API src

Found 231 results.

Related terms

INSPIRE-WFS SL Mineralische Bodenschätze - Mineralvorkommen - OGC WFS Interface

Dieser Dienst stellt für das INSPIRE-Thema Mineralische Bodenschätze aus dem Geofachdaten umgesetzte Daten bereit.:Eine Anreicherung von Mineralen in der Lithosphäre.

INSPIRE-WFS SL Mineralische Bodenschätze - Mineralvorkommen - OGC API Features

Dieser Dienst stellt für das INSPIRE-Thema Mineralische Bodenschätze aus dem Geofachdaten umgesetzte Daten bereit.:Eine Anreicherung von Mineralen in der Lithosphäre.

Klimawandel auf globaler, nationaler, regionaler sowie lokaler Ebene Klimawandel Grundlagen Klimawandel auf globaler Ebene Klimawandel auf regionaler und lokaler Ebene Globale Klimamodelle Klimaszenarien

Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024

Hydrogeologische Karte 1:500.000 - Verbreitung der maßgeblichen Grundwasserleiter

Verbreitung der Maßgeblichen Grundwasserleiter als Fachlayer der Hydrogeologischen Karte 1:500 000. Empfohlen wird die Darstellung zusammen mit den separaten Fachlayern Grundwassergleichen. Zoombegrenzung min. 1:1 000 000 bis max. 1:200 000. Grundwasserleiter / Grundwassergeringleiter einschließlich ihrer oberen und unteren Begrenzung als Betrachtungseinheit innerhalb der lotrechten Gliederung der Lithosphäre. Fachliche Kartengrundlage ist i. d. R. die Geologische Karte im Maßstab 1:25 000 bzw. 1: 50 000. Geometrien und Legendeneinheiten sind für den Betrachtungsmaßstab 1:500 000 (1 cm auf einer Karte entsprechen 5 km in der Natur) konzipiert und i. d. R. stark generalisiert. Die HK 500 ist als Grundlage für großräumigere Betrachtungen vorgesehen, sie ersetzt keinesfalls Detailuntersuchungen und Begutachtung durch ein Fachbüro bei der Planung lokaler Vorhaben.

Digitale Hydrogeologische Karte 1:100.000 - Verbreitung der Grundwasserstockwerke (schematisch)

Verbreitung der Grundwasserstockwerke als Fachlayer der digitalen Hydrogeologischen Karte 1:100 000. Empfohlen wird die Darstellung zusammen mit den separaten Fachlayern Grundwassergleichen und Stützpunkte zur Erstellung der Grundwassergleichen. Zoombegrenzung min. 1:200 000 bis max. 1:50 000. Ein Grundwasserstockwerk ist ein Grundwasserleiter einschließlich seiner oberen und unteren Begrenzung als Betrachtungseinheit innerhalb der lotrechten Gliederung der Lithosphäre. Bei hydraulischer Verbindung werden auch Gruppen von Grundwasserleitern als einheitliches Grundwasserstockwerk betrachtet. Die dHK100 wurde im Zeitraum 2000 bis 2015 (Planungsregion 14 München bis 2019) nach Planungsregionen erstellt. Fachliche Kartengrundlage aller Fachlayer der dHK100 bzw. HK100 waren i. d. R. die vorliegenden Geologischen Karten im Maßstab 1:25 000 bzw. 1: 50 000 zum jeweiligen Bearbeitungsstand. Deren Geometrien wurden teilweise generalisiert. Eine systematische Fortschreibung der dHK100 erfolgt nicht. Durch die planungsregionsweise Bearbeitung über längere Zeiträume kann es entlang der Planungsregionsgrenzen zu geometrischen und attributiven Inkonsistenzen zwischen den dort aufeinanderstoßenden Grundwasserstockwerkseinheiten kommen. Diese sind zurückzuführen auf unterschiedliche geologische Grundlagenkarten, aus denen die Hydrogeologischen Karten abgeleitet sind. Geometrien und Legendeneinheiten sind für den Übersichtsmaßstab 1:100 000 (1 cm auf einer Karte entsprechen 1 km in der Natur) konzipiert und i. d. R. stark generalisiert. Die dHK100 bzw. HK100 ist als Grundlage für großräumige Betrachtungen vorgesehen. Sie ersetzt keine Detailuntersuchungen und Begutachtung durch ein Fachbüro bei der Planung lokaler Vorhaben. Die maßstabsbezogene Aussagegenauigkeit ändert sich durch die maßstabsunabhängigen Visualisierungsmöglichkeiten digitaler Kartenwerke nicht. Für weitergehende Interpretationen, die das Kartenwerk mit anderen räumlichen Datensätzen kombinieren bzw. verschneiden, ist zu beachten, dass eine Verschneidung räumlicher Daten stark unterschiedlicher Auflösung bzw. unterschiedlicher Zielmaßstäbe oder verschiedener Art der Attribuierung zu unplausiblen oder schwer interpretierbaren Ergebnissen führen kann.

Forearc on-shore receiver functions, station subsurface models, and fitted slab model for Cascadia (North America)

Abstract

A database of centrifuge analogue models testing the influence of inherited brittle fabrics on continental rifting

Abstract

Grundwasserhöhen des Hauptgrundwasserleiters und des Panketalgrundwasserleiters 2020

Die genaue Kenntnis der aktuellen Grundwasserstände und damit auch der Grundwasservorräte ist für das Land Berlin unerlässlich, da das Wasser für die öffentliche Wasserversorgung von Berlin zu 100 % aus dem Grundwasser gewonnen wird (im Jahr 2019 waren es 233 Millionen m 3 ). Dieses Grundwasser wird von neun Wasserwerken nahezu vollständig aus dem eigenen Stadtgebiet gefördert (Abb. 1). Lediglich das Wasserwerk Stolpe am nördlichen Stadtrand entnimmt sein Wasser im Land Brandenburg und liefert etwa 9 % der Berliner Gesamtförderung in die Stadt. Darüber hinaus werden die Grundwasservorkommen durch Eigen- und Brauchwasserentnahmen sowie durch große Bauwasserhaltungen, Grundwassersanierungsmaßnahmen und Wärmenutzungen beansprucht. In Berlin sind zahlreiche Boden- und Grundwasserkontaminationen bekannt, die sich nur bei genauer Kenntnis der Grundwasserverhältnisse sanieren lassen. Die Karte für den Monat Mai, in dem in der Regel die höchsten innerjährlichen Grundwasserstände auftreten, wird im Umweltatlas veröffentlicht. Definitionen zum Grundwasser Unter Grundwasser versteht man „unterirdisches Wasser, das Hohlräume der Lithosphäre zusammenhängend ausfüllt und dessen Bewegungsmöglichkeit ausschließlich durch die Schwerkraft bestimmt wird“ (DIN 4049, Teil 3, 1994). Die Hohlräume bestehen bei den in Berlin (wie auch im gesamten Norddeutschen Flachland) vorkommenden Lockersedimenten aus den Poren zwischen den Sedimentteilchen. Das in den Boden einsickernde (infiltrierende) Niederschlagswasser füllt zunächst diese Poren aus. Nur der Teil des infiltrierenden Sickerwassers, der nicht als Haftwasser in der wasserungesättigten Bodenzone gebunden oder durch Verdunstung verbraucht wird, kann dem Grundwasser bis zur Grundwasseroberfläche zusickern. Über der Grundwasseroberfläche befindet sich in der ungesättigten Bodenzone Kapillarwasser, das in Abhängigkeit von der Bodenart unterschiedlich hoch aufsteigen kann (Abb. 2). Grundwasserleiter sind aus Sanden und Kiesen aufgebaut und ermöglichen als rollige Lockergesteine die Speicherung und Bewegung von Grundwasser. Grundwassergeringleiter oder auch Grundwasserhemmer bestehen aus Tonen, Schluffen, Mudden und Geschiebemergeln und behindern als bindige Lockergesteine die Wasserbewegung. Grundwassernichtleiter sind aus Tonen aufgebaut, die für Wasser so gut wie gar nicht durchlässig sind. Man spricht von freiem oder ungespanntem Grundwasser , wenn die Grundwasserdruckfläche innerhalb eines Grundwasserleiters liegt. Hier fallen Grundwasseroberfläche und Grundwasserdruckfläche zusammen. Bei gespanntem Grundwasser wird der Grundwasserleiter von einem Grundwassergeringleiter so überdeckt, dass das Grundwasser nicht so hoch ansteigen kann, wie es seinem hydrostatischen Druck entspricht. Unter diesen Verhältnissen liegt die Grundwasserdruckfläche über der Grundwasseroberfläche (Abb. 3). Befindet sich über einem großen zusammenhängenden Grundwasserleiter ein Grundwassergeringleiter, wie z. B. ein Geschiebemergel, so kann sich hier in sandigen Partien oberhalb und in Linsen innerhalb des Geschiebemergels in Abhängigkeit von Niederschlägen oberflächennahes Grundwasser ausbilden. Dieses ist unabhängig vom Hauptgrundwasserleiter und wird häufig auch als so genanntes Schichtenwasser bezeichnet. Befindet sich unterhalb des Geschiebemergels eine ungesättigte Zone, spricht man von schwebendem Grundwasser (Abb. 3). Das Grundwasser strömt normalerweise mit einem geringen Gefälle den Flüssen und Seen (Vorflutern) zu und speist diese Oberflächengewässer (effluente Verhältnisse) (Abb. 4a). Führt ein Gewässer Hochwasser, liegt der Wasserspiegel höher als die Grundwasseroberfläche. Es kommt während dieser Zeit zur Infiltration von Oberflächenwasser in das Grundwasser (influente Verhältnisse). Man spricht hierbei auch von Uferfiltration (Abb. 4 b). Wird in der Nähe der Oberflächengewässer Grundwasser durch Brunnen entnommen, so dass die Grundwasseroberfläche unter den Gewässerspiegel absinkt, speist das Oberflächenwasser ebenfalls durch Uferfiltration das Grundwasser (Abb. 4 c). In Berlin beträgt der Anteil des geförderten Uferfiltrats je nach Standort der Brunnen 50 bis 80 % der gesamten Fördermenge. Die Grundwasserfließgeschwindigkeit beträgt in Berlin in Abhängigkeit vom Grundwassergefälle und der Durchlässigkeit des Grundwasserleiters etwa 10 bis 500 m pro Jahr. In der Nähe von Brunnenanlagen können sich diese geringen Fließgeschwindigkeiten allerdings stark erhöhen. Die heutige Oberflächenform Berlins wurde überwiegend durch die Weichsel-Kaltzeit geprägt, die jüngste der drei großen quartären Inlandvereisungen. Sie hat der Stadt gleichsam ihren morphologischen Stempel aufgedrückt: das tiefgelegene, vorwiegend aus sandigen und kiesigen Ablagerungen aufgebaute Warschau-Berliner Urstromtal mit dem Nebental der Panke sowie die Barnim-Hochfläche im Norden und die Teltow-Hochfläche zusammen mit der Nauener Platte im Süden. Beide Hochflächen sind zu weiten Teilen mit mächtigen Geschiebemergeln bzw. Geschiebelehmen der Grundmoränen bedeckt. Ergänzt wird das morphologische Erscheinungsbild durch die Niederung der Havelseenkette (Abb. 5 und 6). Näheres zur Geologie in Limberg, Sonntag (2013) und in der Geologischen Skizze im Umweltatlas . Besondere Bedeutung für die Wasserversorgung und die Gründung von Bauwerken besitzen die im Durchschnitt ca. 150 m mächtigen Lockersedimente des Quartärs und Tertiärs, deren Porenraum oft bis nahe an die Geländeoberfläche mit Grundwasser gefüllt ist. Sie bilden das Süßwasserstockwerk, aus dem Berlin das gesamte Wasser für die öffentliche Wasserversorgung bezieht. Zahlreiche Wasserwerke und andere Fördereinrichtungen haben das Grundwasser in Berlin z.T. seit über 100 Jahren durch diese Entnahmen großflächig abgesenkt. Der in 150 bis 200 m Tiefe liegende und etwa 80 m mächtige tertiäre Rupelton stellt eine hydraulische Barriere zu dem tiefer liegenden Salzwasserstockwerk dar (Abb. 7). Durch die wechselnde Abfolge von Grundwasserleitern (in Abb. 7 in grün, blau, braun und gelb, dargestellt) und Grundwassergeringleitern (in Abb. 7 in grau dargestellt) sind im Berliner Raum im Süßwasserstockwerk vier hydraulisch unterscheidbare Grundwasserleiter ausgebildet (Limberg, Thierbach 2002). Der zweite, überwiegend saalezeitliche Grundwasserleiter, wird als Hauptgrundwasserleiter bezeichnet, da aus diesem der größte Anteil für die öffentliche Wasserversorgung gefördert wird. Der fünfte Grundwasserleiter befindet sich unterhalb des Rupeltons im Salzwasserstockwerk. In der Grundwassergleichenkarte sind die Grundwasserhöhen des Hauptgrundwasserleiters (GWL 2) violett sowie auch die des im nordwestlichen Bereich der Barnim-Hochfläche ausgebildeten Panketalgrundwasserleiters (GWL 1) blau dargestellt. Der Panketalgrundwasserleiter liegt über dem Hauptgrundwasserleiter und ist durch den Geschiebemergel der Grundmoräne von diesem getrennt (Abb. 7 und 8). Im westlichen Bereich der Barnim-Hochfläche sind die Grundmoränen so mächtig, dass der Hauptgrundwasserleiter nicht oder nur in isolierten, wenige Meter mächtigen Vorkommen ausgebildet ist. Für diese Flächen des Berliner Stadtgebiets können keine Grundwassergleichen dargestellt werden.

Grundwasserhöhen des Hauptgrundwasserleiters und des Panketalgrundwasserleiters 2019

Die genaue Kenntnis der aktuellen Grundwasserstände und damit auch der Grundwasservorräte ist für das Land Berlin unerlässlich, da das Wasser für die öffentliche Wasserversorgung von Berlin zu 100 % aus dem Grundwasser gewonnen wird (im Jahr 2018 waren es 235 Millionen m 3 ). Dieses Grundwasser wird von neun Wasserwerken nahezu vollständig aus dem eigenen Stadtgebiet gefördert (Abb. 1). Lediglich das Wasserwerk Stolpe am nördlichen Stadtrand entnimmt sein Wasser im Land Brandenburg und liefert etwa 9 % der Berliner Gesamtförderung in die Stadt. Darüber hinaus werden die Grundwasservorkommen durch Eigen- und Brauchwasserentnahmen sowie durch große Bauwasserhaltungen, Grundwassersanierungsmaßnahmen und Wärmenutzungen beansprucht. In Berlin sind zahlreiche Boden- und Grundwasserkontaminationen bekannt, die sich nur bei genauer Kenntnis der Grundwasserverhältnisse sanieren lassen. Die Karte für den Monat Mai, in dem in der Regel die höchsten innerjährlichen Grundwasserstände auftreten, wird im Umweltatlas veröffentlicht. Definitionen zum Grundwasser Unter Grundwasser versteht man „unterirdisches Wasser, das Hohlräume der Lithosphäre zusammenhängend ausfüllt und dessen Bewegungsmöglichkeit ausschließlich durch die Schwerkraft bestimmt wird“ (DIN 4049, Teil 3, 1994). Die Hohlräume bestehen bei den in Berlin (wie auch im gesamten Norddeutschen Flachland) vorkommenden Lockersedimenten aus den Poren zwischen den Sedimentteilchen. Das in den Boden einsickernde (infiltrierende) Niederschlagswasser füllt zunächst diese Poren aus. Nur der Teil des infiltrierenden Sickerwassers, der nicht als Haftwasser in der wasserungesättigten Bodenzone gebunden oder durch Verdunstung verbraucht wird, kann dem Grundwasser bis zur Grundwasseroberfläche zusickern. Über der Grundwasseroberfläche befindet sich in der ungesättigten Bodenzone Kapillarwasser, das in Abhängigkeit von der Bodenart unterschiedlich hoch aufsteigen kann (Abb. 2). Grundwasserleiter sind aus Sanden und Kiesen aufgebaut und ermöglichen als rollige Lockergesteine die Speicherung und Bewegung von Grundwasser. Grundwassergeringleiter oder auch Grundwasserhemmer bestehen aus Tonen, Schluffen, Mudden und Geschiebemergeln und behindern als bindige Lockergesteine die Wasserbewegung. Grundwassernichtleiter sind aus Tonen aufgebaut, die für Wasser so gut wie gar nicht durchlässig sind. Man spricht von freiem oder ungespanntem Grundwasser , wenn die Grundwasserdruckfläche innerhalb eines Grundwasserleiters liegt. Hier fallen Grundwasseroberfläche und Grundwasserdruckfläche zusammen. Bei gespanntem Grundwasser wird der Grundwasserleiter von einem Grundwassergeringleiter so überdeckt, dass das Grundwasser nicht so hoch ansteigen kann, wie es seinem hydrostatischen Druck entspricht. Unter diesen Verhältnissen liegt die Grundwasserdruckfläche über der Grundwasseroberfläche (Abb. 3). Befindet sich über einem großen zusammenhängenden Grundwasserleiter ein Grundwassergeringleiter, wie z. B. ein Geschiebemergel, so kann sich hier in sandigen Partien oberhalb und in Linsen innerhalb des Geschiebemergels in Abhängigkeit von Niederschlägen oberflächennahes Grundwasser ausbilden. Dieses ist unabhängig vom Hauptgrundwasserleiter und wird häufig auch als so genanntes Schichtenwasser bezeichnet. Befindet sich unterhalb des Geschiebemergels eine ungesättigte Zone, spricht man von schwebendem Grundwasser (Abb. 3). Das Grundwasser strömt normalerweise mit einem geringen Gefälle den Flüssen und Seen (Vorflutern) zu und speist diese Oberflächengewässer (effluente Verhältnisse) (Abb. 4a). Führt ein Gewässer Hochwasser, liegt der Wasserspiegel höher als die Grundwasseroberfläche. Es kommt während dieser Zeit zur Infiltration von Oberflächenwasser in das Grundwasser (influente Verhältnisse). Man spricht hierbei auch von Uferfiltration (Abb. 4 b). Wird in der Nähe der Oberflächengewässer Grundwasser durch Brunnen entnommen, so dass die Grundwasseroberfläche unter den Gewässerspiegel absinkt, speist das Oberflächenwasser ebenfalls durch Uferfiltration das Grundwasser (Abb. 4 c). In Berlin beträgt der Anteil des geförderten Uferfiltrats je nach Standort der Brunnen 50 bis 80 % der gesamten Fördermenge. Die Grundwasserfließgeschwindigkeit beträgt in Berlin in Abhängigkeit vom Grundwassergefälle und der Durchlässigkeit des Grundwasserleiters etwa 10 bis 500 m pro Jahr. In der Nähe von Brunnenanlagen können sich diese geringen Fließgeschwindigkeiten allerdings stark erhöhen. Morphologie, Geologie und Hydrogeologie Die heutige Oberflächenform Berlins wurde überwiegend durch die Weichsel-Kaltzeit geprägt, die jüngste der drei großen quartären Inlandvereisungen. Sie hat der Stadt gleichsam ihren morphologischen Stempel aufgedrückt: das tiefgelegene, vorwiegend aus sandigen und kiesigen Ablagerungen aufgebaute Warschau-Berliner Urstromtal mit dem Nebental der Panke sowie die Barnim-Hochfläche im Norden und die Teltow-Hochfläche zusammen mit der Nauener Platte im Süden. Beide Hochflächen sind zu weiten Teilen mit mächtigen Geschiebemergeln bzw. Geschiebelehmen der Grundmoränen bedeckt. Ergänzt wird das morphologische Erscheinungsbild durch die Niederung der Havelseenkette (Abb. 5 und 6). Näheres zur Geologie in Limberg, Sonntag (2013) und der Geologischen Skizze (Karte 01.17) . Besondere Bedeutung für die Wasserversorgung und die Gründung von Bauwerken besitzen die im Durchschnitt ca. 150 m mächtigen Lockersedimente des Quartärs und Tertiärs, deren Porenraum oft bis nahe an die Geländeoberfläche mit Grundwasser gefüllt ist. Sie bilden das Süßwasserstockwerk, aus dem Berlin das gesamte Wasser für die öffentliche Wasserversorgung bezieht. Zahlreiche Wasserwerke und andere Fördereinrichtungen haben das Grundwasser in Berlin z.T. seit über 100 Jahren durch diese Entnahmen großflächig abgesenkt. Der in 150 bis 200 m Tiefe liegende und etwa 80 m mächtige tertiäre Rupelton stellt eine hydraulische Barriere zu dem tiefer liegenden Salzwasserstockwerk dar (Abb. 7). Durch die wechselnde Abfolge von Grundwasserleitern (in Abb. 7 in grün, blau, braun und gelb, dargestellt) und Grundwassergeringleitern (in Abb. 7 in grau dargestellt) sind im Berliner Raum im Süßwasserstockwerk vier hydraulisch unterscheidbare Grundwasserleiter ausgebildet (Limberg, Thierbach 2002). Der zweite, überwiegend saalezeitliche Grundwasserleiter, wird als Hauptgrundwasserleiter bezeichnet, da aus diesem der größte Anteil für die öffentliche Wasserversorgung gefördert wird. Der fünfte Grundwasserleiter befindet sich unterhalb des Rupeltons im Salzwasserstockwerk. In der Grundwassergleichenkarte sind die Grundwasserhöhen des Hauptgrundwasserleiters (GWL 2) violett sowie auch die des im nordwestlichen Bereich der Barnim-Hochfläche ausgebildeten Panketalgrundwasserleiters (GWL 1) blau dargestellt. Der Panketalgrundwasserleiter liegt über dem Hauptgrundwasserleiter und ist durch den Geschiebemergel der Grundmoräne von diesem getrennt (Abb. 7 und 8). Im westlichen Bereich der Barnim-Hochfläche sind die Grundmoränen so mächtig, dass der Hauptgrundwasserleiter nicht oder nur in isolierten, wenige Meter mächtigen Vorkommen ausgebildet ist. Für diese Flächen des Berliner Stadtgebiets können keine Grundwassergleichen dargestellt werden.

Grundwasserhöhen des Hauptgrundwasserleiters und des Panketalgrundwasserleiters 2018

Die genaue Kenntnis der aktuellen Grundwasserstände und damit auch der Grundwasservorräte ist für das Land Berlin unerlässlich, da das Wasser für die öffentliche Wasserversorgung von Berlin zu 100 % aus dem Grundwasser gewonnen wird (im Jahr 2017 waren es 217 Millionen m 3 ). Dieses Grundwasser wird von neun Wasserwerken nahezu vollständig aus dem eigenen Stadtgebiet gefördert (Abb. 1). Lediglich das Wasserwerk Stolpe am nördlichen Stadtrand entnimmt sein Wasser im Land Brandenburg und liefert etwa 9 % der Berliner Gesamtförderung in die Stadt. Darüber hinaus werden die Grundwasservorkommen durch Eigen- und Brauchwasserentnahmen sowie durch große Bauwasserhaltungen, Grundwassersanierungsmaßnahmen und Wärmenutzungen beansprucht. In Berlin sind zahlreiche Boden- und Grundwasserkontaminationen bekannt, die sich nur bei genauer Kenntnis der Grundwasserverhältnisse sanieren lassen. Die Karte für den Monat Mai, in dem in der Regel die höchsten innerjährlichen Grundwasserstände auftreten, wird im Umweltatlas veröffentlicht. Definitionen zum Grundwasser Unter Grundwasser versteht man „unterirdisches Wasser, das Hohlräume der Lithosphäre zusammenhängend ausfüllt und dessen Bewegungsmöglichkeit ausschließlich durch die Schwerkraft bestimmt wird“ (DIN 4049, Teil 3, 1994). Die Hohlräume bestehen bei den in Berlin (wie auch im gesamten Norddeutschen Flachland) vorkommenden Lockersedimenten aus den Poren zwischen den Sedimentteilchen. Das in den Boden einsickernde (infiltrierende) Niederschlagswasser füllt zunächst diese Poren aus. Nur der Teil des infiltrierenden Sickerwassers, der nicht als Haftwasser in der wasserungesättigten Bodenzone gebunden oder durch Verdunstung verbraucht wird, kann dem Grundwasser bis zur Grundwasseroberfläche zusickern. Über der Grundwasseroberfläche befindet sich in der ungesättigten Bodenzone Kapillarwasser, das in Abhängigkeit von der Bodenart unterschiedlich hoch aufsteigen kann (Abb. 2). Grundwasserleiter sind aus Sanden und Kiesen aufgebaut und ermöglichen als rollige Lockergesteine die Speicherung und Bewegung von Grundwasser. Grundwassergeringleiter oder auch Grundwasserhemmer bestehen aus Tonen, Schluffen, Mudden und Geschiebemergeln und behindern als bindige Lockergesteine die Wasserbewegung. Grundwassernichtleiter sind aus Tonen aufgebaut, die für Wasser so gut wie gar nicht durchlässig sind. Man spricht von freiem oder ungespanntem Grundwasser , wenn die Grundwasserdruckfläche innerhalb eines Grundwasserleiters liegt. Hier fallen Grundwasseroberfläche und Grundwasserdruckfläche zusammen. Bei gespanntem Grundwasser wird der Grundwasserleiter von einem Grundwassergeringleiter so überdeckt, dass das Grundwasser nicht so hoch ansteigen kann, wie es seinem hydrostatischen Druck entspricht. Unter diesen Verhältnissen liegt die Grundwasserdruckfläche über der Grundwasseroberfläche (Abb. 3). Befindet sich über einem großen zusammenhängenden Grundwasserleiter ein Grundwassergeringleiter, wie z. B. ein Geschiebemergel, so kann sich hier in sandigen Partien oberhalb und in Linsen innerhalb des Geschiebemergels in Abhängigkeit von Niederschlägen oberflächennahes Grundwasser ausbilden. Dieses ist unabhängig vom Hauptgrundwasserleiter und wird häufig auch als so genanntes Schichtenwasser bezeichnet. Befindet sich unterhalb des Geschiebemergels eine ungesättigte Zone, spricht man von schwebendem Grundwasser (Abb. 3). Das Grundwasser strömt normalerweise mit einem geringen Gefälle den Flüssen und Seen (Vorflutern) zu und speist diese Oberflächengewässer (effluente Verhältnisse) (Abb. 4a). Führt ein Gewässer Hochwasser, liegt der Wasserspiegel höher als die Grundwasseroberfläche. Es kommt während dieser Zeit zur Infiltration von Oberflächenwasser in das Grundwasser (influente Verhältnisse). Man spricht hierbei auch von Uferfiltration (Abb. 4 b). Wird in der Nähe der Oberflächengewässer Grundwasser durch Brunnen entnommen, so dass die Grundwasseroberfläche unter den Gewässerspiegel absinkt, speist das Oberflächenwasser ebenfalls durch Uferfiltration das Grundwasser (Abb. 4 c). In Berlin beträgt der Anteil des geförderten Uferfiltrats je nach Standort der Brunnen 50 bis 80 % der gesamten Fördermenge. Die Grundwasserfließgeschwindigkeit beträgt in Berlin in Abhängigkeit vom Grundwassergefälle und der Durchlässigkeit des Grundwasserleiters etwa 10 bis 500 m pro Jahr. In der Nähe von Brunnenanlagen können sich diese geringen Fließgeschwindigkeiten allerdings stark erhöhen. Morphologie, Geologie und Hydrogeologie Die heutige Oberflächenform Berlins wurde überwiegend durch die Weichsel-Kaltzeit geprägt, die jüngste der drei großen quartären Inlandvereisungen. Sie hat der Stadt gleichsam ihren morphologischen Stempel aufgedrückt: das tiefgelegene, vorwiegend aus sandigen und kiesigen Ablagerungen aufgebaute Warschau-Berliner Urstromtal mit dem Nebental der Panke sowie die Barnim-Hochfläche im Norden und die Teltow-Hochfläche zusammen mit der Nauener Platte im Süden. Beide Hochflächen sind zu weiten Teilen mit mächtigen Geschiebemergeln bzw. Geschiebelehmen der Grundmoränen bedeckt. Ergänzt wird das morphologische Erscheinungsbild durch die Niederung der Havelseenkette (Abb. 5 und 6). Näheres zur Geologie in Limberg, Sonntag (2013) und der Geologischen Skizze (Karte 01.17) . Besondere Bedeutung für die Wasserversorgung und die Gründung von Bauwerken besitzen die im Durchschnitt ca. 150 m mächtigen Lockersedimente des Quartärs und Tertiärs, deren Porenraum oft bis nahe an die Geländeoberfläche mit Grundwasser gefüllt ist. Sie bilden das Süßwasserstockwerk, aus dem Berlin das gesamte Wasser für die öffentliche Wasserversorgung bezieht. Zahlreiche Wasserwerke und andere Fördereinrichtungen haben das Grundwasser in Berlin z.T. seit über 100 Jahren durch diese Entnahmen großflächig abgesenkt. Der in 150 bis 200 m Tiefe liegende und etwa 80 m mächtige tertiäre Rupelton stellt eine hydraulische Barriere zu dem tiefer liegenden Salzwasserstockwerk dar (Abb. 7). Durch die wechselnde Abfolge von Grundwasserleitern (in Abb. 7 in grün, blau, braun und gelb, dargestellt) und Grundwassergeringleitern (in Abb. 7 in grau dargestellt) sind im Berliner Raum im Süßwasserstockwerk vier hydraulisch unterscheidbare Grundwasserleiter ausgebildet (Limberg, Thierbach 2002). Der zweite, überwiegend saalezeitliche Grundwasserleiter, wird als Hauptgrundwasserleiter bezeichnet, da aus diesem der größte Anteil für die öffentliche Wasserversorgung gefördert wird. Der fünfte Grundwasserleiter befindet sich unterhalb des Rupeltons im Salzwasserstockwerk. In der Grundwassergleichenkarte sind die Grundwasserhöhen des Hauptgrundwasserleiters (GWL 2) violett sowie auch die des im nordwestlichen Bereich der Barnim-Hochfläche ausgebildeten Panketalgrundwasserleiters (GWL 1) blau dargestellt. Der Panketalgrundwasserleiter liegt über dem Hauptgrundwasserleiter und ist durch den Geschiebemergel der Grundmoräne von diesem getrennt (Abb. 7 und 8). Im westlichen Bereich der Barnim-Hochfläche sind die Grundmoränen so mächtig, dass der Hauptgrundwasserleiter nicht oder nur in isolierten, wenige Meter mächtigen Vorkommen ausgebildet ist. Für diese Flächen des Berliner Stadtgebiets können keine Grundwassergleichen dargestellt werden.

1 2 3 4 522 23 24