API src

Found 3478 results.

Related terms

Sauberes Lithium für die Batteriezellfertigung

Optimierte Natrium-Feststoffbatterien mit neuen Anoden basierend auf Kohlenstoffgerüststrukturen, NATTER - Optimierte Natrium-Feststoffbatterien mit neuen Anoden basierend auf Kohlenstoffgerüststrukturen

Leistungsoptimierte Lithium-lonen Batterien

Der schnelle Fortschritt der elektronischen Geräte erhöht die Nachfrage nach verbesserten Li-Ionen Batterien. Kommerziell erhältliche Li-Zellen nutzen meist Lithiumkobaltoxid für die positive Elektrode. Doch gerade dieses Material ist ein Hindernis für eine weitere Optimierung, insbesondere für eine Kostensenkung. Vor allem für größere Anwendungen wie Hybrid- oder Elektrofahrzeuge müssen alternative Materialen erforscht werden, die billiger, sicherer und umweltverträglicher sind. Daher wird im ISEA derzeit ein neues Forschungsprojekt ins Leben gerufen und die dafür benötigte Infrastruktur geschaffen. Die Forschung wird sich auf die Untersuchung geeigneter Übergangsmetalloxide und Polyanionen konzentrieren, die besonders gut zur Einlagerung von Li-Ionen geeignet sind. Es werden neue Herstellungsverfahren unter Verwendung wässriger Precurser-Substanzen untersucht, die Verbindungen mit überlegenen Eigenschaften erzeugen und außerdem leicht an eine Massenproduktion angepasst werden können. Ziel der Arbeiten ist, preisgünstiges Elektrodenmaterial zu entwickeln, das eine spezifische Energie von über 200 Wh/kg und eine Leistungsdichte von 400 W/kg aufweist. Außerdem werden Arbeiten im Bereich der physikalisch-chemischen Charakterisierung der neuen Materialien stattfinden sowie elektrochemische Analysen der gesamten Zellen- und Batteriesysteme durchgeführt. Das elektrodynamische Verhalten der neuen Zellen wird u. a. mit Hilfe der elektrochemischen Impedanzspektroskopie analysiert, um präzise und zuverlässige Algorithmen für ein späteres Batteriemonitoring im realen Betrieb zu finden.

Konzeptentwicklung und Umsetzung einer großskaligen Lithium-Ionen Batteriezellfertigung nach dem Foundry-Prinzip

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, SECCO-Chile: Einfluss und Wechselwirkungen holozäner hydrologischer Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentablagerung in Chile

Die Erdoberfläche verändert sich stetig aufgrund komplexer Wechselwirkungen zwischen Klima, Hydrologie, Vegetation, Verwitterung, Erosion und Sedimentablagerung und beeinflusst so unseren Lebensraum. Die Mechanismen sowie die Magnitude und zeitliche Abfolge mit der sich klimatische Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentdynamiken auswirken, sind jedoch nur unzureichend verstanden - dies erschwert die Interpretation von marinen Sedimentarchiven in Bezug auf das Paläoklima und Erdoberflächenprozesse. In marinen Sedimentarchiven vor der chilenischen Küste finden sich aber konkrete Hinweise auf einen direkten Zusammenhang zwischen Klima und Erdoberflächenprozessen, denn während an Land zu Beginn des Holozäns zunehmende Trockenheit einsetzt, verringern sich zeitgleich die Sedimentakkumulation im Ozean. In diesem Projekt wollen wir die Magnituden und zeitlichen Abfolgen von Änderungen in der Vegetation, Hydrologie, Verwitterungs- und Erosionsraten und Sedimentablagerung im Pazifischen Ozean vom letzten glazialen Maximum (LGM) bis heute entlang der chilenischen Küste quantifizieren. In diesem Projekt vernetzen wir die Forschungsdisziplinen der Sedimentologie, Geochemie und Biologie um die Feedbacks zwischen diesen Parametern zu untersuchen. Wir postulieren, dass der Einfluss der deglazialen Klimaveränderung auf die Landschaftsentwicklung stark durch die Vegetation moduliert ist. Dadurch existieren Zeitverzögerungen zwischen den untersuchten Parametern. Mit diesem Antrag schlagen wir einen neuen Ansatz vor, der auf der Anwendung hochspezialisierter organisch- und anorganisch-geochemischer Proxy Methoden basiert. Dazu sollen Biomarker Isotopenanalysen (Delta D, Delta 13C, als Proxy für Vegetation und Hydrologie), stabile Lithium Isotopenanalysen (Delta 7Li, als Proxy für Verwitterung) und kosmogene Nuklide (meteorische 9Be/10Be Verhältnisse, als Proxy für Erosion) kombiniert werden und an den gleichen marinen Sedimentkernen angewandt werden. In einem ersten Arbeitspaket (WP1) werden wir die heutigen räumlichen Unterschiede entlang des ausgeprägten N-S Klimagradienten der chilenischen Küste evaluieren und diese Proxies auf ihre Sensitivität kalibrieren. Dazu ist die Analyse der modernen Erosionsprodukte, die durch die Flüsse in den Ozean transportiert werden, sowie mariner Oberflächensedimente vorgesehen. In AP 2 (WP2) wenden wir die so kalibrierten Methoden an drei marinen Sedimentkernen entlang der chilenischen Küste an, um Veränderungen in Klima, Vegetation, Verwitterung, Erosion und Sedimenteintrag sowie deren zeitliche Abfolge und räumlichen Muster am gleichen Material zu rekonstruieren. Diese neuartige Kombination von Proxy Methoden und deren detaillierte Kalibration und Sensitivitätsanalyse werden es ermöglichen, die Mechanismen von räumlichen und zeitlichen Unterschieden in der Reaktion von Vegetation, Verwitterung, Erosion, und Sedimentablagerung auf eine klimatisch-induzierte hydrologische Veränderungen zu quantifizieren.

Aufbau einer Zellfertigung für Hochleistungs-Lithium-Ionen-Batterien

Thermische Sicherheitsanalytik von sulfidischen Festkörperbatterien, FB2-SAFE - Thermische Sicherheitsanalytik von sulfidischen Festkörperbatterien

Stoffliche Wiederverwertung von Elektrolyt-Leitsalzen und -Lösungsmitteln, Teilvorhaben: Recycling und Rückgewinnung des Elektrolytsalzes LiPF6 sowie dessen Zersetzungsprodukte

Das Projektvorhaben SWELL befasst sich mit der Entwicklung und Evaluierung effizienter Verfahren zur Steigerung der Recyclingeffizienz von Lithium-Ionen-Batterien. Im Fokus des Projektes stehen die Elektrolyte, bestehend aus Lithiumsalzen, Lösungsmitteln und Elektrolytadditiven. Bereits etablierte Recyclingprozesse fokussieren sich überwiegend auf die Rückgewinnung der in LIBs befindlichen Metalle, wohingegen die nichtmetallischen Komponenten zum großen Teil nicht wieder dem Verwertungskreislauf zugeführt werden. Die Elektrolyte gehen in bisherigen Prozessen größtenteils in Form von thermischer Verwertung oder Downcycling verloren. Die Elektrolytkomponenten weisen einen signifikanten Materialwert auf und enthalten zudem kritische, umweltrelevante Ressourcen, wie Lithium, Fluor und Phosphor. Ihre Rückgewinnung und effiziente Aufarbeitung mit dem Ziel einer (direkten) Wiederverwendung in LIBs, ist daher von großem Interesse und kann zur signifikanten Steigerung der Nachhaltigkeit der Batteriezellfertigung führen. Gesamtziel des Projektes ist es Verfahren zu entwickeln, in denen Elektrolytbestandteile selektiv extrahiert, getrennt und anschließend aufgearbeitet werden, um diese in den Stoffkreislauf zu reintegrieren. Hauptaugenmerk liegt hierbei auf den Elektrolytlösungsmitteln (Carbonate, wie DMC, EMC EC) und dem Lithiumsalz LiPF6 sowie dessen Zersetzungsprodukte.

Trace element contents for the <2 μm, 2-20 μm and bulk fractions from LGM European loess sequences

Trace element contents in microg/g measured on the <2 microns, 2-20 microns size fractions and bulk samples from LGM European loess sequences. Samples were crushed in an agate mortar and trace element concentrations were measured following Chauvel et al. (2011). Reproducibility for trace element analyses is better than 5% based on repeat measurements, and the accuracy is also better than 5%, based on the analyses of international rock standards (JSD-1, JSD-3 and LKSD-1.

R-Package – Supplement to: Constraints on the role of marine authigenic clay formation in determining seawater lithium isotope composition

This publication contains the R-Package used to solve the calculations performed in Läuchli et al., (2025). The package contains a README.txt file, as well as six scripts stored in the "scripts" file including: (1) "main_script.R" running the complete Monte-Carlo simulation, (2) "calling_data.R" calling the data, (3) "isotope_signature.R" extracting the isotope signature of marine authigenic clays using the dataset presented in Läuchli et al., (submitted), (4) "global_fluxes_uncertainties_rivers.R" simulating uncertainties associated with single-data point river on global estimations of the lithium flux from discharged by rivers to seawater, (5) "global_fluxes.R" solving the ocean lithium isotope budget, and The data files necessary to solve the R-Package are provided as .csv and stored in the "csv" file. Output files are stored in the "export" file. The scripts are written for the R Software. The data were acquired as part of the German Science Foundation (DFG) priority program SPP-1803 “EarthShape: Earth Surface Shaping by Biota” initiated and lead by Friedhelm von Blanckenburg and Todd Ehlers. The GeoB cores samples were provided by the MARUM Research Center (Bremen). The 22SL Gravity Core was stored and supplied by the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR, Hannover). -------------------------------------------------- Packages: The R packages devtools, dplyr, compositions, tidyr, EnvStats, gdata, and gmp were used for calculations. The R-Package was managed using packrat: compositions (Boogaart et al., 2022; License: GPL >= 2) devtools (Wickham et al., 2022; MIT License) dplyr (Wickham et al., 2022; MIT License) EnvStats (Millard, 2022; License: GPL >= 3) gdata (Warnes et al., 2022; License: GPL-2) gmp (Lucas et al., 2023; License: GPL >= 2) packrat (Ushey et al., 2022; License: GPL-2) tidyr (Wickham and Girlich, 2022; MIT License)

1 2 3 4 5346 347 348