API src

Found 146 results.

Potenzielle Nitratkonzentration im Sickerwasser – Basis-Emissionsmonitoring 2023

Die potenzielle Nitratkonzentration im Sickerwasser in [mg NO3/l] ist eine wichtige Kenngröße zur Abschätzung und Bewertung der Sickerwassergüte an der Untergrenze des Wurzelraumes. Im Rahmen des landesweiten Basis-Emissionsmonitorings erfolgt die Abschätzung der potenziellen Nitratkonzentration auf Grundlage des Stickstoff-Flächenbilanzsaldos aus der Landwirtschaft auf Gemeindeebene, der atmosphärischen Stickstoff-Deposition, der Landnutzung nach ATKIS-DLM, dem Nitratabbau im Boden (Denitrifikation) sowie der Sickerwassermenge. Die berechnete potenzielle Nitratkonzentration im Sickerwasser wird neben den gemessenen Nitratkonzentrationen in den Grundwassermessstellen zur Gefährdungsabschätzung und Bewertung des chemischen Zustands der Grundwasserkörper gemäß EG-WRRL herangezogen. Bei der landesweit ermittelten potenziellen Nitratkonzentration im Sickerwasser ist zu beachten, dass die Werte aufgrund der räumlichen Auflösung der verfügbaren Eingangsdaten nicht für eine schlaggenaue Bewertung geeignet sind. Detaillierte Methodenbeschreibung siehe: Erläuterung_Basis-Emissionsmonitoring_LBEG_2023.pdf

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss

<p>Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss</p><p>Stickstoff ist ein essenzieller Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingebrachter Stickstoff führt aber zu enormen Belastungen von Ökosystemen.</p><p>Stickstoffüberschuss der Landwirtschaft</p><p>Eine Maßzahl für die Stickstoffeinträge in Grundwasser, Oberflächengewässer, Böden und die Luft aus der Landwirtschaft ist der aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelte Stickstoffüberschuss (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“).</p><p>Die Stickstoff-Gesamtbilanz setzt sich zusammen aus den Komponenten Flächenbilanz (Bilanzierung der Pflanzen- bzw. Bodenproduktion), Stallbilanz (Bilanzierung der tierischen Erzeugung) und der Biogasbilanz (Bilanzierung der Erzeugung von Biogas in landwirtschaftlichen Biogasanlagen). Der Stickstoffüberschuss der Gesamtbilanz ergibt sich aus der Differenz von Stickstoffzufuhr in und Stickstoffabfuhr aus dem gesamten Sektor Landwirtschaft (siehe Schaubild „Schema der Stickstoff-Gesamtbilanz der Landwirtschaft“). Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ wird vom Institut für Pflanzenbau und Bodenkunde des Julius Kühn-Instituts und dem Umweltbundesamt berechnet und jährlich vom ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMEL#alphabar">BMEL</a>⁠ veröffentlicht (siehe<a href="https://www.bmel-statistik.de/fileadmin/daten/0111260-0000.xlsx">BMEL, Tabellen zur Landwirtschaft, MBT-0111-260-0000</a>).</p><p>Der Stickstoffüberschuss der Gesamtbilanz ist als mittlerer Überschuss aller landwirtschaftlicher Betriebe in Deutschland zu interpretieren. Regional können sich die Überschüsse jedoch sehr stark unterscheiden. Grund dafür sind vorrangig unterschiedliche Viehbesatzdichten und daraus resultierende Differenzen beim Anfall von Wirtschaftsdünger. Um durch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ und Düngerpreis verursachte jährliche Schwankungen auszugleichen wird ein gleitendes 5-Jahresmittel errechnet.</p><p>___<br>* jährlicher Überschuss bezogen auf das mittlere Jahr des 5-Jahres-Zeitraums (aus gerundeten Jahreswerten berechnet)** 1990: Daten zum Teil unsicher, nur eingeschränkt vergleichbar mit Folgejahren.*** Ziel der Nachhaltigkeitsstrategie der Bundesregierung, bezogen auf das 5-Jahres-Mittel, d.h. auf den Zeitraum 2028 bis 2032Bundesministerium für Ernährung und Landwirtschaft (BMEL) 2024, Statistischer Monatsbericht Kap. A Nährstoffbilanzen und Düngemittel, Nährstoffbilanz insgesamt von 1990 bis 2022 (MBT-0111260-0000)Die Ergebnisse der Bilanzierung zeigen einen abnehmenden Trend bei den Stickstoffüberschüssen über die erfasste Zeitreihe (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Im Zeitraum 1992 bis 2020 ist der Stickstoffüberschuss im gleitenden 5-Jahresmittel von 117 Kilogramm Stickstoff pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a) auf 77 kg N/ha*a gesunken. Das entspricht einem jährlichen Rückgang von 1 % sowie einem Rückgang über die Zeit um 34 %. Die Reduktion des Stickstoffüberschusses zu Beginn der 1990er Jahre ist größtenteils auf den Abbau der Tierbestände in den neuen Bundesländern zurückzuführen. Der durchschnittliche Rückgang des Stickstoffüberschusses über die gesamte Zeit von 1992 bis 2020 beruht auf Effizienzgewinnen bei der Stickstoffnutzung (Effizienterer Einsatz von Stickstoff-Düngemitteln, Ertragssteigerungen in der Pflanzenproduktion und höhere Futterverwertung bei Nutztieren). In den Jahren seit 2015 ist der Überschuss besonders stark gesunken. Grund dafür sind neben einer veränderten und wirksameren Gesetzgebung, gesunkene Tierzahlen sowie Dürrejahre und höhere Mineraldüngerpreise und der damit einhergehende verminderte Einsatz von Mineraldüngern.Im Jahr 2016 wurde in derDeutschen Nachhaltigkeitsstrategieder Bundesregierung (BReg 2016) ein Zielwert von 70 kg N/ha*a für das gleitende 5-Jahresmittel von 2028-2032 verankert. Von 2016 bis 2020, also in 4 Jahren, wurde somit bereits etwa dreiviertel der angestrebten Reduktion erreicht.Bewertung der EntwicklungWenn die Stickstoffüberschüsse weiterhin so schnell sinken wie in den letzten Jahren bzw. auf dem aktuellen Niveau bleiben wird das Ziel der Deutschen Nachhaltigkeitsstrategie voraussichtlich in den nächsten zwei bis drei Jahren erreicht werden. Für einen umfassenden Schutz von Umwelt und ⁠Klima⁠ ist dies aber noch nicht ausreichend. Die in 2016 in Kraft getretene EU-Richtlinie über nationale Emissionshöchstmengen für bestimmte Luftschadstoffe (⁠NEC-Richtlinie⁠) verpflichtet Deutschland bis 2030 dazu 29 % der Ammoniak-Emissionen im Vergleich zum Jahr 2005 zu reduzieren. Bis zum Jahr 2022 wurde hier nur eine Minderung von 18 % erreicht. Da der Sektor Landwirtschaft der größte Verursacher von Ammoniak-Emissionen ist, sind hier also noch weitere Maßnahmen für die Zielerreichung nötig. Aber auch für das Erreichen von weiteren Zielen, wie Nitrat im Grundwasser, Stickstoffeintrag über die Zuflüsse in Nord- und Ostsee und ⁠Eutrophierung⁠ der Ökosysteme wird voraussichtlich das Erreichen des 70 kg-Ziels nicht ausreichen, denn hier kommt es weniger auf den durchschnittlichen nationalen Stickstoffüberschuss, sondern eher auf die regionale Verteilung der Stickstoffüberschüsse an. Einen Überblick über die Verteilung der Überschüsse finden Siehier.Stickstoffzufuhr und Stickstoffabfuhr in der LandwirtschaftDie Stickstoffzufuhr zur landwirtschaftlichen Gesamtbilanz berücksichtigt Mineraldünger, Wirtschaftsdüngerimporte, Kompost und Klärschlamm, atmosphärische Stickstoffdeposition, Stickstoffbindung von Leguminosen, Co-Substrate für die Bioenergieproduktion sowie Futtermittelimporte. Die Stickstoffabfuhr berücksichtigt pflanzliche und tierische Marktprodukte. Im Durchschnitt lag die Stickstoffzufuhr zwischen 1990 und 2022 bei 187 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a), mit einem Maximum von 209 kg N/ha*a im Jahr 1990 und einem Minimum von 151 kg N/ha*a im Jahr 2022. Die Zufuhr hat sich bis 2017 kaum verändert. Lediglich in den letzten 5 Jahren gab es einen mittleren Rückgang von 8 kg N/ha*a. Die Stickstoffabfuhr betrug im gesamten Betrachtungszeitraum durchschnittlich 87 kg N/ha*a, mit einem Maximum von 103 kg N/ha*a im Jahr 2014 und einem Minimum von 67 kg N/ha*a im Jahr 1990. Im gleitenden 5-Jahresmittel stieg die Abfuhr von 73 kg N/ha*a im Jahr 1992 auf 88 kg N/ha*a im Jahr 2020 an. Dies entspricht einem Anstieg des über tierische und pflanzliche Produkte abgefahrenen Stickstoffs von etwa 21 %.2022 stammten 44 % der Stickstoffzufuhr der Landwirtschaft aus Mineraldüngern, 25 % aus inländischem Tierfutter sowie 14 % aus Futtermittelimporten. Wirtschaftsdünger und betriebseigene Futtermittel werden in der Flächenbilanz, nicht aber in der Gesamtbilanz berücksichtigt. 3 % des Stickstoffs wurden über den Luftpfad eingetragen (⁠Deposition⁠ aus Verkehrsabgasen und Verbrennungsanlagen) und 2 % stammte aus Kofermenten für die Biogasproduktion. 10 % sind der biologischen Stickstofffixierung von Leguminosen (zum Beispiel Klee oder Erbsen) anzurechnen, die Luftstickstoff in erheblichem Maße binden. Etwa 1 % der Stickstoffzufuhr stammte aus Saat- und Pflanzgut.Die Stickstoffabfuhr fand zu 32 % über Fleisch, Schlachtabfälle und sonstige Tierprodukte und zu 68 % über pflanzliche Marktprodukte statt.Umweltwirkungen der StickstoffüberschüsseÜberschüssiger Stickstoff aus landwirtschaftlichen Quellen gelangt als Nitrat in Grund- und Oberflächengewässer und als Ammoniak und Lachgas in die Luft. Lachgas trägt als hochwirksames ⁠Treibhausgas⁠ zur Klimaerwärmung bei. Der Eintrag von Nitrat und Ammoniak in Land- oder Wasser-Ökosysteme kann weitreichende Auswirkungen auf den Naturhaushalt haben. Diese sind unter anderemIm Mittel der Jahre 2012 bis 2016 wurden rund 480 Kilotonnen Stickstoff pro Jahr in die deutschen Oberflächengewässer eingetragen (siehe„Einträge von Nähr- und Schadstoffen in die Oberflächengewässer“). Durchschnittlich stammten in diesem Zeitraum 74 % dieser Einträge aus landwirtschaftlich genutzten Flächen.Die DüngeverordnungDieDüngeverordnungdefiniert „die gute fachliche Praxis der Düngung“ und gibt vor, wie die mit der Düngung verbundenen Risiken zu minimieren sind. Sie ist wesentlicher Bestandteil des nationalen Aktionsprogramms zur Umsetzung derEU-Nitratrichtlinie. Nach der Düngeverordnung dürfen Landwirtinnen und Landwirte Pflanzen nur entsprechend ihres Nährstoffbedarfs düngen. Die Düngeverordnung wurde 2017 und 2020 novelliert um Strafzahlungen als Folge des Urteils des EuGHs gegen Deutschland wegen Verletzung der EU-Nitratrichtlinie zu verhindern. Dieses Ziel wurde vorerst erreicht. Die kurzfristige Wirkung der Maßnahmen der novellierten Düngeverordnung werden aktuell im Rahmen eines Effizienzmonitorings geprüft, um die mit Nitrat belasteten und von ⁠Eutrophierung⁠ betroffenen Gebiete zu identifizieren und eine schnelle Nachsteuerung von Maßnahmen in diesen Gebieten zu erreichen. Informationen zu den Novellierungen finden Siehier.Weitere Maßnahmen zur Verringerung der ÜberschüsseUm das Ziel der Bundesregierung zum Stickstoffüberschuss und der damit untrennbar verbundenen Umweltziele zu Nitrat im Grundwasser, ⁠Eutrophierung⁠ von Ökosystemen sowie Oberflächengewässern und zu Emissionen von Luftschadstoffen zu erreichen, muss die Gesamtstickstoffzufuhr in der Landwirtschaft verringert und der eingesetzte Stickstoff effizienter genutzt werden. Die Voraussetzung dafür ist das Schließen des Stickstoffkreislaufs. Dafür müssen Maßnahmen umgesetzt werden, die dazu führen, dass die Anwendung von Mineraldünger reduziert wird, importierte Futtermittel durch heimische ersetzt werden und die Anzahl von Nutztieren reduziert wird. Zudem muss die Effizienz der Stickstoffnutzung durch weitere Optimierungen des betrieblichen Nährstoffmanagements, wie standortangepasste Bewirtschaftungsmaßnahmen, geeignete Nutzpflanzensorten und passende, vielfältige Fruchtfolgen verbessert werden. Dabei ist am Ende nicht nur die Verringerung der durchschnittlichen Überschüsse entscheidend, sondern auch die Verteilung der Nährstoffe in die Fläche, denn nur so können die genannten Umweltziele erreicht werden. Um diese Verteilung zu erreichen müssen große Tierbestände reduziert und die Tiere gleichmäßiger auf die gesamte landwirtschaftliche Fläche verteilt werden.

Fritz Logistik GmbH - Errichtung und Betrieb eines Hochregallagers in Heilbronn

Die Fritz Logistik GmbH teilte dem Regierungspräsidium in ihrem Antrag auf Erteilung einer immissionsschutzrechtlichen Genehmigung vom 04.12.2024 mit, dass sie beabsichtigt, nordwestlich der Lagerhallen 6 bis 9 ein Hochregallager zu er-richten, welches über die Wannenäckerstraße erreichbar sein soll. Das geplante Hochregallager hat eine lichte Hallenhöhe von circa 29 m und einer Lagerfläche von circa 2.446 m². Stirnseitig ist ein Kopfbau mit einer ebenerdigen Kommissionierung geplant, über dem sich in zwei weiteren Etagen Büro- und Aufenthaltsräume befinden sollen. Das Hochregallager soll mit einer Sauerstoffreduzierungsanlage ausgerüstet wer-den, welche durch die Einbringung von Stickstoff den Sauerstoffanteil der Luft im Gebäudeinneren auf 13,5 % Luftsauerstoff reduziert. Das Hochregallager soll voll-automatisch betrieben werden. Insgesamt stehen 17.250 Lagerplätze zur Verfügung. Bei einer ausschließlichen Belegung mit IBC-Behältern mit jeweils 1.000 Litern Inhalt ergibt sich eine maximale Gesamtlagermenge von 17.250 t. Es ist geplant innerhalb des Hochregallagers maximal 17.250 t Stoffe der Gefahrenkategorie H1, H2, H3, P5a, P5c, E1 und E2 und 8.750 t Stoffe der Gefahrenkategorie P3a laut Anhang I der 12. BImSchV zu lagern.

Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen, Teilvorhaben: Atmosphärendruck-Plasmaanlage und Prozessentwicklung für die trockenchemische Aktivierung und Beschichtung von Fasergelegen

Das Teilprojekt beschäftigt sich mit der Konzeptionierung, der Entwicklung und dem Aufbau einer unter Atmosphärendruck arbeitenden Plasmaanlage zur Reinigung und Beschichtung von Glas- und Kohlenstofffasergelegen sowie der Entwicklung einer geeigneten Haftvermittlerschicht zur späteren erneuten Einbindung der Faser in eine Duromerharz-Matrix. Ziel ist es, die mit Hilfe der Pyrolyse (thermisch und Mikrowelle) freigelegten Fasergelege mit der inlinefähigen Plasmatechnik ohne Beschädigung der Fasern zu reinigen, zu aktivieren und anschließend zu beschichten, damit eine Wiederverwendung der Fasergelege mit einer sehr guten Faser/Matrixhaftung ermöglicht wird. Dazu wird ein zweistufiges Verfahren bestehend aus Plasmareinigung mit anschließender Plasmabeschichtung untersucht und eine geeignete Plasmaanlage aufgebaut und an die Anforderungen des Prozesses angepasst. Im ersten Schritt wird die Oberfläche von Restkontaminationen befreit und aktiviert und im zweiten Schritt wird eine haftvermittelnde plasmapolymere Schicht unter Eingabe von Präkursoren (chemischen Zusatzstoffen) in das Plasma auf den Fasergelegen abgeschieden. Die zu verwendende Anlagentechnik, bestehend aus Plasmagenerator, Transformator und Plasmaerzeuger wird in diversen Iterationsschleifen weiterentwickelt. Die umweltfreundliche Technik wird ausschließlich mit elektrischer Energie und Luft oder ggf. Stickstoff als Prozessgas betrieben. Die Beschichtung erfolgt trockenchemisch, lösungsmittelfrei und damit besonders umweltschonend unter Verwendung geringster Präkursormengen.

Wechselwirkungen zwischen N2-Fixierung und Denitrifizierung in einem Erdsystem-Modell mit flexibler Stöchiometrie und deren Einfluss auf das marine Stickstoffinventar in einem sich wandelnden Klima

Der Schlüssel zu Verständnis und Projektion des künftigen Stickstoffinventars des Ozeans und der Veränderung der Biologischen Pumpe im globalen Klimawandel liegt in der Frage, wie und wie stark die Fixierung von atmosphärischem Stickstoff und die Denitrifizierung im Ozean gekoppelt sind. Während in bisherigen Modellstudien Stickstofffixierung und Denitrifizierung eng gekoppelt sind, zeigt ein neu entwickeltes optimalitätsbasiertes Ökosystemmodell mit flexibler Stöchiometrie (OPEM) im globalen UVic-ESCM eine deutlich schwächere Kopplung. In diesem Projekt sollen die Faktoren und Mechanismen, die die Kopplung steuern, identifiziert und ihre Veränderung in ver- schiedenen Klimaszenarien untersucht werden. Hierzu wird OPEM in einem vorindustriellen Szenario, einem Szenario der Maximalphase der letzen Eiszeit und einem heutigen Szenario angewendet und die Sensitivität der Modellergebnisse in Bezug auf das ozeanische Stickstoffinventar und die biolo- gische Kohlenstoffpumpe bewertet. Das Ziel des Projekts ist es, die Steuerungsprozesse des marinen Stickstoffinventars genauer abzubilden, um bessere Projektionen der biogeochemischen Kreisläufe im Ozean und ihrer Auswirkungen auf den CO2-Gehalt der Atmosphäre zu ermöglichen.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Ein Modellansatz zur Kontrolle des Umsatzes von organischer Substanz im Ökosystem durch Nährstoffverfügbarkeit

Langzeitstudien legen nahe, dass erhöhte atmosphärische CO2 Konzentration und anhaltende Stickstoffdeposition zu einem erhöhten Maß der Phosphorlimitierung von Waldökosystemen führen könnte. Die Prozesse, die die biologische Verfügbarkeit beeinflussen, und ihre Abhängigkeit von der Bodenentwicklung und Verwitterung sind aber nur unzureichend verstanden. In der ersten Phase des SPP 1685 wurde ein einzigartiger Datensatz zum P-Kreislauf in akquirierenden (gekennzeichnet durch hauptsächlich verwitterungsbasierte P Verfügbarkeit) und rezyklierende (P Verfügbarkeit hauptsächlich durch organischen Umsatz) Ökosysteme gesammelt. In unserem Antrag möchten wir ein neues, prozess-basiertes Bodenmodell der biogeochemischen Kohlenstoff- (C), Stickstoff- (N), und P-Kreisläufe entwickeln, um diese Daten mittels numerischer Modellierung der wichtigsten biogeochemischen Prozesse in ein konsistentes Gesamtgefüge einzuordnen. Unsere Grundannahme ist, dass der Umsatz der organischen Substanz im Boden eine wichtige Rolle bei der Aufrechterhaltung der P Verfügbarkeit entlang des Gradienten der geologischen P-Verfügbarkeit spielt. Daher werden wir auch neue Messungen des Kohlenstoffumsatzes mittels der 14C Methode an ausgewählten SPP 1685 Standorten vornehmen, um den Zusammenhang zwischen P-Verfügbarkeit und C-Umsatz besser zu verstehen. Die Prozessbeschreibung des organischen und anorganischen N und P Kreislaufes und der unterschiedlichen Nährstoffaufnahmekapazität von Pflanzen und Mikroorganismen für das neue Modell, wird auf einem existierenden, von uns entwickelten Bodenkohlenstoffmodell aufbauen. Dieses beschreibt Umsätze, Stabilisierung und Transport der organischen Substanz innerhalb des Bodenprofils. Mit diesem neuen Modell werden wir die Auswirkung unterschiedlicher verwitterungsbedingter P Verfügbarkeit auf die biologische P Verfügbarkeit insbesondere unter Berücksichtigung der Rolle des organischen Umsatzes untersuchen. Trotz unseres Bestrebens, das Modell einfach zu halten, sollte es in der Lage sein, die Ökosystemantwort auf die Düngeexperimente des SPP 1685 Phase II korrekt wiederzugeben. Die Modellentwicklung wird zu einem besseren Verständnis der Ursachen für den Übergang von akquirierenden zu rezyklierenden Ökosystemen beitragen. Die Modellentwicklung gibt darüber hinaus die Möglichkeit, die empirisch gewonnenen Erkenntnisse des SPP 1685 zu regionalisieren und auf Studien der Auswirkung von erhöhtem atmosphärischem CO2 und Stickstoffdeposition auf Waldökosysteme anzuwenden.

Erdgassubstitution durch Wasserstoff in der Kupferhalbzeugherstellung, Teilvorhaben: Brennerentwicklung und Anpassungen der Schachtofenperipherie für den Einsatz von Wasserstoff als Brennstoff

Nutzung eisenbasierter Module zur Versorgung mit hochreinem Wasserstoff unter Druck auf der Basis der Luftvergasung biogener Reststoffe, Teilvorhaben: Bereitstellung wasserstoffhaltiger Reduktionsgase aus der Biomassevergasung für den Speicher- und Reinigungsprozess

Erdgassubstitution durch Wasserstoff in der Kupferhalbzeugherstellung, Teilvorhaben: Bewertung des praxisnahen Einsatzes von Wasserstoff als emissionsfreie Alternative zu fossilen Brennstoffen sowie der damit verbundenen anlagentechnischen Umrüstung in der Kupferhalbzeugherstellung

Erdgassubstitution durch Wasserstoff in der Kupferhalbzeugherstellung, Teilvorhaben: Bewertung anlagentechnischer Voraussetzungen und technischer, technologischer und metallurgischer Folgen in Abhängigkeit von unterschiedlichen Primärenergieträgern in der Kupferindustrie

1 2 3 4 513 14 15