische Extraktion.
Das Projekt "Teilvorhaben 2: Koordination, Konzeption, Prozesssimulation, Optimierung und Endbewertung" wird vom Umweltbundesamt gefördert und von GUB Ingenieur AG durchgeführt. Ziel des Vorhabens ist die Entwicklung optimierter Extraktionsverfahren von Seltenen Erdelementen (Rare Earth Elements - REE) aus Ionenadsorptionstonen (Ion-Adsorption Clays IAC), welche derzeit als Hauptquelle für kritische Technologiemetalle, wie z.B. 'schwere REE', gelten. Im Mittelpunkt der Untersuchung stehen die: (a) geotechnische Aufbesserung der Permeabilität von Ionenadsorptionstonen (REE-reiche Lateritböden) für eine effiziente und umweltgerechte Laugung, (b) Entwicklung von bio-hydrometallurgischen Extraktionsverfahren sowie Entwicklung und Etablierung eines neuen Biomining-Verfahrens zur selektiven und nachhaltigen Gewinnung von REE, (c) Prozesssimulation zur Extraktion und Separation adsorptiv gebundener REE als Grundlage zur Entwicklung/Optimierung sowie Bewertung der Verfahren unter Verwendung thermodynamischer und experimenteller Daten. Das Ziel der numerischen Prozesssimulation ist eine Optimierung der verwendeten hydrometallurgischen Extraktions- und Separationsverfahren hinsichtlich Aufbereitungskosten und Umweltrelevanz. Biohydrometallurgische Verfahren können die derzeit angewendete Ammoniumsulfat- und schwefelsaure Laugung ersetzen und eine nachhaltigere Metallgewinnung ermöglichen. Die geotechnische Aufbesserung der Permeabilität von Lateritböden mithilfe von verflüssigtem CO2 bietet die Option für eine effiziente hydrometallurgische und biochemische Extraktion.