API src

Found 4686 results.

WMS Klima Stadt Bremen

Darstellungsdienst Web Map Service (MWS) Klima der Stadtgemeinde Bremen. Bioklimatische Situation (Klimafunktionskarte): Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Bioklimatische Situation der Siedlungsflächen (mit Kaltlufteinwirkbereich) • Siedlungsflächen im Einwirkbereich der Kaltluftströmung: Siedlungsbereiche die von nächtlicher Kaltluft durchströmt werden. Der Kaltlufteinwirkbereich kennzeichnet das bodennahe Ausströmen der Kaltluft aus den Grünflächen in die angrenzende Bebauung während einer autochthonen Sommernacht. Als Kaltlufteinwirkbereich sind Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets gekennzeichnet, die von einem überdurchschnittlich hohen Kaltluftvolumenstrom durchflossen werden oder durch eine Windgeschwindigkeit von mind. 0,2 m s-1 gekennzeichnet sind. • Bioklimatische Situation der Siedlungsflächen: Einteilung der bioklimatischen Situation in vier Klassen (sehr günstig, günstig, weniger günstig, ungünstig) in Relation zum Gebietsmittel auf Grundlage des z-transformierten PMV-Wertes (predicted mean vote). Siedlungsräume lassen sich in ausreichend durchlüftete Areale und damit meist klimatisch günstige Siedlungsstrukturen sowie klimatische Belastungsbereiche untergliedern. Die nächtliche Überwärmung beruht auf dem Temperaturunterschied zu den Grünflächen der Stadt. Der Wärmeinseleffekt ergibt sich als Abweichung von diesem Bezugswert und stellt somit eine geeignetere Kenngröße zur Erfassung des Stadtklimaeffekts dar als absolute Temperaturwerte. Bioklimatische Bedeutung der Grün- und Freiflächen (Kaltluftentstehung/-produktion) • Flächen mit sehr hoher Kaltluftentstehung/-produktion: Grünflächen mit sehr hoher Kaltluftproduktion sind Flächen, die in Relation zum Mittelwert im Untersuchungsraum eine mehr als überdurchschnittliche Kaltluftproduktion aufweisen. Sie werden durch Punktsymbole gekennzeichnet. Auswahlkriterium ist eine z-transformierte Kaltluftproduktionsrate größer 1. Kaltluftentstehungsgebiete kennzeichnen Grünflächen mit einer deutlich überdurchschnittlichen Kaltluftproduktionsrate und speisen die Kaltluftaustauschbereiche bzw. reichen auch über diese hinaus. • Bioklimatische Bedeutung der Grün- und Freiflächen: Einteilung der stadtklimatischen Bedeutung von Grünflächen in vier Klassen (gering, mittel, hoch, sehr hoch). In der Klimafunktionskarte werden Grün- und Freiflächen hinsichtlich ihres Kaltluftliefervermögens charakterisiert. Als Kaltluft produzierende Bereiche (Kaltluftentstehungsgebiete) gelten insb. unversiegelte Freiflächen (z.B. Wiesen, Weiden und Ackerflächen) sowie durch aufgelockerten Vegetationsbestand geprägte Grünflächen (z.B. Parkareale, Kleingärten und Friedhofsanlagen) und Wälder. Für die Charakterisierung dieser Ausgleichsleistung wird der Kaltluftvolumenstrom aus benachbarten Flächenherangezogen. • Siedlungsflächen mit klimarelevanter Funktion: Kaltluft kann in Einzelfällen auch über Siedlungsflächen mit geringer Baudichte, niedrigen Bauhöhen und/oder einem hohen Grünanteil weitergeleitet werden. Diese Siedlungsbereiche mit sehr hohen Kaltluftvolumenströmen haben eine Leitbahn ähnliche Funktion innerhalb des Siedlungsraumes und sind mit einer horizontalen Schraffur ausgewiesen. • Luftaustausch: Einteilung bzw. Bewertung des Kaltluftliefervermögens von Grünflächen in Relation zum Gebietsmittel (z-transformierter Kaltluftvolumenstrom). Kaltluftaustauschbereiche verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungs-bereiche (Wirkungsräume) über (lokale oder übergeordnete) Kaltluftleitbahnen miteinander oder erfüllen eine wichtige Durchlüftungsfunktion und sind somit elementarer Bestandteil des Luftaustausches.

Modellierungsdaten durchschnittlicher sommerlicher Hitzestress für Freiburg i. Br.

Modellierungsdaten zur mittleren Anzahl an Stunden mit Hitzestress pro Jahr (Mittelwert der Jahre 2019-2022). Hitzestress wird hierbei mit dem Universal Thermal Climate Index (UTCI) dargestellt und 26°C UTCI als Grenzwert genutzt. Der UTCI kombiniert Daten der Lufttemperatur, -feuchte, Windgeschwindigkeit und Strahlung zu einem Werte der "gefühlten" Temperatur. Alle Variablen des UTCI wurden mit Hilfe von KI auf unterschiedlichen räumlichen Auflösungen berechnet und gegen ein Messnetz validiert. Mehr Informationen zu den Modellen und Daten unter https://doi.org/10.5194/gmd-17-1667-2024. Die Berechnung der Daten erfolgte 2024 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Meteorologie, Universität Freiburg".

Klima - Klimaanpassung Stadtgemeinde Bremen

Daten zur Klimaanpassungsstrategie ° Bioklimatische Situation (Klimafunktionskarte) ° Bioklimatische Situation (Siedlungsflächen, Grün- und Freiflächen) ° Klimakomfort: Wärmebelastung ° Windkomfort/Sturmgefahr Bioklimatische Situation (Klimafunktionskarte): Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Bioklimatische Situation der Siedlungsflächen (mit Kaltlufteinwirkbereich) • Siedlungsflächen im Einwirkbereich der Kaltluftströmung: Siedlungsbereiche die von nächtlicher Kaltluft durchströmt werden. Der Kaltlufteinwirkbereich kennzeichnet das bodennahe Ausströmen der Kaltluft aus den Grünflächen in die angrenzende Bebauung während einer autochthonen Sommernacht. Als Kaltlufteinwirkbereich sind Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets gekennzeichnet, die von einem überdurchschnittlich hohen Kaltluftvolumenstrom durchflossen werden oder durch eine Windgeschwindigkeit von mind. 0,2 m s-1 gekennzeichnet sind. • Bioklimatische Situation der Siedlungsflächen: Einteilung der bioklimatischen Situation in vier Klassen (sehr günstig, günstig, weniger günstig, ungünstig) in Relation zum Gebietsmittel auf Grundlage des z-transformierten PMV-Wertes (predicted mean vote). Siedlungsräume lassen sich in ausreichend durchlüftete Areale und damit meist klimatisch günstige Siedlungsstrukturen sowie klimatische Belastungsbereiche untergliedern. Die nächtliche Überwärmung beruht auf dem Temperaturunterschied zu den Grünflächen der Stadt. Der Wärmeinseleffekt ergibt sich als Abweichung von diesem Bezugswert und stellt somit eine geeignetere Kenngröße zur Erfassung des Stadtklimaeffekts dar als absolute Temperaturwerte. Bioklimatische Bedeutung der Grün- und Freiflächen (Kaltluftentstehung/-produktion) • Flächen mit sehr hoher Kaltluftentstehung/-produktion: Grünflächen mit sehr hoher Kaltluftproduktion sind Flächen, die in Relation zum Mittelwert im Untersuchungsraum eine mehr als überdurchschnittliche Kaltluftproduktion aufweisen. Sie werden durch Punktsymbole gekennzeichnet. Auswahlkriterium ist eine z-transformierte Kaltluftproduktionsrate größer 1. Kaltluftentstehungsgebiete kennzeichnen Grünflächen mit einer deutlich überdurchschnittlichen Kaltluftproduktionsrate und speisen die Kaltluftaustauschbereiche bzw. reichen auch über diese hinaus. • Bioklimatische Bedeutung der Grün- und Freiflächen: Einteilung der stadtklimatischen Bedeutung von Grünflächen in vier Klassen (gering, mittel, hoch, sehr hoch). In der Klimafunktionskarte werden Grün- und Freiflächen hinsichtlich ihres Kaltluftliefervermögens charakterisiert. Als Kaltluft produzierende Bereiche (Kaltluftentstehungsgebiete) gelten insb. unversiegelte Freiflächen (z.B. Wiesen, Weiden und Ackerflächen) sowie durch aufgelockerten Vegetationsbestand geprägte Grünflächen (z.B. Parkareale, Kleingärten und Friedhofsanlagen) und Wälder. Für die Charakterisierung dieser Ausgleichsleistung wird der Kaltluftvolumenstrom aus benachbarten Flächenherangezogen. • Siedlungsflächen mit klimarelevanter Funktion: Kaltluft kann in Einzelfällen auch über Siedlungsflächen mit geringer Baudichte, niedrigen Bauhöhen und/oder einem hohen Grünanteil weitergeleitet werden. Diese Siedlungsbereiche mit sehr hohen Kaltluftvolumenströmen haben eine Leitbahn ähnliche Funktion innerhalb des Siedlungsraumes und sind mit einer horizontalen Schraffur ausgewiesen. • Luftaustausch: Einteilung bzw. Bewertung des Kaltluftliefervermögens von Grünflächen in Relation zum Gebietsmittel (z-transformierter Kaltluftvolumenstrom). Kaltluftaustauschbereiche verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungs-bereiche (Wirkungsräume) über (lokale oder übergeordnete) Kaltluftleitbahnen miteinander oder erfüllen eine wichtige Durchlüftungsfunktion und sind somit elementarer Bestandteil des Luftaustausches.

Zeitreihen der Lufttemperatur 2024

Zeitreihen der Lufttemperatur aus dem MARNET-Messnetz. Das MARNET-Messnetz besteht aus 11 Stationen in der Nord- und Ostsee

Rasterdaten der beobachteten und projizierten Lufttemperatur für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1881-1910 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

Klimatische Belastung für die Dimensionierung von Straßen

Für die Dimensionierung von Straßenbefestigungen gemäß den <i>RStO</i>, <i>RDO Asphalt</i> und <i>RDO Beton</i> sind zur Berücksichtigung der klimatischen Belastung die Karte der Frosteinwirkungszonen, die KiST-Zonen-Karte Asphalt sowie die KiST-Zonen-Karte Beton erforderlich. Die <b>Karte der Frosteinwirkungszonen (Frostzonenkarte)</b> ist in Verbindung mit den <i>Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen, Ausgabe 2012/Fassung 2024</i> anzuwenden. Die Frostzonenkarte basiert auf der 30-jährigen Wiederkehrwerte der maximalen Frostindizes. Datengrundlage für die Ermittlung dieser Wiederkehrwerte sind die Tage mit negativen Temperaturen an 221 Wetterstationen in den Wintern 1955 bis 2004. Die Berechnung der Frostindizes erfolgte auf der Basis eines 1-km²-Rasters unter Berücksichtigung der geografischen Lage, der Höhe über dem Meeresspiegel und der Lage zum Meer. Der Bebauungseinfluss ist statistisch nicht signifikant und blieb daher unberücksichtigt. Die <b>KiST-Zonen-Karte Asphalt</b> "klimainduzierte Straßentemperaturzonenkarten" ist in Verbindung mit dem <i>Arbeitspapier Eingangsgrößen für die Dimensionierung und Bewertung der strukturellen Substanz, Teil 2: Klima, Ausgabe 2023</i> anzuwenden. Die KiST-Zonen-Karte Asphalt unterteilt Deutschland in 4 Zonen. Dieser Einteilung liegen meteorologische Beobachtungen der Lufttemperatur, der Luftfeuchte und der Globalstrahlung von 380 Standorten aus dem Zeitraum 2001 bis 2015 zugrunde. Die Einteilung in die Zonen wurde so vorgenommen, dass die temperaturbedingte Schädigung des Asphalts von Zone 1 zu Zone 4 zunimmt. Die <b>KiST-Zonen-Karte Beton</b> "klimainduzierte Straßentemperaturzonenkarten" ist in Verbindung mit dem <i>Arbeitspapier Eingangsgrößen für die Dimensionierung und Bewertung der strukturellen Substanz, Teil 2: Klima, Ausgabe 2023</i> anzuwenden. Die KiST-Zonen-Karte Beton unterteilt Deutschland in 5 Zonen. Auf der Basis stündlicher meteorologischer Daten von 328 Messstationen des Deutschen Wetterdienstes der letzten 15 Jahre wurden Temperatursimulationen für typische Straßenbefestigungen mit Betondecke gerechnet. Die Berücksichtigung regional unterschiedlicher thermischer Bedingungen und damit unterschiedlicher Temperaturbelastungen erfolgt im Dimensionierungskonzept für die Betonbauweise durch den mT3-Faktor. Die Einteilung in die Zonen wurde so vorgenommen, dass die temperaturbedingte Schädigung des Betons von Zone 1 zu Zone 5 zunimmt. <a href="https://www.bast.de/DE/Publikationen/Regelwerke/Strassenbau/S2-Karte-Frostwirkungszonen.pdf?__blob=publicationFile">Karte der Frosteinwirkungszonen (PDF)</a> und <a href="https://www.bast.de/DE/Publikationen/Regelwerke/Strassenbau/S2-Legende-zur-Frostwirkungszonen.pdf?__blob=publicationFile&">Legende zur Karte (PDF)</a> <a href="https://www.bast.de/DE/Publikationen/Regelwerke/Strassenbau/KiST-A.pdf?__blob=publicationFile">KiST-Zonen-Karte Asphalt (PDF)</a> <a href="https://www.bast.de/DE/Publikationen/Regelwerke/Strassenbau/KiST-B.pdf?__blob=publicationFile">KiST-Zonen-Karte Beton (PDF)</a> Weitere Informationen finden Sie auf der <a href="https://www.bast.de/DE/Publikationen/Foko/2019-2018/2019-17.html">BASt-Homepage</a>.

Lufttemperatur (Klimaanalyse)

Lufttemperatur in 2m Höhe. Die Daten sind Teil der landesweiten Klimaanalysekarte und wurden durch die landesweite Klimaanalyse ermittelt. Die Daten zeigen die modellierte Lufttemperatur in einem 50x50m Raster für einen typischen Sommertag in BW.

Physiologisch-äquivalente Temperatur (Klimaanalyse)

Die Physiologisch Äquivalente Temperatur ist ein human-biometeorologischer Index, der zur Bewertung der thermischen Belastung genutzt wird. Neben der Lufttemperatur wirken auch Strahlung, Luftfeuchte und Wind auf den menschlichen Körper ein. All diese Parameter werden in der "PET" vereint. Das Produkt ist Teil der landesweiten Klimaanalysekarte. Mehr dazu: https://www.lubw.baden-wuerttemberg.de/klimawandel-und-anpassung

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/landschaftsprogramm/18198308/stadtklima-naturhaushalt/ Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

CC_GAR_Prec_2000_2100

BfG MapService 'CC_GAR_Prec_2000_2100', OGC:WMS 1.3.0; The maps and data sets summarise climate change information resulting from a well defined ensemble of 14 regional climate simulations (mainly based on EU-ENSEMBLES) for periods 2021 to 2050 and 2071 to 2100. The information are expressed as change of air temperature and precipitation with respect to the simulated present (1971-2000) averaged over meteorological seasons and 50km grid boxes. Based on the ensemble, a high, central and low estimate of the possible future development is given.

1 2 3 4 5467 468 469