Estuaries and coasts are characterized by ecological dynamics that bridge the boundary between habitats, such as fresh and marine water bodies or the open sea and the land. Because of this, these ecosystems harbor ecosystem functions that shaped human history. At the same time, they display distinct dynamics on large and small temporal and spatial scales, impeding their study. Within the framework of the OTC-Genomics project, we compiled a data set describing the community composition as well as abiotic state of an estuary and the coastal region close to it with unprecedented spatio-temporal resolution. We sampled fifteen locations in a weekly to twice weekly rhythm for a year across the Warnow river estuary and the Baltic Sea coast. From those samples, we measured temperature, salinity, and the concentrations of Chlorophyll a, phosphate, nitrate, and nitrite (physico-chemical data); we sequenced the 16S and 18S rRNA gene to explore taxonomic community composition (sequencing data and bioinformatic processing workflow); we quantified cell abundances via flow cytometry (flow cytometry data); and we measured organic trace substances in the water (organic pollutants data). Processed data products are further available on figshare.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
- ND - Findling - ND - Baum ... im Landkreis Leer
Der Western Boundary Undercurrent (WBUC) ist eine kritische Komponente der globalen Umwälzzirkulation und wird durch Tiefenwasserbildung in der Grönland-, Labrador-, Island- und Norwegischen See angetrieben. Seismische Profile der Eirik Drift weisen auf eine hohe Variabilität der Geschwindigkeiten und Strömungspfade des WBUC seit dem frühen Miozän hin und geben Hinweise auf das Gebiet der Tiefenwasserbildung vom Miozän bis heute. Wir beabsichtigen die Mechanismen, welche in der Verschiebung der Gebiete der Tiefenwasserbildung und der Verschiebung der Strömungspfade des WBUC involviert sind, zu identifizieren. Korngrößen sind für ODP Leg 105 und die IODP Expedition 303 Sites U2305-2307 in der Eirik Drift verfügbar (iodp.tamu.edu). Die Unterscheidung in Ton (kleiner als 0.004 mm), Schlamm (0.004-0.063 mm) und Sand (mehr als 0.063 mm) ist ausreichend um Geschwindigkeiten des WBUC für verschiedene Zeitscheiben abzuleiten. Dreidimensionale Geschwindigkeiten und Sedimenttransporte werden mit dem Regional Ocean Modelling System (ROMS) simuliert. ROMS wird auf den Nordatlantik regionalisiert werden und dabei detaillierte Informationen über Gebiete der Tiefenwasserbildung und Ozeanzirkulation liefern. Seismische Profile aus der Eirik Drift (Uenzelmann-Neben (2013)) stellen Horizonttiefen, Schichtdicken und Position und Orientierung von Depozentren zur Verfügung. Diese sind in Kombination mit Korngrößen eine Validierungsmöglichkeit für den in ROMS modellierten Sedimenttransport. Durch den numerischen Ansatz ist es möglich, Prozesse hervorzuheben oder zu vernachlässigen. Hierdurch können Sensitivitätsstudien bezüglich des Einflusses sich verändernden Klimas und tektonischer Zustände auf die tiefe Ozeanzirkulation und den Sedimenttransport durchgeführt werden. Müller-Michaelis und Uenzelmann-Neben (2014) führten Variabilität im Sedimenttransport in der Eirik Drift auf Veränderungen in der Stärke und des Strömungspfades des WBUC zurück, welche durch unterschiedliche Gebiete der Tiefenwasserbildung hervorgerufen wurden. Diese Hypothese kann mit dem regionalen Model getestet werden und die klimatologischen Ursachen für die Veränderung der Gebiete der Tiefenwasserbildung können identifiziert werden. Der Strömungspfad des WBUC ist zusätzlich durch tektonische Veränderungen beeinflusst, z.B. die Subsidenz des Grönland-Schottland-Rückens oder der Schließung des Zentralamerikanischen Durchflusses. Der Einfluss tektonischer Veränderungen auf die Stärke und Strömungspfade des WBUC als auch auf Sedimentationsraten und Korngrößen wird in diesem Projekt betrachtet. Wir werden daher eine Verbindung zwischen Sedimentationsraten und Korngrößen, wie sie in den Bohrkernen von Sites 646 und U1305-1307 gemessen wurden, und klimatologisch und tektonisch hervorgerufener Änderungen der Geschwindigkeiten und Strömungspfade des WBUC herstellen.
Der submarin aufliegende westantarktische Eisschild (WAIS) reagiert mutmaßlich höchst empfindlich gegenüber klimatischen Änderungen, besonders in Zeiten ansteigender globaler atmosphärischer Temperaturen. Der Amundsenmeer-Sektor des WAIS ist aufgrund des beobachteten Eindringens von warmen zirkumpolaren Tiefenwasser auf den Schelf und den damit ausgelösten subglazialen Schmelzvorgängen besonders betroffen. Diese Beobachtungen und damit verbundenen Notwendigkeiten, die paläo-eisschilddynamischen Prozesse für eine verbesserte zukünftige Meeresspiegelprojektion genauer zu analysieren, waren ausschlaggebend dafür, dass sowohl das Rossmeer als auch das Amundsenmeer als Zielgebiete für die beiden IODP-Bohrexpeditionen 374 (Anfang 2018) und 379 (Anfang 2019) bewilligt wurden. Beide Regionen sind mit einem kontinuierlichen seismischen Transekt verbunden, der mit weiteren seismischen Profilen auf einer ebenfalls für 2019 geplanten russischen Expedition ergänzt werden soll. Die seismischen Profile werden einen differentiellen und detaillierten Vergleich zwischen den Sequenzstratigraphien des Amundsenmeeres und des Rossmeeres ermöglichen. In einer engen Kooperation mit den wissenschaftlichen Teams beider IODP-Expeditionen und den russischen Partnern werden die alten und neuen Seismikdaten analysiert, um eine präzise Studie über die seismisch-stratigraphischen Sequenzen, Einheiten und Horizonte in den Bohrgebieten und zwischen den beiden Regionen zu erstellen. Das Netzwerk der seismischen Profile knüpft direkt an die Bohrlokationen der IODP Expeditionen 374 und 379 mittels einer sorgfältigen Seismik-zu-Kernlog-Integration, in die die Bohrkerndaten, die Messdaten der physikalischen Eigenschaften und die Bohrlochmessungen einfließen. Die erzeugten synthetischen Seismogramme helfen bei der Verknüpfung mit den Daten der Seismikprofile. Die Erstellung eines transregionalen Modells der Alters- und Zusammensetzungsstratigraphie entlang der Amundsenmeer- und Rossmeer-Sektoren wird ein erstes Ziel des Projektes sein. Dabei sollen die Entwicklungsmuster der vorglazialen und glazial geprägten Sedimentationseinheiten herausgearbeitet werden, um den Übergang vom primären 'Treibhaus'klima zum 'Eishaus'klima zu charakterisieren. In der zweiten Synthesephase sollen die identifizierten glazial-dominanten Sedimentationsprozesse genutzt werden, um fließdynamische Muster des WAIS in den Amundsenmeer- und Rossmeerregionen abzuleiten. Das Sedimentationsmodell wird zeigen, ob sich z.B. die vergangene Ausflussdynamik des WAIS gleichmäßig oder sehr unterschiedlich zwischen den Regionen verhalten hat.
Dieses Schwerpunktthema des Themenfelds 2 behandelt die Einschleppung und Verbreitung von zum Teil invasiven Neobiota, welche die heimische Tier- und Pflanzenwelt gefährdet und somit die Biodiversität beeinträchtigt. Der Ausbau der marinen Verkehrsinfrastruktur und die damit einhergehende weitere Belastung der heimischen marinen und binnenländischen Ökosysteme durch die Einschleppung von Neobiota (z. B. über das Ballastwasser der Schiffe) sind ein wichtiger Faktor, der aber noch nicht abschließend verstanden ist. Dies betrifft auch die Verbreitungswege über die Binnenwasserstraßen sowie über das Straßen- und Schienennetz. Ein wichtiges Problem sind in diesem Zusammenhang invasive Pflanzenarten, die teilweise sogar gesundheitsschädigend sein können. Hier besteht Handlungsbedarf, um die Veränderungen in der Artenvielfalt zu dokumentieren und zu bewerten und um die Entwicklung von Techniken zu unterstützen, die helfen der Arteneinschleppung entgegenzuwirken. Das Projekt wird dazu die Bedeutung invasiver Arten an ausgewählten Brennpunkten der Infrastruktur und des Verkehrsbetriebs ermitteln und ggf. deren nachteilige Wirkungen auf den Natur- und Artenschutz und die Biodiversität analysieren. Ziele des Projekts sind die Formulierung verkehrsträgerübergreifender Strategien zur Prävention der Einschleppung oder Kontrolle der bereits vorhandenen Neobiota, die sich am Kosten-Nutzen-Verhältnis orientieren.
Light emerging from natural water bodies and measured by remote sensing radiometers contains information about the local type and concentrations of phytoplankton, non-algal particles and colored dissolved organic matter in the underlying waters. An increase in spectral resolution in forthcoming satellite and airborne remote sensing missions is expected to lead to new or improved capabilities to characterize aquatic ecosystems. Such upcoming missions include NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission; the NASA Surface Biology and Geology observable mission; and NASA Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) - Next Generation airborne missions. In anticipation of these missions, we present an organized dataset of geographically diverse, quality-controlled, high spectral resolution inherent and apparent optical property (IOP/AOP) aquatic data. The data are intended to be of use to increase our understanding of aquatic optical properties, to develop aquatic remote sensing data product algorithms, and to perform calibration and validation activities for forthcoming aquatic-focused imaging spectrometry missions. The dataset is comprised of contributions from several investigators and investigating teams collected over a range of geographic areas and water types, including inland waters, estuaries and oceans. Specific in situ measurements include coefficients describing particulate absorption, particulate attenuation, non-algal particulate absorption, colored dissolved organic matter absorption, phytoplankton absorption, total absorption, total attenuation, particulate backscattering, and total backscattering, as well as remote sensing reflectance, and irradiance reflectance.
This dataset includes updated versions of high-resolution age models derived from six sedimentary cores collected from the southwestern Svalbard margin. The dataset presented here represents a refinement of a previous version (Caricchi et al., 2020; 2022), achieved through correlation of the stratigraphic trends of the ARM/k parameter with the GICC05modelext timescale and the NGRIP record (Rasmussen et al., 2014). Additional refinement was obtained from newly acquired and recalibrated radiometric data, as well as from improved lithological constraints. The dataset enables the calculation of sedimentation rates during glacial and interglacial periods and during short-lived, widespread meltwater pulses and Heinrich-like events, thereby allowing the reconstruction of ice-sheet instability and meltwater events along the Svalbard–Barents Sea margin over the last 60,000 years.
Coccolithophoriden sind eine Gruppe von ca. 200-300 marinen Phytoplanktonarten, die in allen Weltmeeren vorkommt. Sie besitzen die besondere Fähigkeit eine Kalkschale (Coccosphäre) zu bauen, die sie aus vielen kleinen Kalkplättchen (Coccolithen) zusammensetzen. Aufgrund ihrer Fähigkeit zu kalzifizieren sind sie ein wichtiger Bestandteil im Klimasystem, denn die Produktion von Kalk nahe der Meeresoberfläche führt zu einem vertikalen Gradienten der Seewasseralkalinität, beschleunigt den Kohlenstoffexport in die Tiefsee und erhöht die Rückstrahlung von einfallender Sonnenenergie von der Erdoberfläche ins Weltall. Trotz intensiver Forschung an der Physiologie der Kalzifizierung und dessen biogeochemischer Relevanz konnten wir eine der entscheidenden Fragen immer noch nicht beantworten: Wozu bauen Coccolithophoriden eine Kalkschale? Die Beantwortung dieser Frage ist von außerordentlicher Bedeutung, denn solange wir nicht wissen wozu die Kalkschale dient können wir auch nicht vorraussagen in welchem Maße sich die durch die Ozeanversauerung zu erwartende Abnhame in der Kalzifizierung negativ auf die Fitness dieser Lebewesen in ihrem natürlichen Lebensraum auswirkt. In dem hier vorgestellten Projekt möchten wir die Frage nach der Bedeutung der Kalzifizierung erforschen, indem wir untersuchen ob die Coccosphäre einen Schutz gegen planktonische Räuber, Bakterien und Viren darstellt. Dazu haben wir eigens einen experimentellen Ansatz entwickelt wobei kalzifizierte und dekalzifizierte Coccolithophoridentzellen zusammen mit deren Fressfeinden und Pathogenen kultiviert werden. Dieser Ansatz erlaubt es uns folgende Fragestellungen zu untersuchen: 1) Sind kalzifizierte Zellen besser in der Lage sich gegen Fraß und Infektion zu schützen als Zellen ohne Coccosphäre? 2) Bevorzugen Fressfeinde und Pathogene solche Zellen, bei denen die Coccosphäre entfernt wurde, wenn ihnen beides angeboten wird? 3) Sind Wachstum und Reproduktion von Fressfeinden und Pathogenen verlangsamt, wenn sie kalzifizierte Zellen fressen oder infizieren?
| Origin | Count |
|---|---|
| Bund | 7675 |
| Europa | 14 |
| Global | 7 |
| Kommune | 45 |
| Land | 1318 |
| Schutzgebiete | 64 |
| Wirtschaft | 39 |
| Wissenschaft | 1245 |
| Zivilgesellschaft | 26 |
| Type | Count |
|---|---|
| Bildmaterial | 1 |
| Chemische Verbindung | 97 |
| Daten und Messstellen | 2888 |
| Ereignis | 192 |
| Förderprogramm | 4459 |
| Gesetzestext | 54 |
| Hochwertiger Datensatz | 31 |
| Kartendienst | 14 |
| Lehrmaterial | 1 |
| Repositorium | 10 |
| Taxon | 87 |
| Text | 510 |
| Umweltprüfung | 47 |
| WRRL-Maßnahme | 34 |
| unbekannt | 738 |
| License | Count |
|---|---|
| geschlossen | 990 |
| offen | 7763 |
| unbekannt | 298 |
| Language | Count |
|---|---|
| Deutsch | 7047 |
| Englisch | 2712 |
| Leichte Sprache | 1 |
| andere | 3 |
| Resource type | Count |
|---|---|
| Archiv | 287 |
| Bild | 114 |
| Datei | 627 |
| Dokument | 2626 |
| Keine | 3060 |
| Multimedia | 2 |
| Unbekannt | 88 |
| Webdienst | 2243 |
| Webseite | 4808 |
| Topic | Count |
|---|---|
| Boden | 5602 |
| Lebewesen und Lebensräume | 7573 |
| Luft | 4345 |
| Mensch und Umwelt | 8981 |
| Wasser | 8593 |
| Weitere | 8101 |