Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.
Stärke ist ein pflanzlicher Reservestoff, der in Form von Stärkekörnern in Speicherorganen von Pflanzen (Körner, Knollen, Wurzeln oder Mark) angereichert wird. Stärke wird sowohl im Lebensmittel - als auch im technischen Bereich in breitem Umfang eingesetzt. Die landwirtschaftliche Erzeugung von stärkehaltigen Rohstoffen erfolgt in Deutschland durch den Anbau von Kartoffel, Weizen und Körnermais. In der Zukunft könnten die Markerbse und Neuzüchtungen mit sehr hohem Amylose- ("Amylo-Mais") oder Amylopektinanteil (z. B. Amylose-freie Kartoffel) Bedeutung erlangen, da sich hierdurch verarbeitungs- und anwendungstechnische Vorteile ergeben. Hinsichtlich der Verwendung werden drei wesentliche Produktlinien unterschieden - native Stärke (Papier, Pappe, Leime, Kleber, Gipskartonplatten, Textilverarbeitung, Kosmetika), - modifizierte Stärke (Lacke, Streichfarben, Bindemittel (Quellstärken), kationische Stärken, Papier, Pappe, Tabletten, Stärkeether und -ester) etc. sowie - Verzuckerungsprodukte (Tenside, Sorbit, Kunststoffe, Vitamin C, Alkohole, Biotechnologie).
Die Versuche für die Bereiche Pflanzenproduktion und Landschaftspflege der sächsischen Landwirtschaft basieren auf einem Versuchsnetz der LfL mit insgesamt 12 festen Versuchsstandorten und Streulagen, d.h. jährlich variierenden Versuchsstandorten.. Versuchsschwerpunkte im Pflanzenbau: - Auswirkungen von Bodenbearbeitung, Fruchtfolgen und Bewirtschaftssystemen - Nährstoffverwertung - konservierende Bodenbearbeitung mit Mulchsaat - Entwicklung ökologischer Anbauverfahren sowie wirtschaftlicher und umweltverträglicher Anbauformen öl-, stärke- und eiweißliefernder Pflanzen - Anbau nachwachsender Rohstoffe zur energetischen und stofflichen Nutzung - Entwicklung eines wirtschaftlichen und umweltverträglichen Anbaus von Heil- und Gewürzpflanzen - Anbaueignung von Sorten (inkl. sortenspezifischer Anbautechnik) - Fungizid- und Herbizideinsatz - Wachstumsregelung - Grünlandwirtschaft (mit Landschaftspflege)
The project explores the effects of including forage legumes into the diet of ruminants on their intake pattern, performance, N use efficiency and gaseous emissions. Focus is put on red clover, white clover, lucerne and, as a companion grass, ryegrass. Both lowland and high altitude sites will be investigated. The project is part of the ongoing EU COST Action 852 'Quality Legume-Based Forage Systems for Contrasting Environments' coordinated by Dr. A. Helgadottir, Iceland. The topic of one Working Group (headed by Dr. M. Wachendorf and Prof. M. Kreuzer) of this COST action is 'Forage Utilisation'. In this Working Group three main areas are covered, namely animal intake and grazing behaviour, quality of legume-based fresh and ensiled forage, and the mechanisms of N-flows within the ruminant (efficiency-losses). A common protocol developed by the Working Group, which includes animal product quality as an additional focus, will be applied across as many European countries as possible. The present includes the activities required by the common protocol and investigates additional questions. This project takes place mainly at the ETH research stations Chamau and Weissenstein. The project opens a new collaboration with Dr. A. Luescher, Swiss Federal Research Station for Agroecology and Agriculture, and strengthens an existing collaboration with Prof. J.E. Carulla. Furthermore, through participation in this European network other collaborations will evolve.
Resistenzmechanismen von Pflanzen koennen durch eine schwache Infektion im Jugendstadium und anschliessend in spaeteren Stadien aktiviert werden und die Pflanze vor einem starken Befall schuetzen. Wir untersuchen die Mechanismen der Resistenzinduktion mit verschiedenen parasitischen Pilzen (Gurke - Colletotrichum lagenarium; Apfelblatt - Schorf; Tomate - Fusariumwelke; Bohnen - Rost; Tomate - Krautfaeule).
Übergeordnetes Ziel ist es, genetische Ressourcen von Kichererbse (Cicer arietinum) und Saat-Platterbse (Lathyrus sativus) auf ihre Eignung für den Anbau in Deutschland zu prüfen, um das Kulturartenspektrum für konventionell und ökologisch wirtschaftende Landwirte zu erweitern. Beide Arten sind sehr gut an trockene und warme Klimabedingungen angepasst. Damit stellen sie vielversprechende Alternativen zu verbreitet angebauten Leguminosen wie Erbsen oder Ackerbohnen dar, die aufgrund des Klimawandels zunehmend geringere Ertragsstabilität aufweisen. Im Projekt werden daher für beide Kulturen genetische Ressourcen identifiziert, auf die Eignung für den heimischen Anbau geprüft und selektiert, um interessierten Landwirten geeignete Genotypen zur Verfügung zu stellen. Dabei zielt die Selektion von Kichererbsen auf Standorte mit hohen Wärmesummen ab, während die Saat-Platterbse auch für kühlere Standorte mit leichten Böden geeignet ist, auf denen aufgrund des Klimawandels in Zukunft häufig mit Trockenstress zu rechnen ist. Somit werden im Projekt möglichst umfassend die verschiedenen Klimaregionen in Deutschland abgebildet.
Das Projekt WKErBo unterstützt den Aufbau einer regionalen Bio-Wertschöpfungskette von Ackerbohnen und Erbsen für Gemeinschaftsverpflegung und Gastronomie. Damit wird einerseits das Ziel der Förderung des ökologischen Anbaus heimischer Erbsen und Ackerbohnen verfolgt. Daneben zielt das Vorhaben auf die Entwicklung eines großküchentauglichen Fleischersatzprodukts aus Ackerbohnen und Erbsen ohne Zusatzstoffe ab, dessen sensorische und ernährungsphysiologische Qualität den Wünschen und Bedarfen der unterschiedlichen Zielgruppen in der Gemeinschaftsverpflegung entspricht. Der Innovationscharakter des Projekts ergibt sich aus den Rahmenbedingungen der Produktion und Verarbeitung. Es kann ein Beitrag zum Klimaschutz sowie zu einer gesundheitsförderlichen und ressourcenschonenden Ernährung geleistet werden, Importe können reduziert und der Selbstversorgungsgrad auf nationaler Ebene erhöht werden. Damit leistet das Projekt einen Beitrag zur Vermarktung ökologisch erzeugter Produkte: Entwicklung von Konzepten zur Verbesserung der Koordinierung von Angebots- und Nachfrageentwicklung im Sinne der BÖLN-Förderrichtlinie sowie zur Förderbekanntmachung über die Durchführung von Forschungs- und Entwicklungsvorhaben für den Bereich 'Regionale Bio-Wertschöpfungsketten'.
Die landwirtschaftliche Pflanzenproduktion ist ein ressourcenintensiver Prozess, der durch den Klimawandel zunehmend beeinträchtigt wird. Lösungen für eine nachhaltigere und widerstandsfähigere Art der Pflanzenproduktion sind daher dringend erforderlich. Pflanzenwurzeln sind ein Lebensraum für hochkomplexe mikrobielle Gemeinschaften, und Pflanzen profitieren von intimen Interaktionen mit diesen Mikroben. Einige Mikroben vermitteln nicht nur die Toleranz gegenüber Klimastress, sondern können auch die Pflanzenernährung verbessern. Während es den Nutzen von Mikroben für die Aufrechterhaltung der Pflanzenproduktion anzeigt, erfüllen Feldanwendungen mit einzelnen nützlichen Mikroben oft nicht ihre nützlichen Aktivitäten, die unter Laborbedingungen beobachtet werden. In vorangegangenen gemeinsamen Studien haben wir festgestellt, dass das knötchenbildende Bakterium Sinorhizobium meliloti WSM1022 die Leguminose Medicago truncatula in verschiedenen Bodentypen sehr effizient mit Stickstoff (N) versorgt. Darüber hinaus haben wir herausgefunden, dass WSM1022 das Wurzelmikrobiom modulieren können, um ein Mini-Mikrobiom zu bilden, das wir zusammen mit WSM1022 als N-Biom definiert haben. Zusätzlich zur Unterstützung der N-Fixierung scheint das N-Biom weitere nützliche Effekte auf M. truncatula zu übertragen. In diesem Projekt wollen wir die Robustheit des N-Bioms und der Symbiose von M. truncatula unter verschiedenen N-Regimen und Trockenheit als vorherrschenden Klimastress im Gewächshaus mit Ackerboden evaluieren. Wir werden die Effizienz der Knötchenbildung und N-Fixierung, des Pflanzenwachstums und der Pflanzenentwicklung sowie die Expression von Symbiose- und Trockenstress-Markergenen quantifizieren, um die funktionelle Robustheit der N-Biom-M. truncatula-Symbiose zu bewerten. Darüber hinaus werden wir genomweite Assoziationsstudien durchführen, um genetische Merkmale von M. truncatula zu identifizieren, die die Etablierung des N-Bioms unter Trockenstress unterstützen. Alle Experimente werden von Wurzelmikrobiomanalysen begleitet, um die Integrität des N-Bioms oder eventuell der Erweiterung seiner Funktion durch die Rekrutierung zusätzlicher nützlicher Mikroben unter diesen sich verändernden Umgebungen zu bestimmen. Unser Projekt hat zum Ziel, das N-Biom als biologische Applikationseinheit für zukünftige Feldanwendungen zu entwickeln.
| Origin | Count |
|---|---|
| Bund | 1023 |
| Kommune | 25 |
| Land | 82 |
| Wissenschaft | 8 |
| Type | Count |
|---|---|
| Chemische Verbindung | 14 |
| Daten und Messstellen | 4 |
| Ereignis | 6 |
| Förderprogramm | 646 |
| Gesetzestext | 12 |
| Lehrmaterial | 1 |
| Taxon | 312 |
| Text | 59 |
| Umweltprüfung | 4 |
| unbekannt | 44 |
| License | Count |
|---|---|
| geschlossen | 398 |
| offen | 678 |
| unbekannt | 12 |
| Language | Count |
|---|---|
| Deutsch | 998 |
| Englisch | 194 |
| Resource type | Count |
|---|---|
| Archiv | 7 |
| Bild | 178 |
| Datei | 335 |
| Dokument | 46 |
| Keine | 588 |
| Unbekannt | 7 |
| Webdienst | 7 |
| Webseite | 439 |
| Topic | Count |
|---|---|
| Boden | 521 |
| Lebewesen und Lebensräume | 1088 |
| Luft | 361 |
| Mensch und Umwelt | 1080 |
| Wasser | 332 |
| Weitere | 692 |