API src

Found 1169 results.

Related terms

Emissionsbilanz erneuerbarer Energieträger 2022

Die in diesem Bericht aufgeführten Ergebnisse für das Jahr 2022 zeigen, dass der Ausbau erneuerbarer Energien wesentlich zur Erreichung der Klimaschutzziele in Deutschland beiträgt. Insgesamt werden in allen Verbrauchssektoren fossile Energieträger zunehmend durch erneuerbare Energien ersetzt und damit dauerhaft Treibhausgas Treibhausgase sind diejenigen gasförmigen Bestandteile in der Atmosphäre, sowohl natürlichen wie anthropogenen Ursprungs, welche thermische Infrarotstrahlung absorbieren und wieder ausstrahlen. Diese Eigenschaft verursacht den Treibhauseffekt. Wasserdampf (H2O), Kohlendioxid (CO2), Lachgas (N2O), Methan (CH4) und Ozon (O3) sind die Haupttreibhausgase in der Erdatmosphäre. Außerdem gibt es eine Vielzahl von ausschließlich vom Menschen produzierten Treibhausgasen in der Atmosphäre, wie die Halogenkohlenwasserstoffe und andere chlor- und bromhaltige Substanzen.Nach: IPCC (2007): Klimaänderung 2007. Synthesebericht- und Luftschadstoffemissionen vermieden. Die Ergebnisse zeigen darüber hinaus, dass eine differenzierte Betrachtung verschiedener Technologien und Sektoren sinnvoll und notwendig ist, wenn es z.B. darum geht, gezielte Maßnahmen zum Klimaschutz und der Luftreinhaltung abzuleiten, da sich die spezifischen Vermeidungsfaktoren für die untersuchten Treibhausgase und Luftschadstoffe teilweise erheblich unterscheiden. Im Ergebnis weist die Netto-Emissionsbilanz der erneuerbaren Energien unter Berücksichtigung der Vorketten eine Vermeidung von Treibhausgasemissionen in Höhe von rund 237 Mio. t CO2-Äquivalente (CO2-Äq.) im Jahr 2022 aus. Auf den Stromsektor entfielen 181 Mio. t CO2-Äq., davon sind 155 Mio. t der Strommenge mit EEG-Vergütungsanspruch zuzuordnen. Im Wärmesektor wurden 46 Mio. t und durch biogene Kraftstoffe 10 Mio. t CO2-Äq. vermieden. Quelle: umweltbundesamt.de

Neuartige Materialien

Neuartige Materialen versprechen technische Lösungen zur Unterstützung der nachhaltigen Transformation. Sie spielen eine wichtige Rolle für eine Vielzahl der am ⥠UBA⥠bearbeiteten Umweltthemen wie beispielsweise die Energiewende, Kreislaufwirtschaft und Chemikaliensicherheit. Dabei können die verschiedenen Bereiche durch den Einsatz neuartiger Materialien profitieren, aber auch vor Herausforderungen gestellt werden. Das UBA-Positionspapier beschreibt das Spannungsfeld zwischen dem vielversprechenden Einsatz und möglichen Herausforderungen für den Umwelt- und Gesundheitsschutz und anderen Nachhaltigkeitsdimensionen, verdeutlicht dies an verschiedenen Beispielen und leitet Eckpunkte für ein sicheren und nachhaltigen Lebenszyklus von neuartigen Materialien ab. Quelle: www.umweltbundesamt.de

Emissionsbilanz erneuerbarer Energieträger 2021

Die in diesem Bericht aufgeführten Ergebnisse für das Jahr 2021 zeigen, dass der Ausbau erneuerbarer Energien wesentlich zur Erreichung der Klimaschutzziele in Deutschland beiträgt. Insgesamt werden in allen Verbrauchssektoren fossile Energieträger zunehmend durch erneuerbare Energien ersetzt und damit dauerhaft Treibhausgas - und Luftschadstoffemissionen vermieden. Die Ergebnisse zeigen darüber hinaus, dass eine differenzierte Betrachtung verschiedener Technologien und Sektoren sinnvoll und notwendig ist, wenn es z.B. darum geht, gezielte Maßnahmen zum Klimaschutz und der Luftreinhaltung abzuleiten, da sich die spezifischen Vermeidungsfaktoren für die untersuchten Treibhausgase und Luftschadstoffe teilweise erheblich unterscheiden. Im Ergebnis weist die Netto-Emissionsbilanz der erneuerbaren Energien unter Berücksichtigung der Vorketten eine Vermeidung von Treibhausgasemissionen in Höhe von rund 217 Millionen Tonnen CO2-Äquivalente (CO2-Äq.) im Jahr 2021 aus. Auf den Stromsektor entfielen 165 Millionen Tonnen CO2-Äq., davon sind 142 Millionen Tonnen der Strommenge mit EEG-Vergütungsanspruch zuzuordnen. Im Wärmesektor wurden 42 Millionen Tonnen und durch biogene Kraftstoffe 10 Millionen Tonnen CO2-Äq. vermieden. Quelle: www.umweltbundesamt.de

Emissionsbilanz erneuerbarer Energieträger 2020

Die in diesem Bericht aufgeführten Ergebnisse für das Jahr 2020 zeigen, dass der Ausbau erneuerbarer Energien wesentlich zur Erreichung der Klimaschutzziele in Deutschland beiträgt. Insgesamt werden in allen Verbrauchssektoren fossile Energieträger zunehmend durch erneuerbare Energien ersetzt und damit dauerhaft Treibhausgas- und Luftschadstoffemissionen vermieden. Die Ergebnisse zeigen darüber hinaus, dass eine differenzierte Betrachtung verschiedener Technologien und Sektoren sinnvoll und notwendig ist, wenn es z.B. darum geht, gezielte Maßnahmen zum Klimaschutz und der Luftreinhaltung abzuleiten, da sich die spezifischen Vermeidungsfaktoren für die untersuchten Treibhausgase und Luftschadstoffe teilweise erheblich unterscheiden. Im Ergebnis weist die Netto-Emissionsbilanz der erneuerbaren Energien unter Berücksichtigung der Vorketten eine Vermeidung von Treibhausgasemissionen in Höhe von rund 230 Mio. t CO2-Äquivalente (CO2-Äq.) im Jahr 2020 aus. Auf den Stromsektor entfielen 179 Mio. t CO2-Äq., davon sind 157 Mio. t der Strommenge mit EEG-Vergütungsanspruch zuzuordnen. Im Wärmesektor wurden 41 Mio. t und durch biogene Kraftstoffe 11 Mio. t CO2-Äq. vermieden. Quelle: www.umweltbundesamt.de

Aktualisierung und Bewertung der Ökobilanzen von Windenergie- und Photovoltaikanlagen unter Berücksichtigung aktueller Technologieentwicklungen

In der Vergangenheit wurden bereits Studien zur Ermittlung und Bewertung der Umweltwirkungen von Windenergie- und Photovoltaikanlagen durchgeführt. Diese sind jedoch aufgrund der fortgeschrittenen, technologischen Weiterentwicklungen mittlerweile veraltet oder decken oft nur einzelne Aspekte, wie bestimmte Technologien, Komponenten oder Lebenswegabschnitte, ab. Ziel der Studie ist die Aktualisierung und Bewertung der Ökobilanzen von Windenergie- und Photovoltaikanlagen unter Berücksichtigung aktueller Technologieentwicklungen. Im Rahmen einer Literaturrecherche erfolgte zunächst eine Analyse der aktuellen Markt- und Technologieentwicklungen sowie des Stands des Wissens der verfügbaren Ökobilanzstudien von Windenergie- ud Photovoltaikanlagen. Durch den Abgleich der erfassten Ökobilanzstudien mit den aktuellen Markt- und Technologieentwicklungen wurde der Aktualisierungsbedarf für die Ökobilanzierung von Windenergie- und Photovoltaikanlagen ermittelt. Anschließend wurden umfangreiche Ökobilanzstudien von Windenergie- und Photovoltaikanlagen unter Berücksichtigung des aktuellen Stands der Technik erstellt. Die Ökobilanzstudien wurden gemäß den internationalen Normen zur Ökobilanzierung ISO 14040 und 14044 durchgeführt und einer Kritischen Prüfung durch ein Gremium unabhängiger Experten unterzogen. Die Studie liefert aktualisierte Ökobilanzinventare und wichtige Erkenntnisse über den aktuellen Stand des Wissens im Bereich der Ökobilanzierung von Windenergie- und Photovoltaikanlagen. Die Ergebnisse zeigen, dass sich die Technologien von Windenergie- und Photovoltaikanlagen in den letzten Jahren stark weiterentwickelt haben. Quelle: Forschungsbericht

Energieaufwand für Gebäudekonzepte im gesamten Lebenszyklus

Die vorliegende Studie untersucht den Energieaufwand im gesamten Lebenszyklus von verschiedenen Gebäudetypen und Energiekonzepten für den Wohnungsbau. Für sechs Typgebäude im Neubau und Bestand wurden insgesamt 400 Varianten mit verschiedenen Kombinationen aus Gebäudehülle und Anlagentechnik untersucht. Diese Varianten wurden in vier hochwertige Gebäudeenergiestandards eingestuft: EnEV-2016, Passivhaus, Nullenergie und Plusenergie. Für alle Variantenkombinationen wurden die CO2-Emissionen (GWP = Treibhauspotenzial), der nicht erneuerbare kumulierte Energieaufwand (KEAne) und die Jahresgesamtkosten ermittelt. Für jeden Gebäudeenergiestandard wurden üblicherweise umgesetzte Varianten definiert und diese hinsichtlich dem Energieaufwand für die Materialien in der Herstellung, Instandsetzung und Lebensende (EoL) sowie dem Energiebedarf im Betrieb detailliert untersucht. Unter Beachtung des Kosten-/Nutzen-Verhältnisses wurde aus der üblichen Bauweise für jeden Gebäudeenergiestandard eine ökologisch optimierte Variante abgeleitet. Auf Basis der Untersuchungen und Sensitivitätsanalysen werden Empfehlungen für Planer und Gebäudeeigentümer sowie Schwerpunkte für künftiges politisches Handeln abgeleitet. Diese beinhalten unter anderem ein Ranking von Maßnahmen zur Erreichung der Klimaschutzziele und geeignete Instrumente zur Umsetzung. Lenkungswirkung entfaltet nicht die Vorgabe eines Gebäudeenergiestandards, sondern eine Maßnahmenkombination aus regenerativer Wärmeversorgung, lokaler erneuerbarer Stromerzeugung und eine ressourcenschonende Bauweise. Quelle: Forschungsbericht

Life-Cycle Analysis of Renewable Energies in the EU-25

Das Projekt "Life-Cycle Analysis of Renewable Energies in the EU-25" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt.

Statt Landschaft Stadtlandschaft: Kölns Tierleben

Das Projekt "Statt Landschaft Stadtlandschaft: Kölns Tierleben" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Zoologie, Biozentrum Köln, Arbeitsgruppe Allgemeine Ökologie durchgeführt. In Köln wird seit 1989 ein breites Spektrum von zur Zeit 49 Wirbellosengruppen (Insekten, Spinnen und Mollusken) sowie der gebietsfremden, eingeschleppten Tierarten oder Neozoen unter Beteiligung von 51 Wissenschaftlern untersucht. Betrachtet man Biodiversitätin seiner einfachsten Form, dem Artenreichtum, dann ist Köln mit mehr als 5500 registrierten Tierarten die zur Zeit bestuntersuchte und artenreichste Großstadt. Die Bewertung der untersuchten Stadtbiotope stützt sich dabei nicht allein auf die zahlreich nachgewiesenen 'Rote-Liste'-Arten, die für die Wissenschaft neu entdeckten Tierarten oder den Umfang des Artenspektrums. In aktuellen Untersuchungen (Huckenbeck und Wipking) erweisen sich Laufkäfer (Carabidae) als geeignete Instrumente, wenn wichtige Lebenszyklus-Komponenten bei innerstädtischen Populationen mit solchen aus naturnahen Habitaten am Stadtrand verglichen werden sollen, um Biotopinseln in der Innenstadt als 'Quellstrukturen' für die Überlebensfähigkeit von Tierarten zu beurteilen und zum Ziel von (Natur-)Schutzbem ühungen in den flächenhaft immer stärker expandierenden Stadtlandschaften zu machen.

ERA-MIN 2021 - Verbundvorhaben: 2BoSS - Nachhaltige Batterien auf der Basis von Silizium, Schwefel und Kohlenstoff aus Biomasse

Das Projekt "ERA-MIN 2021 - Verbundvorhaben: 2BoSS - Nachhaltige Batterien auf der Basis von Silizium, Schwefel und Kohlenstoff aus Biomasse" wird vom Umweltbundesamt gefördert und von Cleopa GmbH durchgeführt. Das Ziel des 2BoSS-Projekts ist die Entwicklung einer neuartigen Batterietechnologie sowie der notwendigen Geschäftsmodelle von Kreislaufwirtschaftssystemen, um die EU zu einem führenden Anbieter im Zukunftsmarkt Batterien zu machen. Die Cleopa wird die neuen Geschäftsmodelle und Lebenszyklusanalysen durchführen. Die Cleopa wird als Partner im 2BoSS Projekt die wichtigen wirtschaftlichen und sozialen Aspekte der neuen Batterietechnologie leiten und den Technologietransfer auch für KMU unterstützen. Damit werden die UN Nachhaltigkeitsziele unterstützt. Ein besonderer Schwerpunkt des Projekts ist die Substitution kritischer Rohstoffe in der Produktion und die Schaffung einer recyclingfähigen Batterietechnik. In den ersten technischen Arbeitspaketen wird die Cleopa unterstützend für die technischen Forschungspartner sein. Dies beinhaltet die Adaption der neuen Ergebnisse und interne Dokumentation, um im weiteren Verlauf des Projekts Untersuchungen und Beschreibungen zu Kreislaufwirtschaftssystemen (circular economy) und deren Lebenzyklus Bewertung (life cycle assessment LCA) sowie der Sozialen Aspekte (social LCA) durchzuführen. Die Ergebnisse daraus bilden die Basis für neue Geschäftsmodelle der Circular Economy, welche international mit den Stakeholdern ausgetauscht werden, um einen schnellen Transfer von der Forschung zur Geschäftsentwicklung zu gewährleisten. Gerade kleine Unternehmen können überproportional dabei an neuen Stellen und dem wirtschaftlichen Wachstum profitieren. Die Kommunikationspläne werden dabei regelmäßig aktualisiert und neue Technologien und Forschungsergebnisse adaptiert.

Teilprojekt 1: Herstellung und Prozesstechnik von synthetischem Glas

Das Projekt "Teilprojekt 1: Herstellung und Prozesstechnik von synthetischem Glas" wird vom Umweltbundesamt gefördert und von Elektrowerk Weisweiler GmbH durchgeführt. In diesem Projekt soll ein nachhaltiges Bindemittel für die Anwendung im Beton auf der Grundlage von Sekundärrohstoffen erarbeitet werden, mit dem eine Emissionsminderung von bis zu 80 % gegenüber Beton mit Portlandzement angestrebt wird. Die Bindemittelbasis bildet ein Glas, das durch das Schmelzen bisher ungenutzter Reststoffe unterschiedlicher Industrieprozesse hergestellt, anschließend aufgemahlen und mittels alkalischer Anregung verfestigt werden soll. Projektziel ist die wissenschaftlich-technische Vertiefung des Konzepts, da für eine praktische Umsetzung ein tieferes Verständnis zu den auflaufenden Reaktionen erforderlich ist. Das Bindemittel ist dabei unabhängig von den zur Verfügung stehenden Sekundärrohstoffen, da die geforderte Zielzusammensetzung des Glases bei geschickter Gattierung durch das Schmelzen verschiedenster Rohstoffe erreicht wird. Durch die Wahl geeigneter, auf die Glasreaktivität abgestimmter Aktivatoren werden die Bindemittel- bzw. Betoneigenschaften gezielt konfektioniert. Als Basis dienen mineralische Reststoffe wie (schmelzflüssige) Schlacken und aufbereitete Müllverbrennungsaschen (MVA). Durch die Steuerung der Glasreaktivität soll die Menge des Aktivators und somit die Auswirkungen auf die Umwelt und die Gesundheit zusätzlich positiv beeinflusst werden. Der Fokus des Projekts liegt somit auf der flexiblen Einstellung der Glaszusammensetzung in Kombination mit der Bindemittelmittelkonfektionierung unter Berücksichtigung der damit erzielbaren Bindemittel- und Betoneigenschaften. Der Vergleich des Bindemittels gegenüber herkömmlichen Zementen erfolgt auf Basis der Betonzusammensetzung für Applikationen im Fertigteilbereich. Die Ökobilanz schließt somit den gesamten Lebenszyklus inklusive der Rohstoffvorketten (Glasherstellung, Aktivator etc.) sowie die Lebensdauer des Betons ein.

1 2 3 4 5115 116 117