API src

Found 118 results.

Related terms

Waldfunktionen in Sachsen - Wald mit besonderer regionaler Klimaschutzfunktion - Flächen 1 ha

Der Datensatz enthält die Waldflächen ( 1ha) mit besonderer regionaler Klimaschutzfunktion im Freistaat Sachsen. Wald mit besonderer regionaler Klimaschutzfunktion verbessert das Klima und die Luftqualität durch Luftaustausch infolge von Temperaturunterschieden zwischen der Waldfläche und seiner Umgebung. Zudem verstärkt der Wald Luftturbulenzen, wodurch die Luftqualität ebenfalls verbessert wird. Wald fördert auf regionaler Ebene einen Luftmassenaustausch und beeinflusst damit mittelbar das urbane Klima. Die Daten werden für die Waldfunktionskarte 1:25.000 von Sachsen verwendet. Weitere Informationen sind der vom Staatsbetrieb Sachsenforst herausgegebenen Broschüre zur Waldfunktionskartierung zu entnehmen.

Towards the prediction of stratospheric ozone II

Das Projekt "Towards the prediction of stratospheric ozone II" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe, Institut für Meteorologie und Klimaforschung durchgeführt. General Information: Most of the research effort in understanding the processes controlling the observed ozone decline have concentrated on the polar vortex and on the interaction of the polar vortex with mid-latitudes. There are other regions that are also important for future prediction of ozone change where significant uncertainty exists. Two such regions are the tropics, where the transport between mid-latitudes and the tropics is a key unresolved issue, and the mid-latitude lowermost stratosphere, where the amount of transport from the troposphere into the stratosphere is uncertain. There is a clear requirement for validation and development of three-dimensional chemical transport models in relation to these regions. This is the objective of this proposal. The improvement of our modelling capability in these regions is necessary for assessing the impact of anthropogenic emissions on stratospheric ozone and other trace gases. In particular, it is important to understand the impact of CFCs and aircraft emissions. An accurate modelling capability for stratospheric ozone is vital for good policy decisions in the European Commission and for international protocols. The proposal brings together a number of European modelling groups who are at the forefront of stratospheric research. They will examine the behaviour of 3-dimensional chemical transport models (CTMs) in these two key regions. The sensitivity to CTM formulation and resolution will be addressed. The output from the CTMs will be validated against recently collected datasets. The CTMs will be integrated using either winds from European Centre for Medium Range Weather Forecasts (ECMWF) analyses or from dynamical models. The results of the CTMs using winds from a number of different dynamical models will be compared. The dynamical models will include a state-of-the-art global circulation model (GCM), a mechanistic middle atmosphere model, and a simplified GCM. This will indicate how well these dynamical models can capture the key transport processes. Perturbation experiments will be performed in the dynamical models to assess the effects on tracer transport of the quasi-biennial oscillation, aerosol radiative heating from volcanic eruptions, and increased amounts of greenhouse gases. This proposal will benchmark low-resolution CTMs, which can be used in multi-year ozone assessment studies, against much higher-resolution CTMs. Multi-year integrations will be performed to assess the impact of increased aircraft emissions on stratospheric ozone. Prime Contractor: University of Oxford, Department of Atmospheric, Oceanic and Planetary Physics Clarendon Laboratory; Oxford.

18 Reihenhaeuser 'Am Lindenwaelde' in Freiburg

Das Projekt "18 Reihenhaeuser 'Am Lindenwaelde' in Freiburg" wird vom Umweltbundesamt gefördert und von Siedlungsgesellschaft Freiburg durchgeführt. Objective: To demonstrate that the energy consumption of a single family house can be reduced by 40 per cent in comparison to conventional built terrace houses without increasing the building cost. General Information: The 18 houses are constructed in three fan shaped terraces, designed so that the south facade is wider than the north facade. There are unheated buffer sheds to the north side to reduce heat losses and provide shelter. A double glaced sunspace is attached to the south elevation. The living rooms are orientated to the south with large windows. The passive solar features are increased solar penetration into the interior by split floor levels and an open staircase to allow the warm air to rise into the building and the cooler air into the sunspace. To make the passive solar system function, the doors to the sunspace and to the stair case have to be opened. The houses have 200 mm thick fairfaced on-site casted concrete party walls which are unplastered but painted. The rest of the house is of lightweight construction. The wooden floor joist, which are of untreated timber, are supported on wall plates fixed to the party walls. The external walls are clad with timber and insulated with100 mm rockwool between batterns to give an average U-value of 0.38 W/m2k. The global calculated heat loss coefficient is 347 W/k for a middle house and 406 W/k for a corner house. The concrete pary walls and the stone floor in the living area serve as a heat buffer. The gas boiler for the conventional heating system is installed in the gable to avoid a chimney and to facilitate the later installation of a solar domestic hot water system. The heating system includes a storage tank of 300 l to avoid frequent switching of the gas boiler. The costs of the houses are 30 per cent less than those for a conventionally designed and built terrace house. Achievements: Monitoring was from July 1985 to June 1987 with two of the houses being extensively monitored. The individual total energy demand varied in 17 of the 18 houses from 13,000 kWh/yr to 22,000 kWh. The remaining house had an extremely high consumption of 41,000 kWh/yr, as the inhabitants like room temperatures above 23 C. The averages of the 17 normal houses was approximately: total :15,000 kWh/yr; electricity: 4 4,000 KWh/yr; domestic hot water: 3,000 to 4,000 kWh/yr; space heating: 8,000 to 9,000 kWh/yr. The specific values are: 50 to 60 kWh/m2 heated floor area or 15 to 16 kWh/m3 heated volume. The solar contribution to space heating was approximately 15 per cent. The savings due to improved design and insulation is estimated to be 45 per cent in comparison with a conventional built terrace house. In 1986 the bill for electricity was higher than for gas. Further energy savings would be only possible with forced ventilation systems combined with heat recovery from the exhaust air. The users respond was mixed. All the owners enjoy the lightness and warmth of the houses and the sunspace which is used ...

Solar hay drying in specially constructed hay storage halls

Das Projekt "Solar hay drying in specially constructed hay storage halls" wird vom Umweltbundesamt gefördert und von Technische Universität München, Bayerische Landesanstalt für Landtechnik durchgeführt. Objective: The aim of the project is the production of quality hay in specially designed storage halls with a solar roof on four sites with different climatic conditions without the use of conventional fuel, except electricity for the blower. General Information: The standard hall with compartments has a ground surface of 240 m2 with a usefull storage volume of 937 m3. The conventional roof of red concrete tiles with the supporting structure built as air channels is acting as solar collector (280 m2). The warm air (6 - 7 degree of Celsius. above inlet temperature) is blown via a collecting duct to the channels on the floor of the drying and storage compartments with a total hay capacity of approximately 900 m3. The humidity of the hay is reduced from approximately 40 per cent to 14 per cent. During the harvesting period of approximately 60 days an energy saving of 29,300 KWh compared to a conventional system (Diesel engine driven blower with use of waste heat and auxiliary heating for drying) is forecasted. This figure is based on measurements on a pilot plant. The total energy saving for four standard halls is estimated at 10 TOE, taking into account the electricity consumption of the blower (7,5 - 9 KW; 4,000 KWh/y) and an efficiency of 70 per cent for the conventional system. The standardised storage and drying halls are installed at four different sites. 1. Schuster, Frettenhofen 2. Kebinger, Lehen 3. Rieder, Schoenau 4. Lehr und Versuchungsgut, Schleissheim The first three are farmers the last is an agricultural institution of the Technical University Munich. The hall in Schleissheim has the double capacity of the other ones, achieved by adding more compartments. Achievements: In two of the four plants the first monitoring results were achieved in 1986. SCHUSTER The hay was dried to 8 per cent instead of 14 per cent thus the electrical consumption of 15,8 kWh/ (+ dried material) was higher than calculated. KEBINGER A particular interesting result was found during the first monitoring period: while increasing the air flow on a sunny day through the ducts under the roof, the air temperature did rise instead of fall, which means that the heat exchanging efficiency is rising more than proportional with the air flow. More investigations will follow.

Middle temperature drying of extracted sugar beet pulp by using secondary energy

Das Projekt "Middle temperature drying of extracted sugar beet pulp by using secondary energy" wird vom Umweltbundesamt gefördert und von Elektronenstrahltechnik Nord GmbH & Co. (ETN) durchgeführt. Objective: Aims to demonstrate a sugar beet convection dryer that uses waste heat within a sugar refinery. Heat from evaporators, condensers and surplus steam is used to pre-heat ambient air entering the dryer. The dryer consists of several circular horizontal sieve plates which are fixed to a rotating shaft. This is contained by Asilo like structure. Air fed into the dryer is 70-90 degree of Celsius. The beet pulp is transferred from one plate to another to the base of the dryer. The process is 82 per cent more efficient, saving 1.28 t/h oil, about 2272 t/y oil. The process technology of this project is innovatory.

Integrated heating, ventilation and natural air conditioning in an office building

Das Projekt "Integrated heating, ventilation and natural air conditioning in an office building" wird vom Umweltbundesamt gefördert und von Vorwerk & Co. Elektrowerke KG durchgeführt. Objective: A 2400 m2 existing office building has to be refurnished to allow the proper use of monitors, micro-computers etc... . The building is to be equipped with an integrated HVAC installation. The relevant electricity consumption should not exceed 34 MWh/yr and the inside temperature should not be higher than 26 degree of Celsius. except during a maximum of 100 hrs per year. General Information: An additional 95 mm hollow floor is provided for the flexible distribution of wires for data transmission and of cables for power supply to the monitors, computers,... . The project integrates the design for the heating, ventilation and air conditioning of the offices with the design of flexible wiring and cabling. The ventilation of the offices will be performed through floor grills, supplied with air distributed through the cavities of the hollow floor instead of through the existing air ducts. During the night, fresh cool outdoor air will flow through the cavities and cool the concrete floor. During the summer the absorbed cold can be released through the air supplied to the offices, and by this way perform free cooling. During the winter the system can be used for (air) floor heating. Heat recuperation is provided on the warm air rejected during the cold season. Phases of the project are as follows: 1. Design 2. Implementation 3. Monitoring 4. Assessment of results. Achievements: During Phase 1 the team was faced with technical problems regarding space needed for the air ducts as well as regarding the limited floor-to-floor heights. A warm air supply under the windows had to be cancelled and the shape of the air ducts could not be optimized. During Phase 2, the team was faced with higher bids than estimated. This was partially due to the problems mentioned above as well as to the innovative character of the installation. No important modifications had to be brought to the initial project neither in Phase 1, nor in Phase 2. Within Phase 3 the heating system was (partially) tested during the very cold period of winter 86-87. All rooms were adequately warm except some corner rooms where complaints were expressed about too low temperatures (although measurements showed 20 degree of Celsius). A change in the automatic control would manage these complaints. No new estimates for the savings were made. It was stated that the number of operating hours with an inside temperature exceeding 26 degree of Celsius was 175 hr/year (vs 100 as predicted) and that the electricity consumption approximated 52340 kWh/year (vs 34000 as predicted).

Untersuchung der CO2-Bilanz mittels vorhandener CO2-Aufzeichnungen aus drei benachbarten Bergstationen (0,7, 1,8, 3,3 KM ASL)

Das Projekt "Untersuchung der CO2-Bilanz mittels vorhandener CO2-Aufzeichnungen aus drei benachbarten Bergstationen (0,7, 1,8, 3,3 KM ASL)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung, Fraunhofer-Institut für Atmosphärische Umweltforschung durchgeführt. General Information: the basis is constituted by CO2-recording simultaneously taken at 3 stations: valley, in the west of Garmisch (740 m nn), Wank Peak (1780 m nn), and closely below the Zugspitze (2700 m nn). Station 1 is located in the midst of a vegetated zone (coniferous forest, pastures), station 2 close to the upper vegetation line (grass, some alpine pines), station 3 in a pure rock/snow/ice region. We obtain, therefore, at station 1 strong diurnal and season-dependent variations which result from the interaction of air/soil temperature, kind and distribution of biomass, anthropogenic contribution and can be analyzed and parameterized, respectively. These influence factors, as well as the anthropogenic portion can be estimated from additional recording such as SO2, NOx, and oil consumption in the source area. All meteorological parameters are known - and just as well the respective intensity of vertical exchange. UV, global and diffuse radiation are recorded at all 3 stations. Inflow and outflow via the mountain-valley-wind systems are known to us. Even 1 km above the valley, daily and annual variations are strongly damped and it can be assumed that we will find at 2700 m nn (Zugspitze) unaffected coupling to the northern hemispheric background. At this altitude exists thus the possibility - similar to mt. Mauna loa - of obtaining, free from local anthropogenic or ecological impacts, the longterm trend of CO2 as a result of man's interference with nature in addition to the supra-regional applicable annual variation. Hence, while the above mentioned mass balance-assessment (CO2 budget as a function of all local parameters) is aspired to achieve within the region of strong vertical exchange and vegetation, the station Zugspitze will provide reference data on hemispheric scale.

Cloud-scale Uncertainties - B4: Radiative heating and cooling at cloud scale and its impact on dynamics

Das Projekt "Cloud-scale Uncertainties - B4: Radiative heating and cooling at cloud scale and its impact on dynamics" wird vom Umweltbundesamt gefördert und von Ludwig-Maxililians-Universität München, Meteorologisches Institut, Lehrstuhl für Experimentelle Meteorologie durchgeführt. Clouds are important sources and sinks of diabatic heat, not only in terms of latent heat release but also with respect to absorption of solar radiation as well as absorption and emission of thermal radiation. Additionally, cloud shadows on the ground modify surface heating and thus sensible and latent heat fluxes. Although it has been demonstrated that cloud top cooling may reach values of several 100 K/day and that this may have a strong impact on cloud microphysics and local cloud evolution, it has not been demonstrated that there is actually an effect on weather, larger scale dynamics, and on atmospheric flow. This is even more true for radiative cooling from cloud sides which has been shown to reach values comparable to cloud top cooling but is completely neglected by any (one-dimensional) radiation scheme in current NWP or climate models. Radiation firstly affects the growth of cloud droplets, increasing (in case of thermal cooling) or decreasing (in case of solar heating) the rate by which they dissipate the energy released by latent heat. Secondly, the surrounding air is cooled or heated which directly feeds back on dynamics. The aim of the project is to study the question if realistic, three-dimensional radiative heating rates have an impact on cloud formation, and if there is an impact on atmospheric flow beyond cloud scale. To answer these questions, a reasonably fast but accurate representation of radiative heating rates in clouds will be developed for a cloud scale (EULAG) and an NWP model (COSMO). The project builds upon our previous work on three-dimensional heating and cooling rates and on development of reasonably fast approximations. A parameterization of heating rates depends strongly on the scale. For a cloud-resolving model like EULAG with a 100 m grid size and smaller, different approaches are needed compared to a numerical weather forecast model like COSMO: A cloud-resolving model allows properly resolving the radiation processes, but three-dimensional radiation transport requires interaction between many grid columns in the calculation which is a challenge for parallelization. The resolution of COSMO, on the other hand, requires parameterization of un-resolved cloud edge effects and sub-pixel cloudiness, but would need less interaction between individual grid columns. As a first step, we will study the impact of radiative heating and cooling in clouds on local circulation at cloud scale. For that purpose, an accurate yet fast approximation for 3D solar and thermal heating and cooling rates will be developed for the EULAG model in order to systematically study effects for a set of cloud-resolving simulations. (abridged text)

Meridionaler Transport von Ozon in der unteren Stratosphaere

Das Projekt "Meridionaler Transport von Ozon in der unteren Stratosphaere" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt. Prime Contractor: Centre National de la Recherche Scientifique (CNRS), UPR 3501, Service d'Aeronomie; Verrieres-le-Buisson; France.

Cloud-scale Uncertainties - B7: Identification of robust cloud patterns via inverse methods

Das Projekt "Cloud-scale Uncertainties - B7: Identification of robust cloud patterns via inverse methods" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. Cloud patterns and structures in clouds depend crucially on the atmospheric flow field as well as thermodynamic conditions at cloud formation. However, it is not clear how robust these structures are in terms of variations in environmental conditions (e.g., humidity, temperature, etc.) as well as parameters in cloud parameterizations. Since cloud patterns on the order of few tens of kilometers can in turn influence the atmospheric flow via organized latent heat release or radiation feedbacks, the robustness of cloud structures is an important feature. In this project we will investigate variations in cloud variables and cloud structures due to different sources of uncertainties. First, variations in cloud variables are driven by parameters in cloud parameterizations (i.e. in the representation of cloud processes in the cloud models). Second, variations in environmental conditions might lead to different pathways of cloud formation and evolution. In order to determine the variations due to different sources of uncertainties, we will apply inverse methods. We will setup a simple but realistic analytical cloud model, consisting of a set of ordinary differential equations, which will subsequently be coupled to hyperbolic conservation laws associated to sedimentation processes. This model will be coupled to simple dynamics in the sense of kinematic frameworks. We will use a Bayesian approach to obtain confidence intervals for the unknown model parameters, in combination with sparsity enhancing priors. This analysis will also point out potentials for further reduction of the model complexity. In order to assess the variations of initial cloud conditions, we will use two different but complementary methods. As first method, we will use the analytical cloud model coupled to simple dynamics for time-reversal calculations, integrating the model backward in time and evaluating its variation due to perturbed 'initial' conditions. The method will lead to a full spread in variations, but might break down at bifurcations in the system. Complementary to the first approach, we will develop an adjoint model for the analytical cloud model, to be employed for an iterative solution of the inverse problem. This sophisticated approach will provide possible initial cloud configurations under the assumption of convergence, but will not address possible pathways and not detect different initial states that give similar 'observations at weather stations'. Finally, we will collect results from the different but complementary methods in order to determine in a synthesis the variability of cloud variables and cloud patterns due to variations in model parameter as well as cloud environmental conditions.

1 2 3 4 510 11 12