Das Projekt "Ein verbessertes Verständnis der Phasenzusammensetzung von Mischphasenwolken in hohen Breiten durch den Einsatz einer neuartigen, flugzeuggetragenen Messmethode zur Unterscheidung von Eispartikeln und Flüssigtröpfchen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Atmosphärische Aerosolforschung.Die unzureichende Darstellung der Eis- und Flüssigphase in polaren Mischphasenwolken stellt eine der größten Unsicherheiten im Verständnis der beobachteten, starken klimatischen Veränderungen in hohen Breiten dar. Abweichungen in den modellierten und beobachteten Eispartikelkonzentrationen führen zu ungenauen Vorhersagen der makroskopischen Eigenschaften der Wolken und können falsche Berechnung der deponierten solaren Energie zur Folge haben. Um diese Situation zu verbessern und zu verlässlicheren Aussagen über die klimatische Entwicklung in hohen Breiten zu kommen, müssen verstärkt in-situ Messdaten insbesondere der Eisphase erhoben werden. Solche Messungen können aufgrund der geographischen Lage allerdings nur unter erheblichem Aufwand durchgeführt werden und scheitern meist daran, dass herkömmliche Messmethoden den Phasenzustand von kleinen (kleiner als 50 Mikrometer) Wolkenpartikeln nicht verlässlich bestimmen können.Die zuverlässige Bestimmung der Phasenzusammensetzung und insbesondere die Frage nach der Rolle kleiner Eispartikeln in polarer Mischphasenwolken, ist die Motivation des vorliegenden Projektantrags. Es sollen die Existenz und Konzentration kleiner Eispartikel in anstehenden Messkampagnen in der Arktis sowie im Südpolarmeer untersucht werden, wodurch gleichzeitig ein vertiefter Einblick in die mikrophysikalischen und optischen Eigenschaften kleiner Eispartikel gewonnen wird. Um dies zu erreichen, soll die neuartige Flugzeugmesssonde PHIPS (Particle Habit and Polar Scattering) zum Einsatz kommen, die stereomikroskopische Aufnahmen mit Streulichtmessungen an einzelnen Wolkenpartikeln kombiniert. Auf Basis dieser Messdaten soll ein neues Datenprodukt entwickelt werden, das zuverlässig Eispartikel von Flüssigtröpfchen unterscheidet.Die Hauptziele, die in diesem Projekt erreicht werden sollen, sind a) die selektive Detektion von Eispartikel mit Größen unterhalb 50 Mikrometer in polaren Mischphasenwolken, b) die mikrophysikalische Charakterisierung dieser Eispartikel hinsichtlich ihrer Form, Struktur und Oberflächenbeschaffenheit und c) die Quantifizierung der solaren Winkelstreufunktion von Eispartikeln in Mischphasenwolken. Die Analyse der Daten, welche in drei Feldmesskampagnen in der Arktis und im Südpolarmeer sowie in Wolkensimulations- experimenten gewonnen werden, wird einen wichtigen Beitrag zum Verständnis der klimatischen Veränderungen in den hohen Breiten und deren Modellierung liefern.
Das Projekt "Entwicklung eines Streulichtmessverfahrens zur Partikelgroessenanalyse in Gasstroemungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Mechanische Verfahrenstechnik und Umweltverfahrenstechnik.Zur Konzentrationsmessung und Ermittlung von Partikelgroessenverteilungen in Gasstroemen wurde ein beruehrungsloses, optisches Messverfahren mit den folgenden Spezifikationen entwickelt: Konzentrationen bis 10 hoch 11 Partikel/m3, Partikelgroessenbereich von 1 : 100 mit einer unteren Messbereichsgrenze von 0.1 - 0.2 Mikrometer, freier Arbeitsabstand von 200 mm. Durch einen eng gebuendelten Lichtstrahl und durch das Gesichtsfeld einer senkrecht dazu angeordneten Detektoroptik wird ein kleines, rein optisch abgegrenztes Messvolumen erzeugt. Die zu vermessenden Partikel durchfliegen das Messvolumen, werden beleuchtet, und das gestreute Licht wird von der Detektoroptik aufgezeichnet. Das Messvolumen ist im Hinblick auf die Partikelkonzentration so klein gewaehlt, dass sich mit grosser Wahrscheinlichkeit jeweils hoechstens ein Partikel darin befindet (Koinzidenz). Die Beleuchtung erfolgt durch einen Argon-Ionen-Laser. Der weite Partikelgroessenbereich wird durch Simultanmessungen in zwei ineinanderliegenden Messvolumina unterschiedlicher Groesse, Intensitaet und Wellenlaenge abgedeckt. Die Streulichtsignale sind vom Rauschen der Photonen und der elektronischen Geraete ueberlagert. Sie werden daher vor Ermittlung der Signalhoehe mathematisch durch Fourier-Transformation und frequenzselektive Filterung geglaettet.
Emissionen Für die detaillierte und lückenlose Darstellung der langfristigen Entwicklung der Emissionen in Berlin, werden in einer Karte die Erhebungen der Emissionskataster seit 1989 ausgewertet. Bei der Emissionsberechnung kam es im Jahr 2015 zu einer grundlegend erweiterten Auswertung aller relevanten Verursacher, die den Vergleich der Emissionsmengen zu Vorjahren für die Emissionen aus Heizungsanlagen nur bedingt zulässt. So wurde zur Berechnung der Emissionen 2015 ein neues Emissionsgutachten erstellt, das zusätzlich zu den in den Vorjahren durchgeführten Auswertungen der statistischen Kennzahlen eine Befragung und eine Berücksichtigung einer Vielzahl von Akteuren beinhaltet. Der Abschlussbericht ist auf den Seiten der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt verfügbar. Die einzelnen Kartenebenen der Karte 03.12.2 Langjährige Entwicklung der Luftqualität – Emissionen , getrennt nach Schadstoffen und Verursachergruppen, verdeutlichen, in welchen Bereichen Berlins welche Verursacher den größten Anteil an der Emission der Stoffe haben. Auswertung der Langjährigen Entwicklung der Luftqualität Seit 1989 konnten alle Emissionen stark reduziert werden, mit Rückgängen zwischen 73 % (Stickoxide) und 96 % (Schwefeldioxid). Die PM 10 -Emissionen sind in diesem Zeitraum um 86 % zurückgegangen. Die Gesamtzahl der genehmigungsbedürftigen Industrieanlagen hat in Berlin seit 1989 deutlich abgenommen, da aufgrund der geänderten politischen und wirtschaftlichen Lage viele Anlagen stillgelegt wurden. Außerdem haben sich die rechtlichen Regelungen für die Genehmigungspflicht zahlreicher kleiner Anlagen geändert. Auch hierdurch erklärt sich ein Rückgang. Die Emissionen dieser Anlagen werden seitdem den Quellgruppen Hausbrand oder Kleingewerbe zugeordnet. Die Branchen Wärme- und Energieerzeugung sowie Nahrungs- und Genussmittelindustrie sind die Hauptemittenten von NO x -Emissionen aus erklärungspflichtigen Anlagen (Industrie) im Land Berlin (vgl. AVISO 2016, S.23). Im Bereich Hausbrand / Gebäudeheizung , der nicht nur Wohnungen, sondern auch Kleingewerbe wie Praxen, Anwaltskanzleien etc. enthält, konnten durch großflächige Erweiterungen der Versorgung mit leitungsgebundenen Energieträgern zu Lasten der früher bestimmenden Braunkohle eindrucksvolle Emissionsminderungen erreicht werden. Insbesondere beim früheren Leitparameter für Luftbelastung, dem Schwefeldioxid (SO 2 ), wird dies deutlich. Die vom Land Berlin seit 1990 beispielhaft geförderte energetische Sanierung der Altbaubestände hat dazu wesentlich beigetragen. Bezüglich der räumlichen Verteilungsstruktur der Emissionen aus nicht genehmigungsbedürftigen Feuerungsanlagen (Hausbrand, Kleingewerbe) zeigt sich für die Schadstoffe NO x , PM 10 und PM 2,5 ein ähnliches Bild: Die höchsten Emissionsdichten treten im Zentrum von Berlin auf und zwar in den Bezirken Charlottenburg-Wilmersdorf, Tempelhof-Schöneberg, Friedrichshain-Kreuzberg und Pankow (vgl. AVISO 2016, S.81). Der Verkehr ist mittlerweile der Hauptverursacher der Stickoxide. Der Straßenverkehr hatte 2015 einen Anteil von mehr als 37 % an den Stickoxidemissionen in Berlin, während alle Industrieanlagen zusammen knapp 36 % der Gesamtmenge emittierten. Da die Schadstoffe des Straßenverkehrs bodennah (oder “Nasen-nah”) in die Atmosphäre gelangen, tragen sie in hohem Maße zur Luftbelastung bei. (weitere Informationen: Stickstoffdioxid ). Die gesundheitlich bedenklichen Feinstaubemissionen aus dem Auspuff der Kraftfahrzeuge wurden zwischen 1989 bis 2015 um mehr als 90 % vermindert. Ein Grund dafür war die Einführung der Umweltzone und die darin verankerte Festlegung der Partikelfilter, welche eine Reduzierung der Rußpartikel ergab. Dies stimmt sehr gut mit den Messungen des in den Straßenschluchten erfassten Dieselrußes – dem Hauptbestandteil der Partikelemission aus dem Auspuff – überein: Die gemessene Ruß-Konzentration ist in der Frankfurter Allee im Berliner Bezirk Friedrichshain an der Messstelle MC174 des Berliner Luftgütemessnetzes BLUME innerhalb des Zeitraumes 2000-2015 um mehr als 50 % gesunken (vgl. auch Auswertungen zur Karte 03.12.1, Station MC174 ). Da sich die Feinstaubemissionen durch Abrieb und Aufwirbelung des Straßenverkehrs in diesen 20 Jahren um weit weniger vermindert haben als die Emissionen durch Verbrennungsprozesse, ist der Straßenverkehr nach den “sonstigen Quellen” weiterhin der Hauptverursacher von Feinstaub in Berlin. Der Straßenverkehr einschließlich Abrieb und Aufwirbelung hatte 2015 einen Anteil von 24 % an den PM 10 -Emissionen in Berlin, während die sonstigen Quellen 50 % verursachten (bei PM 2,5 lag das Verhältnis bei 26 % zu 45 %). Vergleichsweise hoch sind die vom Kraftfahrzeugverkehr verursachten Belastungen in der Innenstadt, wo auf etwa 100 km 2 Fläche über 1 Mio. Menschen leben. Vor allem hier werden unter gleichbleibenden Bedingungen Flächenbedarf und Flächenkonkurrenz eines wachsenden Kfz-Verkehrs zunehmen. Gerade der Straßengüterverkehr wird hier (unter gleichbleibenden Bedingungen) auf zunehmende Kapazitätsengpässe im Straßenraum stoßen. Informationen zu den einzelnen Emissionen finden Sie hier An allen Messstationen werden Stickstoffmonoxid und Stickstoffdioxid (mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel der PM 10 - und PM 2,5 -Fraktion (durch Messung der Streuung von Licht an Staubpartikeln), an 8 Stationen Ozon (durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (durch Gaschromatographie) gemessen. Die Messung von SO 2 mittels des Referenzverfahrens wurde zum 01.06.2020 eingestellt, da die SO 2 -Konzentration in den letzte 30 Jahren stark gesunken ist und die Messwerte der letzten Jahre zum Großteil die Nachweisgrenze der Referenzmesstechnik unterschritten haben. Gemäß 39. BImSchV besteht daher keine Messverpflichtung mehr für SO 2 . An zwei bzw. vier Messstellen werden in der PM 10 -Fraktion zusätzlich Schwermetalle und Benzo(a)pyren bestimmt. Die Stationen sind so im Stadtgebiet verteilt, dass verschiedene räumliche Einflussfaktoren ermittelt werden können. Von den 17 Stationen, an denen Luftschadstoffe für die Beurteilung für die Luftqualität gemessen werden, liegen sieben an stark befahrenen Straßen, fünf im innerstädtischen Hintergrund (Wohn- und Gewerbegebieten) und fünf im Stadtrand- und Waldbereich. An der Autobahn A100 werden zudem Sondermessungen durchgeführt, die nicht der Grenzwertüberwachung dienen. Die Proben, welche an den 23 RUBIS-Standorten gesammelt werden, werten die Mitarbeitenden des Berliner Luftgütemessnetzes im Labor aus und ermitteln die Benzol- und Rußkonzentrationen. Zusätzlich werden Passivsammler an insgesamt mehr als 30 Standorten zur Bestimmung von Stickstoffdioxid und teilweise Stickstoffoxiden eingesetzt. Dabei werden Proben über eine Probenahmezeit von 14 Tagen gesammelt, die dann im Labor analysiert werden. Diese manuell erzeugten Labordaten werden wegen des analysebedingten zeitlichen Versatzes zwischen Messung und Erhalt der Ergebnisse und ihrer geringen zeitlichen Auflösung erst nach Abschluss aller qualitätssichernden Maßnahmen als Jahresdatensatz (inkl. 2-Wochen-Werte, abrufbar im Luftdaten-Archiv ) und als Jahresmittelwert in den Jahresberichten veröffentlicht. Die automatisch in den Messcontainern ermittelten Messwerte des Vortages werden werktäglich gegen 11 Uhr an einige Zeitungen, Radio- und Fernsehsender zur Veröffentlichung übermittelt. Parallel dazu werden diese Daten stündlich bzw. täglich ins Internet eingespeist und können dort z.B. als Tageswerte des BLUME-Messnetzes ) abgerufen werden. Bei erhöhten Ozonkonzentrationen im Stadtgebiet wird die Bevölkerung auch durch einige Rundfunksender informiert. Auf den Internetauftritt „Berliner Luftgütemessnetz“ mit seinem umfassenden Angebot an Daten und Bewertungen wurde bereits hingewiesen. Monats- und Jahresberichte , die neben einer Bewertung des vorangegangenen Beobachtungs¬zeitraumes auch Standorttabellen der Messstationen sowie einen Überblick über Grenz- und Zielwerte enthalten, sind ebenfalls online verfügbar. Die Ergebnisse der Messungen der vergangenen Jahre lassen u.a. folgende Schlussfolgerungen zu: Gegenüber den 70er und 80er Jahren konnte die Luftbelastung bei den meisten Luftschadstoffen um ein Vielfaches reduziert werden. So überschreiten die Schwefeldioxidkonzentrationen (Rückgang > 90 %) heute in keinem Fall mehr die festgelegten EU-Immissionswerte. Hinsichtlich PM 10 hat sich die Situation deutlich gegenüber den Jahren am Anfang dieses Jahrhunderts verbessert. Allerdings ist die Belastung mit PM 10 sehr stark von den meteorologischen Ausbreitungsbedingungen abhängig. So führen insbesondere winterliche schwachwindige Hochdruckwetterlagen mit südlichen bis östlichen Winden zu einer hohen Anreicherung der Luft im Berliner Raum mit PM 10 -Partikeln, die teilweise durch Ferntransport nach Berlin gelangen, teilweise auch in innerstädtischen Quellen, vor allem dem Straßenverkehr und im Hausbrand, ihre Herkunft haben. In den Jahren mit schlechteren Austauschbedingungen wie 2009-2011 und auch 2014 lagen die PM 10 -Jahresmittelwerte etwas höher, dagegen in den Jahren mit besseren Austauschbedingungen wie 2007 und 2008 sowie 2012, 2013, 2015, 2016, 2017 und 2019 entsprechend niedriger. Die an den Stationen des automatischen Messnetzes ermittelten PM 10 -Jahresmittelwerte für 2022 lagen am Stadtrand bei 15-16 µg/m³, im innerstädtischen Hintergrund bei 17-19 µg/m³ und an Schwerpunkten des Straßenverkehrs bei 20-24 µg/m³. Damit wurde der Grenzwert für das Jahresmittel auch an der höchst belasteten Messstelle nicht überschritten. Auch der Kurzzeitgrenzwert für PM 10 (das Tagesmittel darf den Wert von 50 µg/m³ im Jahr nur 35 mal pro Messstation überschreiten) wurde im Jahr 2022 an keiner Messstelle überschritten. Auch für NO 2 konnte der seit 2010 einzuhaltende Jahresmittel-Grenzwert der 39. BImSchV (40 µg/m³) wie bereits im Vorjahr berlinweit eingehalten werden. An den automatischen Messstationen lag der Jahresmittelwert im Jahr 2022 an Straßen zwischen 20und 33 µg/m³. Auch an allen Passivsammlerstandorten, die die Standortkriterien nach 39. BImSchV erfüllen, wurde der Grenzwert eingehalten. Zielwertüberschreitungen für das bodennahe Ozon wurden an keiner Station im Jahr 2022 festgestellt. EU-weit gilt ein Zielwert von höchstens 25 Tagen pro Kalenderjahr mit einem maximalen 8-Stundenwert über 120 µg/m³, gemittelt über die letzten 3 Jahre. Seit dem 01.01.2010 ist dieser Zielwert soweit wie möglich einzuhalten. Verbesserungen der Luftwerte hängen mit vielen Komponenten zusammen. Die Deindustrialisierung Berlins und die Modernisierung der Anlagen, der Einsatz von Katalysatoren in Fahrzeugen und die Umstellung der Beheizung auf emissionsärmere Brennstoffe haben ihre Wirkung gezeigt. Eine detaillierte Übersicht und Zusammenstellung über die Qualität der Berliner Luft wird online zur Verfügung gestellt. Da Immissionen aber auch überregional und durch das Wettergeschehen beeinflusst werden, kann die Ursachenanalyse nicht nur lokal stattfinden, sondern muss auch dem Eintrag von Schadstoffen von außen, bis hin zum grenzüberschreitenden Transport nachgehen (vgl. Zweite Fortschreibung des Luftreinhalteplans ). In der vorliegenden Karte 03.12.1 Langjährige Entwicklung der Luftqualität – Immissionen wurden alle mit den genannten Messprogrammen in den letzten mehr als 45 Jahren ermittelten Daten zusammengestellt und statistisch-graphisch über die Messjahre aufbereitet. Über die räumliche Verteilung aktueller und ehemaliger Messstandorte lassen sich die einzelnen Sachdaten Adresse Art der Station Umgebungsbeschreibung (einschl. Fotos) Koordinaten Messparameter Messzeitraum Messwerte (als Graphik und EXCEL-Tabellen) abrufen. Die Einteilung der Stationen erfolgte in Verkehrs-, innerstädtischer Hintergrund-, Industrie-, Stadtrand- und Meteorologiemessstationen. Es sind insgesamt 201 Messstandorte dargestellt. 58 Stationen waren davon 2022 in Betrieb (17 BLUME-Messcontainer, eine Sondermessstation, 23 RUBIS-Messpunkte sowie 17 weitere Passivsammler-Standorte). Bei der graphischen Darstellung der Entwicklung der Parameter Gesamtstaub, Partikel (PM 10 ), Schwefeldioxid (SO 2 ), Stickstoffdioxid (NO 2 ), Stickstoffmonoxid (NO), Kohlenmonoxid (CO), Benzol und Ozon (O 3 ) wurde auf die folgenden Grenzwerte Bezug genommen (sie dienen – wenn nicht anders erläutert – dem Gesundheitsschutz): Für PM 2,5 ist ein Indikator für die durchschnittliche Exposition der Bevölkerung im städtischen Hintergrund (Average Exposure Indicator = AEI) definiert. Dieser wird für jeden EU-Mitgliedsstaat gesondert als gleitender Jahresmittelwert über drei Jahre aus den Werten der entsprechenden PM 2,5 -Messstellen ermittelt. Der AEI für das Referenzjahr 2010 ist als Mittelwert der Jahre 2008 bis 2010 definiert. Er betrug für das gesamte Bundesgebiet 16,4 µg/m³. Anhand des AEI 2010 ist ein nationales Reduktionsziel für PM 2,5 bis zum Jahr 2020 nach der 39. BImSchV von 15 % festgelegt. Deshalb darf der AEI seit 2020 nicht mehr als 13,9 µg/m³ betragen. Der AEI 2021 (Mittelwert der Jahre 2019 bis 2021) beträgt für Berlin 12,5 µg/m³. Weitere gesetzlich festgelegte Grenz- und Zielwerte für die Luftqualität bietet diese Übersicht .
Die Luftverunreinigung Berlins wird seit 1975 durch das Berliner Luftgüte-Messnetz (BLUME) kontinuierlich gemessen. Dabei lag der Schwerpunkt der Messungen ursprünglich bei Schwefeldioxid. Im Laufe der Zeit wurde die Messung weiterer Schadstoffe aufgenommen. Derzeit besteht das Messnetz aus 17 ortsfesten Messstationen für Luftschadstoffe, einer Sondermessstelle und einer meteorologischen Station. Von den einzelnen Stationen werden die 5-Minuten-Werte jedes Schadstoffes zur Messzentrale in der Brückenstraße (Mitte) übertragen und daraus die Stunden- und Tageswerte als Basis für die weitere Auswertung berechnet. Die ermittelten Daten dienen der Berechnung von Kennwerten der Luftverschmutzung zur Beurteilung der Luftqualität anhand von Grenz- und Zielwerten der 39. BImSchV , der Ermittlung der Schadstoffbelastung für Genehmigungsverfahren (nach TA Luft), der Ursachenermittlung der Luftverunreinigung, der Verfolgung der Wirksamkeit von Maßnahmen zur Luftreinhaltung und der Informationen der Öffentlichkeit. Derzeit betreibt das Berliner Luftgütemessnetz 17 Messcontainer zur Überwachung der Luftqualität gemäß der 39. BImSchV , von denen sieben verkehrsnah und jeweils fünf in innerstädtischen Wohngebieten und am Stadtrand platziert sind. An allen Messcontainern wurden Stickstoffmonoxid und Stickstoffdioxid (NOx als Summe von NO und NO 2 mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel-PM 10 (Partikel mit einem Teilchendurchmesser bis zu 10 Mikrometer durch Streulichtmessung), an acht Stationen Ozon (O 3 durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (CO durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (C6H6 durch Gaschromatographie) gemessen. Neben dem automatischen Messverfahren zur PM 10 -Messung werden in sechs Messcontainern auch Probenahmegeräte zur Bestimmung von PM 10 und/oder PM 2,5 mit dem gravimetrischen Referenzverfahren gemäß EU-Luftqualitätsrichtlinie 2008/50/EG betrieben. In einem Teil dieser Partikelproben werden Benzo(a)pyren, Blei, Arsen, Cadmium und Nickel analysiert und mit den jeweiligen Grenz- bzw. Zielwerten verglichen. Außerdem erfolgen Kohlenstoff- und Ionenanalysen. Das Containermessnetz wird in Berlin bereits seit Mitte der 1990er Jahre durch kleine, an Straßenlaternen befestigte aktive Probenahmegeräte (RUBIS) und Passivsammler ergänzt. Sie sind insbesondere für die Erfassung der Belastung aus dem Straßenverkehr eine wichtige Ergänzung der Datengrundlage, weil Emissionen aus dem Verkehrssektor für die meisten Schadstoffe einen erheblichen Teil zur Immissionsbelastung beitragen, in engeren Straßen der Innenstadt aber schon aus Platzgründen keine großen Messcontainer betrieben werden können. Mit “Ruß- und Benzol-Immissionssammlern”(RUBIS) und Passivsammlern für Stickstoffdioxid und Stickoxide derzeit an 23 zusätzlichen Stellen im Berliner Stadtgebiet die Belastung mit EC und OC und an 42 zusätzlichen Stellen die Belastung mit Stickoxiden in zweiwöchiger Auflösung ermittelt. Insbesondere für Stickstoffdioxid sind die an diesen Stellen ermittelten Jahresmittelwerte eine wichtige zusätzliche Beurteilungsgrundlage. Die Messungen werden durch Modellrechnungen für alle Straßenabschnitte ergänzt, um die Belastung im gesamten Berliner Stadtgebiet einzuschätzen. 13 der 36 Stickstoffdioxid-Passivsammler wurden Ende 2018 in Betrieb genommen und lieferten 2019 erstmals gültige Jahresmittelwerte. Werktäglich werden gegen 12 Uhr die Messwerte des Vortags an einige Zeitungen, Radio- und Fernsehstationen zur Veröffentlichung übermittelt. Parallel dazu werden die Daten auch ins Internet eingespeist und können im Luftdatenportal abgerufen werden. Monats- und Jahresberichte im pdf-Format bieten wir hier zum Download an. Diese können in Papierform auch unter blume@senumvk.berlin.de angefordert werden.
Das Projekt "SolaresBauen: MAGGIE - Energetische Modernisierung des genossenschaftlichen Wohnquartiers Margaretenau in Regensburg, Teilvorhaben: Entwicklung solaraktiver mörteltechnischer Baustoffe" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Franken Maxit Mauermörtel GmbH & Co..Im Rahmen des Projektes soll ein neuartiges Putzverfahren für Außen und Innendämmung in Kombination mit einer solaraktiven Außenfarbe erforscht werden mit planerisch konzeptioneller Umsetzung in allen Teilbereichen. Schwerpunkt ist die Verwendung einer solaren Beschichtung aus Microhohlglaskugeln (MHGK) in der eigentlichen Wärmedämmschicht. Durch die Struktur der Matrix soll im Sommer mehr reflektiert und im Winter mehr absorbiert werden. Durch diese besondere Dämmschicht wird in Interaktion von solarer Einstrahlung und Dämmung ein optimales Wärmeverhalten der meist schweren alten Bausubstanz erreicht. Dazu wird eine auf MHGK basierte Farbe entwickelt, die über multiple Streuung des sichtbaren Lichts und der NIR Strahlung dies ermöglicht. Für den Innenbereich und stark verschattete Fassaden ist eine IR-reflektierende Außenfarbe zu entwickeln um die langwellige Wärmestrahlung zu reduzieren und damit das Auskühlen der Wand zu vermeiden. Wesentlicher Arbeitspunkt ist das Speichervermögen der zu sanierenden alten schweren Wände.
Das Projekt "INTENSE: Intelligentes Lichtmanagement für energieeffiziente Beleuchtung durch individuelle Nanostrukturen, Teilvorhaben: Entwicklung und Erprobung einer geeigneten ultrapräzisen Werkzeugfertigung für das Abformen von Optiken mit Nanostrukturen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Aixtooling GmbH.Das Vorhaben INTENSE adressiert den Entwicklungsbedarf an intelligenten Lichtmanagementsystemen, die eine hohe Funktionalität mit optimierter Energieeffizienz vereinen. Ziel des Vorhabens ist die Herstellung und großvolumige Produktion individueller optischer Komponenten mittels Interferenzlithographie (IL) und verschiedenen Abformtechniken. Die IL wird durch Verwendung eines sog. Spatial Light Modulators (SLM) flexibilisiert, so dass maßgeschneiderte Mikro- und Nanostrukturen realisierbar sind. Es werden zwei Arten an optisch funktionalen Komponenten adressiert: Kunststoffdiffusoren für LEDs, die eine intelligente Lichtverteilung ermöglichen und kostengünstige Infrarot-Sensoren, die die Beleuchtung an die aktuelle Situation im Raum anpassen. Diese Kombination aus intelligenter Lichtlenkung und -steuerung ermöglicht eine Energieeinsparung von bis zu 30% im Vergleich zu herkömmlichen Lösungen. Zu Projektende besteht eine Prozesskette, die die großvolumige Herstellung der individuellen, optischen Komponenten für intelligente Lichtmanagementsysteme erlaubt. Die einzelnen Prozessschritte werden durch die Kompetenzen der vier KMU Aixtooling GmbH, Holoeye Photonics AG, micro resist technology GmbH und temicon GmbH sowie von dem Fraunhofer-Institut für Produktionstechnologie IPT abgebildet. Durch diese Zusammenarbeit zwischen KMU und Forschungseinrichtung ist ein schneller Transfer der Projektergebnisse in die standardisierte Fertigung gewährleistet. Eine energetische Bewertung der finalen Prozesskette stellt die Nachhaltigkeit des Vorhabens sicher.
Das Projekt "INTENSE: Intelligentes Lichtmanagement für energieeffiziente Beleuchtung durch individuelle Nanostrukturen, Teilvorhaben: Prozessentwicklung zur Herstellung von Chalkogenidglaslinsen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Produktionstechnologie.Das Vorhaben INTENSE adressiert den Entwicklungsbedarf an intelligenten Lichtmanagementsystemen, die eine hohe Funktionalität mit optimierter Energieeffizienz vereinen. Ziel des Vorhabens ist die Herstellung und großvolumige Produktion individueller optischer Komponenten mittels Interferenzlithographie (IL) und verschiedenen Abformtechniken. Die IL wird durch Verwendung eines sog. Spatial Light Modulators (SLM) flexibilisiert, so dass maßgeschneiderte Mikro- und Nanostrukturen realisierbar sind. Es werden zwei Arten an optisch funktionalen Komponenten adressiert: Kunststoffdiffusoren für LEDs, die eine intelligente Lichtverteilung ermöglichen und kostengünstige Infrarot-Sensoren, die die Beleuchtung an die aktuelle Situation im Raum anpassen. Diese Kombination aus intelligenter Lichtlenkung und -steuerung ermöglicht eine Energieeinsparung von bis zu 30% im Vergleich zu herkömmlichen Lösungen. Zu Projektende besteht eine Prozesskette, die die großvolumige Herstellung der individuellen, optischen Komponenten für intelligente Lichtmanagementsysteme erlaubt. Die einzelnen Prozessschritte werden durch die Kompetenzen der vier KMU Aixtooling GmbH, Holoeye Photonics AG, micro resist technology GmbH und temicon GmbH sowie von dem Fraunhofer-Institut für Produktionstechnologie IPT abgebildet. Durch diese Zusammenarbeit zwischen KMU und Forschungseinrichtung ist ein schneller Transfer der Projektergebnisse in die standardisierte Fertigung gewährleistet. Eine energetische Bewertung der finalen Prozesskette stellt die Nachhaltigkeit des Vorhabens sicher.
Das Projekt "Plastik - Verbundprojekt SubMikroTrack: Tracking von (Sub)Mikroplastik unterschiedlicher Identität - Innovative Analysetools für die toxikologische und prozesstechnische Bewertung, Teilprojekt 5" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Institut für Umwelt & Energie, Technik & Analytik e.V..
Das Projekt "INTENSE: Intelligentes Lichtmanagement für energieeffiziente Beleuchtung durch individuelle Nanostrukturen, Teilprojekt: Material- und Prozessentwicklung für die Interferenzlithographie mit einem wellenlängeneinstellbaren Argonionenlaser" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: micro resist technology Gesellschaft für chemische Materialien spezieller Photoresistsysteme mbH.Das Vorhaben INTENSE adressiert den Entwicklungsbedarf an intelligenten Lichtmanagementsystemen, die eine hohe Funktionalität mit optimierter Energieeffizienz vereinen. Ziel des Vorhabens ist die Herstellung und großvolumige Produktion individueller optischer Komponenten mittels Interferenzlithographie (IL) und verschiedenen Abformtechniken. Die IL wird durch Verwendung eines sog. Spatial Light Modulators (SLM) flexibilisiert, so dass maßgeschneiderte Mikro- und Nanostrukturen realisierbar sind. Es werden zwei Arten an optisch funktionalen Komponenten adressiert: Kunststoffdiffusoren für LEDs, die eine intelligente Lichtverteilung ermöglichen und kostengünstige Infrarot-Sensoren, die die Beleuchtung an die aktuelle Situation im Raum anpassen. Diese Kombination aus intelligenter Lichtlenkung und -steuerung ermöglicht eine Energieeinsparung von bis zu 30% im Vergleich zu herkömmlichen Lösungen. Zu Projektende besteht eine Prozesskette, die die großvolumige Herstellung der individuellen, optischen Komponenten für intelligente Lichtmanagementsysteme erlaubt. Die einzelnen Prozessschritte werden durch die Kompetenzen der vier KMU Aixtooling GmbH, Holoeye Photonics AG, micro resist technology GmbH und temicon GmbH sowie von dem Fraunhofer-Institut für Produktionstechnologie IPT abgebildet. Durch diese Zusammenarbeit zwischen KMU und Forschungseinrichtung ist ein schneller Transfer der Projektergebnisse in die standardisierte Fertigung gewährleistet. Eine energetische Bewertung der finalen Prozesskette stellt die Nachhaltigkeit des Vorhabens sicher.
Das Projekt "Atmosphärische Extinktion verringert den Ertrag in CSP Turmkraftwerken und ist zeit- und standortabhängig. In GeMoExt wird ein Extinktionsmesssystem für die kommerzielle solare Standortbewertung verbessert" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung.
Origin | Count |
---|---|
Bund | 113 |
Kommune | 1 |
Land | 4 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 112 |
Text | 5 |
License | Count |
---|---|
geschlossen | 5 |
offen | 112 |
Language | Count |
---|---|
Deutsch | 108 |
Englisch | 20 |
Resource type | Count |
---|---|
Dokument | 3 |
Keine | 80 |
Webseite | 36 |
Topic | Count |
---|---|
Boden | 73 |
Lebewesen & Lebensräume | 79 |
Luft | 86 |
Mensch & Umwelt | 117 |
Wasser | 68 |
Weitere | 116 |