Es werden Luft-, Wasser- und sonstige fluessige und feste Proben untersucht. Die Arbeiten zielen darauf ab, die Empfindlichkeit des Nachweises zu verbessern und die Transportwege der kuenstlichen Radionuklide in der Umwelt zu verfolgen.
Zielsetzung: Bestimmung der globalen Verteilung der oben genannten Gase in der Atmosphaere. Schwerpunkt liegt auf der Erfassung eines moeglichen Unterschiedes der Konzentration des betreffenden Gases zwischen der Troposphaere und Stratosphaere sowie zwischen den beiden Hemisphaeren. Aus den Messungen lassen sich wichtige Rueckschluesse auf moegliche Abbau- bzw. Produktionsprozesse ziehen. Methoden: Einbau von Messgeraeten in Flugzeuge und Messungen; Sammeln von Luftproben in der Stratosphaere mit Hilfe von Ballonen und Analyse im Labor; Einsatz von z.T. selbst entwickelten Messgeraeten.
Die Untersuchungen in Luzern sollten zunaechst eine Luecke zwischen den zwoelf anderen in der Schweiz vorhandenen Messstellen fuer Luftpollen schliessen; da gerade in der Innerschweiz keine entsprechende Station existierte. Die Fangstreifen wurden jeweils in Basel durch Dr. R. M . Leuschner ausgewertet. Zeitweilig konnte ausserdem eine staerkere Verschmutzung der Luft durch recht dunkle Streifen auf den Tagespraeparaten festgestellt werden. Die Art der Tagespraeparate erlaubt solche 'Schmutzstreifen' auf ca. 2 Stunden genau einzuordnen, da sich das Sammelgeraet pro Stunde um 2 mm weiterbewegt und ein Tagespraeparat somit 48 mm lang ist. Aehnliche 'Schmutzstreifen' wurden auch in frueheren Praeparaten von Basel registriert und mit wesentlich saubereren Fangstreifen von Davos verglichen. Hierfuer wird die Literatur zitiert.
Aufgrund der fortschreitenden Klimaerwärmung drohen sich Neophyten wie die Ambrosia in Deutschland auszubreiten und sesshaft zu werden. Seit dem Jahr 2006 wurde deshalb in Berlin die Verbreitung der hochallergenen Ambrosia detaillierter betrachtet. Ausgelöst wurde dies durch Analysen innerstädtischer Luftstaubproben, die eine erhöhte Ambrosiapollenkonzentration aufwiesen. Ziel: Um die Emissionsquellen zu ermitteln, die Einschlepp- und Ausbreitungswege der Pflanze in Berlin zu erforschen und Strategien zur Bekämpfung in der Stadt zu erarbeiten, wurde unter Federführung des Instituts für Meteorologie der Freien Universität Berlin im Frühsommer 2009 mit den Senatsverwaltungen für Stadtentwicklung sowie für Gesundheit, Umwelt und Verbraucherschutz das 'Berliner Aktionsprogramm gegen Ambrosia' initiiert. Methode: Die Initiatoren haben im Jahr 2009 damit begonnen, mit der Hilfe von Beschäftigungsträgern ein Verbreitungskataster für Berlin zu erstellen, alle relevanten Metadaten zu den Funden zu erfassen und möglichst viele Ambrosiabestände zu vernichten.
Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.
Aufbauend auf den Erfahrungen des Antragstellers auf dem Gebiet der mehrdimensionalen Gaschromatographie (GC) und der Luftanalytik wird eine Analysenmethode zur simultanen Bestimmung polarer und unpolarer flüchtiger Luftinhaltsstoffe (volatile organic compounds (VOC)) mittels zweidimensionaler GC entwickelt. Dazu werden Säulen unterschiedlicher Polarität für die Trennung der unpolaren und polaren Verbindungen getestet. Die aufgrund der ersten Untersuchungen ausgewählten Säulen werden seriell gekoppelt. Es wird eine GC-Methode entwickelt, mit deren Hilfe eine Ausschnittsdosierung der unpolaren Verbindungen auf die zweite Säule erfolgt. Weiterhin wird eine geeignete Strategie für die Probenahme entwickelt. Die Untersuchungen fokussieren sich dabei sowohl auf die adsorptive Anreicherung als auch auf die Probenahme mit Hilfe von Edelstahlkanistern. Es werden verschiedene Adsorbentien getestet und charakterisiert. Bei der Probenahme in Kanistern wird die Stabilität der polaren Verbindungen (Aldehyde, Ketone, Alkohole) im Kanister und der vollständige Probentransfer der Analyten in das Analysensystem untersucht. Zur Validierung der entwickelten gaschromatographischen Methode und zur Validierung der jeweiligen Probenahmestrategie werden Feldexperimente durchgeführt.
Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.
Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.
Im Stadtgebiet von Mannheim werden mit einem High-Volume-Air-Sampler Luftproben mit einem Glasfaser/PU-Schaumfilter entnommen. Die Proben werden extrahiert und im Ames-Test sowie im HGPRT-Rest (CHO-Zellen) auf ihre mutagene Wirksamkeit hin untersucht. Die Daten werden mit dem Immissions- und dem Emissionskataster fuer die Stadt Mannheim korreliert.
| Origin | Count |
|---|---|
| Bund | 213 |
| Land | 18 |
| Wirtschaft | 1 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 35 |
| Ereignis | 2 |
| Förderprogramm | 170 |
| Text | 14 |
| unbekannt | 14 |
| License | Count |
|---|---|
| geschlossen | 47 |
| offen | 188 |
| Language | Count |
|---|---|
| Deutsch | 205 |
| Englisch | 70 |
| Resource type | Count |
|---|---|
| Archiv | 14 |
| Bild | 1 |
| Datei | 23 |
| Dokument | 12 |
| Keine | 157 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webseite | 64 |
| Topic | Count |
|---|---|
| Boden | 200 |
| Lebewesen und Lebensräume | 226 |
| Luft | 204 |
| Mensch und Umwelt | 235 |
| Wasser | 199 |
| Weitere | 207 |