API src

Found 206 results.

Related terms

1.000 kostenfreie Radon-Messungen in Bonn für die Forschung

1.000 kostenfreie Radon-Messungen in Bonn für die Forschung Studie untersucht Einfluss städtischer Bau- und Infrastruktur auf Radon in Wohnungen Ausgabejahr 2025 Datum 15.01.2025 Untersuchungsgebiet Bonn Quelle: travelview/Stock.adobe.com In Wohnungen kann ein unsichtbarer, geruchloser Schadstoff auftreten: das radioaktive Gas Radon . Es gehört zu den häufigsten Auslösern von Lungenkrebs – nach dem Rauchen, das an der Spitze der Auslöser steht. Bei der Suche nach Radon in Innenräumen steht das Messen im Mittelpunkt. Wer im Bonner Stadtgebiet lebt, hat jetzt die Chance auf eine kostenlose Radon-Messung . Für eine Studie sucht das Sachverständigenbüro Dr. Kemski im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) 1.000 Haushalte in Bonn, die die Radon -Konzentration in ihren Wohnräumen bestimmen lassen möchten. Radon entsteht im Boden. Von dort aus kann es in Gebäude eindringen und sich in der Raumluft ansammeln. Ob die Radon -Konzentration erhöht ist, lässt sich mit einfachen Messgeräten feststellen. Diese benötigen keinen Strom und senden weder Licht noch Geräusche aus. Teilnehmer*innen erhalten Messergebnisse aus ihrer Wohnung Wer sich für eine Teilnahme an der Studie entscheidet, bekommt solche Radon -Messgeräte bequem und kostenfrei per Post zugeschickt und stellt sie selbst auf. Nach einem Jahr sendet man sie zurück. Das Studienteam macht keine Hausbesuche. Nach Auswertung der Geräte im Labor erhalten die Teilnehmer*innen die Messergebnisse für ihr Haus oder ihre Wohnung . Sollten die Messungen tatsächlich erhöhte Werte zeigen, gibt es verschiedene Möglichkeiten, sich zu schützen: Zum Beispiel können undichte Stellen, durch die das Radon in das Haus eintritt, abgedichtet werden. Auch eine verbesserte Belüftung kann helfen. Sogenannte Radon -Fachpersonen können dabei unterstützen, die passenden Maßnahmen auszuwählen und umzusetzen. Anonymisierte Messdaten dienen der Forschung Weg des Radons vom Boden ins Haus Wie viel Radon in ein Gebäude eindringen kann, hängt von der Bausubstanz des Hauses und von der Beschaffenheit des Bodens ab. Manche Böden enthalten besonders viel Radon oder transportieren es besonders gut an die Gebäude heran. Die Studie soll herausfinden, wie städtische Infrastruktur und dichte Bebauung das Vorkommen von Radon in Wohngebäuden beeinflussen. Untersucht wird beispielsweise, welche Auswirkungen Bodenversiegelung, künstliche Auffüllungen oder Verkehrswege auf die Radon -Konzentration im Boden und in Innenräumen haben. Die Messergebnisse aus den teilnehmenden Haushalten werden dafür in anonymisierter Form genutzt. Zusätzlich wird an ausgewählten Orten in Bonn die Radon-Konzentration in der Bodenluft bestimmt. Anmeldung zur Teilnahme direkt beim Sachverständigenbüro Wer mehr über die Studie wissen möchte, findet auf den Internetseiten des Bundesamtes für Strahlenschutz weitere Informationen oder kann sich unter www.kemski-bonn.de/Radon_Stadt direkt beim Sachverständigenbüro Dr. Kemski anmelden. Das Angebot richtet sich vorrangig an Bonner Haushalte. Bewerbungen aus angrenzenden Städten und Gemeinden werden so weit wie möglich ebenfalls berücksichtigt. Stand: 15.01.2025

Radon-Biobank soll Wissen über Wirkung von Radon erweitern

Radon-Biobank soll Wissen über Wirkung von Radon erweitern Gemeinsame Pressemitteilung des Bundesamtes für Strahlenschutz und der Universitätsmedizin Göttingen Ausgabejahr 2025 Datum 07.01.2025 Sammlung von Bioproben für eine Radon Biobank Das radioaktive Gas Radon ist eine der Hauptursachen von Lungenkrebs. Doch welche zugrundeliegenden biologischen Wirkungen hat es, etwa auf das blutbildende System? Um Forschung zu dieser Frage zu ermöglichen, bauen das Bundesamt für Strahlenschutz ( BfS ) und die Universitätsmedizin Göttingen (UMG) eine Radon-Biobank auf. Die UMG sammelt Bioproben wie Blut und Speichel von Personen, die einer bekannten Radon - Aktivität ausgesetzt waren. Die Biobank selbst wird beim BfS angesiedelt sein. Das dreijährige Projekt läuft seit November 2023 und wird mit knapp 700.000 Euro aus dem Ressortforschungsplan des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz ( BMUV ) finanziert. Radon ist ein radioaktives Gas, das im Boden entsteht. Von dort aus kann es zum Beispiel durch Risse im Fundament oder durch undichte Kabel- und Rohrdurchführungen in Gebäude eindringen und sich in der Raumluft anreichern. Dass Radon das Lungenkrebs- Risiko erhöht, ist aus epidemiologischen Studien wissenschaftlich gut belegt. Weit weniger gut erforscht sind zugrundeliegende biologische Wirkungen von Radon . In den wenigen bisherigen biologischen Studien am Menschen wurde vor allem biologisches Material von Männern untersucht. Alter und Geschlecht in der Radon -Forschung berücksichtigen Automatische mikroskopische Analyse von DNA-Schadensmarkern Die Radon -Biobank nimmt nun die gesamte Bevölkerung in den Blick. Sie ermöglicht spätere Projekte, die die biologischen Wirkmechanismen von Radon erforschen. Dabei soll auch der Einfluss von Alter und Geschlecht untersucht werden. Die in der Zukunft gewonnenen Erkenntnisse sollen zu einem verbesserten Schutz vor Radon beitragen. Eine vergleichbare Radon -Biobank gibt es bisher weder in Deutschland noch im Ausland. Nach Abschluss des Projektes soll die Radon -Biobank Daten und Bioproben von etwa 600 Personen aus zirka 200 Haushalten enthalten, darunter auch Proben von Kindern. Hierfür hat das BfS damit begonnen, Teilnehmer*innen einer früheren Studie zu kontaktieren, in deren Wohnungen Radon -Messungen durchgeführt wurden. Um eine Probennahme gebeten werden Haushalte mit höheren Radon -Werten (über 300 Becquerel pro Kubikmeter Raumluft) sowie Haushalte mit sehr niedrigen Radon -Werten (unter 40 Becquerel pro Kubikmeter Raumluft). Mehr als 100 Haushalte haben bereits zugesagt. UMG sammelt Bioproben, BfS lagert und analysiert Geplante Bioproben und Analysen Ein Studienteam unter der Leitung von Rami El Shafie, Stellvertreter des Direktors der Klinik für Strahlentherapie und Radioonkologie der Universitätsmedizin Göttingen (UMG), und Sara Nußbeck, Leiterin der Zentralen Biobank der UMG, startete im November 2024 die Sammlung von Daten und Bioproben. Das speziell qualifizierte Team sucht die Studienteilnehmer*innen zu Hause auf und entnimmt Blut, Speichel und abgehustetes Sekret aus den Bronchien, auch Sputum genannt, sowie Abstriche aus Mund und Nase. Neben den Bioproben werden mit einem Fragebogen Daten zur Gesundheit und zum Lebensstil erhoben. Daten und Bioproben gehen im Anschluss an den BfS -Standort München (Neuherberg), wo sie im Fachgebiet Strahlenbiologie aufbereitet, gelagert, verwaltet und analysiert werden. Die Proben- und Datensammlung ist auf Anfrage und nach positiver Begutachtung auch für andere Forscher*innen aus europäischen Ländern, für die entweder die Datenschutz-Grundverordnung ( DSGVO ) oder ein Angemessenheitsbeschluss der Europäischen Kommission gilt, verfügbar. Rückschlüsse auf die Personen, die die Bioproben und Daten gespendet haben, sind dabei nicht möglich. Die Studie ist im Deutschen Register Klinischer Studien (DRKS) und im WHO Register für klinische Studien offiziell registriert. Stand: 07.01.2025

Schutzmaßnahmen: Was kann ich tun? Was muss ich tun?

Schutzmaßnahmen: Was kann ich tun? Was muss ich tun? Gegen hohe Konzentrationen von Radon in Häusern hilft als Erstmaßnahme, regelmäßig zu lüften und undichte Stellen in Keller und Erdgeschoss abdichten zu lassen. Der Erfolg der Maßnahmen sollte durch Messungen überprüft werden. Eine Radon -Fachperson berät zu weiteren Maßnahmen. Je höher die Konzentration von Radon in den Räumen eines Gebäudes ist, in denen sich Bewohner*innen lange aufhalten, desto wichtiger ist es, die Radon -Konzentration dort zu senken. Radon bildet sich im Erdboden. Potentielle Eintrittsstellen des Gases sind daher vor allem in Hausbereichen zu finden, die Bodenkontakt haben – zum Beispiel Hauswände mit Erdberührung oder Kellerböden. Über Risse, Fugen oder Rohrdurchführungen findet das Gas seinen Weg ins Gebäudeinnere. Verschiedene Maßnahmen helfen, die Konzentration von Radon in einem Gebäude zu verringern und sich so vor der Belastung durch Radon zu schützen. Diese Maßnahmen werden international angewandt. Wichtig ist der qualitätsgesicherte Einbau aller Schutzvorrichtungen, denn Radon dringt als Gas selbst durch kleinste undichte Stellen. Radon -Sanierungen lassen sich kostengünstig in ohnehin vorgesehene Um- oder Ausbauarbeiten für ein Gebäude integrieren. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 20.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Radon im Boden

Radon im Boden Wie sich Radon im Erdreich ausbreitet, hängt davon ab, wie durchlässig der Boden ist. Bis zu einer Tiefe von zirka einem Meter beeinflusst auch die Witterung die Ausbreitung von Radon . Radon kommt regional in unterschiedlicher Konzentration im Boden vor. Beim radioaktiven Zerfall von Uran -238 in der Erde entsteht Radium, das wiederum zu Radon zerfällt. Ein Teil des Radons wird in die Poren der Böden und Gesteine freigesetzt. Je uranhaltiger der Boden ist, desto mehr Radon kommt darin vor. Radon im Boden Gemeinsam mit anderen Bodengasen gelangt Radon durch Strömungen und Diffusion aus dem Boden an die Erdoberfläche und wird in die Atmosphäre freigesetzt. Witterung beeinflusst Radon-Konzentration im Boden Bis zu einer Tiefe von weniger als einem Meter schwankt die Radon -Konzentration im Boden abhängig von den Witterungsverhältnissen erheblich: So sorgen Regen, Schnee oder Frost dafür, dass die Poren der Böden und Gesteine sich verstärkt mit Wasser füllen bzw. einfrieren. Dadurch kann radonhaltige Luft schwerer aus dem Boden entweichen und bleibt dort; so dass die Radon -Konzentration in den obersten Schichten des Bodens steigt. Auch bei steigendem Luftdruck erhöht sich die Radon -Konzentration im Boden: Der atmosphärische Druck drückt zusätzlich Luft aus der Atmosphäre in die Poren von Böden und Gesteinen und sorgt so dafür, dass die radonhaltige Luft den Boden schlechter verlassen kann und dort zurückbleibt. Bei fallendem Luftdruck wird verstärkt Radon freigesetzt. Erst in tieferen Bodenschichten ist die Radon -Konzentration stabil. Je gasdurchlässiger der Boden ist, desto größer ist der Einfluss von Witterungsverhältnissen – und desto tiefer ist erst eine stabile Radon -Konzentration anzutreffen. Radium, bei dessen Zerfall im Erdboden Radon entsteht, hat eine lange Halbwertzeit von etwa 1.600 Jahren. Durch diese lange Halbwertzeit ist die Radon -Konzentration in der Bodenluft auch längerfristig stabil. Ist die Radon -Konzentration an einem Standort bekannt, sind erneute Messungen deshalb nur sinnvoll, wenn größere Eingriffe im Untergrund vorgenommen wurden. Bodenbeschaffenheit beeinflusst Ausbreitung von Radon Der Transport von Radon aus der Tiefe an die Erdoberfläche wird von der Gasdurchlässigkeit der Böden sowie lokal vorkommenden Strömungswegen bestimmt. Je mehr Spalten und Risse der Untergrund aufweist, desto leichter breitet Radon sich aus. An manchen Stellen kann die Radon -Konzentration in der Bodenluft deutlich über den für die Region typischen Werten liegen – zum Beispiel an Klüften: Klüfte sind geologische Verwerfungen im Boden, die Wegsamkeiten für Wasser bieten. Im Wasser gelöstes Radium, das beim Zerfall von Uran entsteht, kann sich an den Rändern von Klüften ablagern, wo es bei seinem radioaktiven Zerfall Radon freisetzt. an Bergsenkungen: An Bergsenkungen ist das Gestein in der Regel aufgelockert und damit durchlässiger für radonhaltige Bodenluft. an der Grenze zweier Gesteinsarten: Grenzen zwei verschiedene Gesteinsarten aneinander, kann sich dort mehr Uran als an anderen Stellen abgesetzt haben. Bei seinem Zerfall entsteht Radon . Wie die Radonsituation beispielsweise an einem Bauplatz ist, können Bauherren oder Bauplaner bei Bedarf über das Baugrundgutachten ermitteln lassen. Grundwasser transportiert Radon Radon kann sich auch im Grundwasser lösen und mit diesem im geologischen Untergrund transportiert werden. Wo kommt Radon in Deutschland im Boden vor? In Deutschland sind die Konzentrationen von Radon im Boden unterschiedlich, da Uran und Radium-226, bei dessen Zerfall Radon entsteht, in Deutschland regional in unterschiedlichem Maße vorkommen. Das gilt auch für die Durchlässigkeit des Bodens. Das Bundesamt für Strahlenschutz ( BfS ) hat Karten zur regionalen Verteilung von Radon im Boden erstellt. Aussagen zu Einzelgebäuden oder Baugrundstücken sind aus den Prognosekarten niemals ableitbar. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 04.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Wie kann ich Radon messen (lassen)?

Wie kann ich Radon messen (lassen)? Radon -Messungen sind preiswert und unproblematisch. Besonders einfach ist der Einsatz passiver Radon -Detektoren. Das BfS stellt Adressen qualitätsgeprüfter Anbieter bereit, die Detektoren per Post versenden. Die Detektoren werden an verschiedenen Stellen in der Wohnung aufgestellt. Nach drei bis zwölf Monaten werden sie an den Anbieter zurückgeschickt, der sie auswertet und über die Ergebnisse informiert. Zeichnung eines Radonmessgeräts Wie hoch die Konzentration von Radon in einem Gebäude ist, wird durch viele äußere und innere Faktoren – wie zum Beispiel Witterungsverhältnisse und Lüftungsverhalten der Bewohner - beeinflusst. Eine verlässliche Aussage zur Radon -Konzentration ist nur mit einer Messung möglich. Radon -Messungen sind preiswert und unproblematisch. Gemessen werden sollte, wie hoch die Radon -Konzentration in den wichtigsten Aufenthaltsräumen in einem Jahr durchschnittlich ist ("Jahresmittelwerte"). Mit den wichtigsten Aufenthaltsräumen sind die Räume gemeint, in denen sich die Bewohner*innen oder Nutzer*innen des Gebäudes üblicherweise am längsten aufhalten – zum Beispiel Wohnzimmer, Schlafzimmer, Wohn- und Essdielen, Arbeitsräume. Handelsübliche Messgeräte können in Aufenthaltsräumen problemlos eingesetzt werden und stören nicht. Wichtig ist, dass die Bewohner*innen die Art und Weise, wie sie den Raum üblicherweise nutzen und belüften, nicht verändern. Passive Messgeräte Am einfachsten lässt sich die Radon -Konzentration in der Raumluft mit einem so genannten passiven Detektor ("Kernspurdosimeter") messen. Passive Detektoren sind kleine Plastikbehälter, die keinen Strom benötigen, weder Licht noch Geräusche aussenden, sondern lediglich ausgelegt werden. Mithilfe von passiven Detektoren können Radon -Konzentrationen von 15 bis über 5.000 Becquerel pro Kubikmeter Raumluft bestimmt werden. Aktive (elektrische) Messgeräte Neben der Langzeitmessung mit passiven Detektoren sind auch Kurzzeitmessungen mit aktiven (elektrischen) Messgeräten möglich. Diese Messgeräte werden nur für wenige Minuten bis Tage eingesetzt und zeigen den Messwert direkt in einem Display an. Durch die kurze Messdauer zeigen sie lediglich eine Momentaufnahme der Radon -Konzentration im Gebäude an und ermöglichen keine verlässlichen Aussagen zur langfristigen Radon -Belastung der Bewohner und Nutzer eines Gebäudes. Sie eignen sich jedoch gut, um einen ersten Überblick über die Radon -Konzentration in einem Gebäude zu erhalten (so genanntes "Screening") oder Stellen zu identifizieren, an denen Radon in ein Gebäude eindringt (so genanntes "Sniffing"). Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 25.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Radon in Wohnungen in Deutschland

Radon in Wohnungen in Deutschland Weil radonhaltige Bodenluft aus dem Baugrund in Gebäude eindringt, kommt Radon in allen Innenräumen vor. Welche Radon -Konzentrationen in den Räumen eines Hauses tatsächlich vorkommen, kann nur durch Messungen geklärt werden. Die Höhe der Radon -Konzentrationen in Gebäuden ist sehr unterschiedlich. Die durchschnittliche Radon -Konzentration, der Menschen in Wohnungen in Deutschland schätzungsweise ausgesetzt sind, zeigt auf kommunaler Ebene eine Karte des BfS . Aussagen zu Einzelgebäuden sind aus der Karte nicht ableitbar. Radon dringt aus dem Baugrund in Gebäude ein und reichert sich dort an. Zu einem geringen Teil gelangt es auch aus Baumaterialien und aus Trink- und Brauchwasser in Gebäude. Dort kann Radon Lungenkrebs verursachen . Das Gas kann sich in alle Räume ausbreiten. In der Regel ist die Konzentration im Keller und im Erdgeschoss am höchsten. In höheren Etagen nimmt die Radon -Konzentration üblicherweise ab, weil sich das aus dem Gebäudeuntergrund eindringende Radon in den höheren Etagen mehr und mehr mit radonarmer Außenluft vermischt. Messwerte und Prognosen Die Höhe der Radon -Konzentrationen in Gebäuden ist sehr unterschiedlich. Der Jahresmittelwert, dem Menschen in Wohnräumen in Deutschland ausgesetzt sind, beträgt durchschnittlich rund 65 Becquerel pro Kubikmeter. Neue Prognoserechnungen ergaben, dass in Deutschland etwa 10,5 Millionen Menschen einer Radon -Konzentration in Wohnungen von über 100 Becquerel pro Kubikmeter ausgesetzt und davon knapp 2 Millionen Menschen sogar einer Radon -Konzentration, die über dem Referenzwert von 300 Becquerel pro Kubikmeter liegt. Auch Radon -Konzentrationen von mehr als 1.000 Becquerel pro Kubikmeter sind möglich, kommen jedoch selten vor. Pro 100 Becquerel pro Kubikmeter Raumluft langjähriger Radon -Konzentration erhöht sich das Lungenkrebsrisiko um etwa 16 % . Es gibt keinen Hinweis auf einen Schwellenwert , unterhalb dessen Radon ungefährlich wäre. Daher sollte in allen Wohnräumen die Radon -Konzentration reduziert werden, soweit dies mit vertretbarem Aufwand erreichbar ist. Die Radon -Konzentrationen in den Innenräumen eines einzelnen Gebäudes können nicht genau vorhergesagt werden. Sie können nur durch Messungen ermittelt werden. Karte "Radon in Wohnungen" Geschätzte durchschnittliche Radon-Aktivitätskonzentrationen (arithmetischer Mittelwert) der Raumluft, der Einwohner*innen einer Gemeinde in ihren Wohnungen ausgesetzt sind. Die Karte zeigt, welchen Radon -Konzentrationen in der Raumluft Menschen in Städten und Gemeinden in Deutschland in ihren Wohnungen im Durchschnitt schätzungsweise ausgesetzt sind (Stand 2022). In der Karte ist gut zu erkennen, in welchem Maße die Werte regional variieren. Die in der Karte abgebildeten unterschiedlichen durchschnittlichen Radon -Konzentrationen hängen dabei nicht nur von der Radon -Konzentration im Baugrund der Gebäude ab, sondern auch von der Siedlungsstruktur: In dicht bebauten urbanen Gebieten ist der Anteil von Mehrfamilienhäusern und mehrgeschossigen Wohngebäuden größer als in ländlichen Räumen, wo Einfamilienhäuser dominieren. Aufgrund dieser siedlungsstrukturellen Unterschiede leben in ländlichen Räumen prozentual mehr Menschen in niedrigen Geschossen, die aufgrund ihrer Nähe zum Baugrund in der Regel stärker radongefährdet sind, und in urbanen Räumen prozentual mehr Menschen in höheren Geschossen, die aufgrund ihres Abstandes zum Baugrund in der Regel weniger radongefährdet sind. Dieser Unterschied lässt sich in der Karte gut erkennen: Städte wie Berlin, Hamburg, Leipzig, Erfurt, Regensburg oder Kassel weisen deutlich niedrigere Prognose-Werte als ihr (geogen-bedingt oft ähnlich radongefährdetes) Umland auf. Zoombare Karte Tipp: BfS-Geoprtal Die Karte gibt es zoombar im BfS -Geoportal. So geht es: Link öffnen: Zoombare Karte "Radon in Wohnungen" Geoportal-Begrüßungsfenster schließen. Die Lupen-Symbole rechts oben zum Zoomen nutzen. Eine Bedienungshilfe für das Geoportal liefert das Fragezeichen oben rechts in der Legende. Abschätzung anhand von Messdaten sowie Naturraum- und Gebäudeeigenschaften Basis für die Abschätzung der in der Karte abgebildeten durchschnittlichen Radon -Konzentrationen sind Messdaten der im Auftrag des BfS durchgeführten Studie "Radon in Wohnungen". Diese Messdaten sind dafür besonders geeignet, weil die zugrundeliegenden Messungen räumlich über das Bundesgebiet proportional zur Bevölkerungsdichte verteilt stattfanden, über ein volles Kalenderjahr liefen, einheitlich im Zeitraum 2019-2020 geschahen, sich an ein einheitliches Messprotokoll (Detektortyp, Detektorauswertung etc. ) hielten und durch Erhebung von Geschoss, Baujahr und Gebäudetyp spezifiziert wurden. Ergänzend zu den Messdaten nutzte das BfS Daten des Bundesamtes für Kartographie und Geodäsie mit Angaben zu Lage, Gebäudecharakteristik und Einwohnerzahl jedes Wohngebäudes in Deutschland sowie Informationen über lokale Naturraumeigenschaften ( Radon -Konzentration in der Bodenluft, Klima-, Boden- und Relief-Eigenschaften). Diese Daten flossen in ein statistisches Modell aus dem Bereich des Maschinellen Lernens ein, das vom BfS mithilfe der Messdaten trainiert wurde. Die gute Datenbasis ermöglichte es dem BfS , die tatsächliche Verteilung der Einwohner*innen Deutschlands in der Fläche sowie über die Geschosse eines Gebäudes bei der Prognose zu berücksichtigen und die Ergebnisse auf Stadt- und Gemeindeebene aufzuschlüsseln. Radon-Situation vor Ort kann nur durch Messungen geklärt werden Aussagen zur Radon -Konzentration in einzelnen Gebäuden oder im Baugrund bestimmter Grundstücke können aus der Karte nicht abgeleitet werden. Die Radon -Situation in einem individuellen Gebäude und der Wohnung kann nur durch Messungen der Radon-Konzentration in der Raumluft ermittelt werden. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 04.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Wann ist mein Haus / meine Wohnung besonders gefährdet?

Wann ist mein Haus / meine Wohnung besonders gefährdet? Ein Gebäude ist besonders anfällig für hohe Radon -Konzentrationen in Innenräumen, wenn es in einem Gebiet liegt, in denen in vielen Gebäuden eine hohe Radon -Konzentration zu erwarten ist, keine durchgehende Grundplatte aus Beton aufweist, vor 1960 errichtet wurde und keine moderne Feuchteisolation besitzt, nicht unterkellert ist oder sich Aufenthaltsräume im Keller befinden, offensichtliche Eintrittswege für Bodenluft (Spalten, Risse, Natursteingewölbe, offene Kellerböden, nicht abgedichtete Leitungsdurchführungen, Verbindungen zu unterirdischen Hohlräumen) vorhanden sind. Ist mein Haus radonsicher? Reichert sich Radon in Innenräumen von Häusern an, kann es Lungenkrebs verursachen . Ob ein Gebäude besonders anfällig dafür ist, dass sich hohe Radon-Konzentrationen darin anreichern, hängt von verschiedenen Faktoren ab. Isolation gegen Feuchte Besitzt ein Gebäude keine durchgehende Bodenplatte, weist die Isolation gegen Feuchte aus dem Baugrund oft Schwachstellen an den Übergängen zwischen Bodenplatte und erdberührten Wänden oder zwischen verschiedenen Gebäudeteilen auf. Hier kann leicht Radon aus dem Baugrund eindringen. Vor 1960 errichtete Gebäude wurden meist ohne durchgehende Bodenplatte errichtet und nutzen Materialien zur Feuchteisolation, die an den Übergängen der Dichtungsbahnen meist nicht verschweißt oder verklebt wurden und oft bereits schadhaft sind. Auch hier kann Radon eindringen. Lage des Gebäudes Liegt ein Gebäude in einem Gebiet, in denen in vielen Gebäuden eine hohe Radon -Konzentration zu erwarten ist, ist in überdurchschnittlichem Maße damit zu rechnen, dass in Gebäuden Konzentrationen von Radon auftreten, die über dem im Strahlenschutzgesetz festgelegten Referenzwert von 300 Becquerel pro Kubikmeter liegen. Die Wahrscheinlichkeit reicht dort von etwa 10 % bis über 50 % . Gebiete, in denen in vielen Gebäuden eine hohe Konzentration von Radon zu erwarten ist, müssen die Bundesländer als Radon-Vorsorgegebiete ausweisen. Bei sehr hohen Radon -Konzentrationen in der Bodenluft, wie sie in diesen Gebieten vorkommen können, kann Radon auch großflächig durch Dichtungsmaterialien ins Gebäude eindringen (diffundieren). Deshalb ist es in solchen Gebieten als Schutzmaßnahme nicht immer ausreichend, das Gebäude nur gegen Bodenfeuchte abzudichten. Unterkellerung Ältere Gebäude haben meist keine betonierte Kellerdecke, und die Kellertüren bieten Luftströmungen oft nur einen geringen Widerstand. Radonhaltige Luft aus dem Keller kann so in das Erdgeschoss des Gebäudes gelangen. Schon kleine Spalten im Kellerboden und in Kellerwänden oder ein nicht abgedichteter Ringspalt bei Leitungsdurchführungen begünstigen den Eintritt radonhaltiger Bodenluft. Nachträglich oder nicht verfugte Natursteingewölbe und offene oder nur mit Ziegel- bzw. Natursteinen belegte Kellerböden können aus dem Untergrund eindringende radonhaltige Bodenluft nur in sehr geringem Maße aufhalten. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 04.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Was ist Radon?

Was ist Radon? Radon kommt überall in der Umwelt vor. Es entsteht im Boden als eine Folge des radioaktiven Zerfalls von natürlichem Uran , das im Erdreich in vielen Gesteinen vorkommt. Radon ist ein radioaktives Gas, das man weder sehen, riechen oder schmecken kann. Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Aus natürlichem Uran in Böden und Gesteinen entsteht Radon , das sich in Gebäuden ansammeln kann. Dort erhöht es das Lungenkrebsrisiko der Bewohner. Radon ist ein radioaktives Gas, das man weder sehen, riechen oder schmecken kann. Radon wird aus allen Materialien freigesetzt, in denen Uran vorhanden ist. Es kommt überall auf der Welt vor. Der größte Teil der Strahlung , der die Bevölkerung aus natürlichen Strahlenquellen in Deutschland ausgesetzt ist, ist auf Radon zurückzuführen. Radon als Teil der Zerfallsreihe von Uran-238 Zerfallsreihe von Radon-222 Radon entsteht als Zwischenprodukt der Zerfallsreihe des in allen Böden und Gesteinen vorhandenem Uran -238 über Radium-226. Die Isotope (Sonderformen) Radon -219 (historisch "Actinon" genannt), Radon -220 ("Thoron") und Radon-222 ( Radon ) sind Teile der natürlichen Zerfallsreihen von Uran -235 ( Uran -Actinium-Reihe) Thorium-232 (Thorium-Reihe) und Uran -238 ( Uran -Radium-Reihe). Sie sind selbst radioaktiv, d.h. ihre Atomkerne zerfallen mit der Zeit und senden dabei Strahlung aus. Wenn auf www.bfs.de von " Radon " die Rede ist, ist immer Radon-222 aus der Uran -Radium-Reihe gemeint. Strahlenbelastung durch Radon Radon ist ein radioaktives Element. Der Atomkern radioaktiver Elemente ist instabil und zerfällt. Bei diesem Zerfall entsteht Strahlung . Die Halbwertszeit von Radon beträgt 3,8 Tage. Das bedeutet, dass – unabhängig davon, in welcher Konzentration Radon vorhanden ist – nach fast vier Tagen die Hälfte davon in seine Folgeprodukte zerfallen ist. Kurzlebige Radon -Folgeprodukte sind Isotope von Polonium, Wismut und Blei. Diese sind ebenfalls radioaktiv und haben eine sehr kurze Halbwertszeit . Ihre Atomkerne zerfallen in wenigen Minuten und senden dabei Alphastrahlen aus, die menschliches Gewebe schädigen können. Die radioaktiven Radon -Folgeprodukte lagern sich an Aerosole (feinste Teilchen in der Luft) an, die eingeatmet werden. Wenn die Radon -Folgeprodukte in der Lunge zerfallen, senden sie dort Strahlung aus. Diese Strahlung kann Zellen im Gewebe der Lunge schädigen und so Lungenkrebs auslösen. Radon-Risiko in Gebäuden Radon wird über Poren, Spalten und Risse aus Böden und Gesteinen freigesetzt – und gelangt auch in Gebäude. Dort sammelt sich Radon in Innenräumen an. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs . Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Verschiedene Schutzmaßnahmen helfen, die Konzentration von Radon in einem Gebäude zu verringern. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Feinstaub-Belastung

Feinstaub-Belastung Gegenüber den 1990er Jahren konnte die Feinstaubbelastung erheblich reduziert werden. Zukünftig ist zu erwarten, dass die Belastung eher langsam abnehmen wird. Großräumig treten heute PM10-Jahresmittelwerte unter 20 Mikrogramm pro Kubikmeter (µg/m³) auf. Feinstaubkonzentrationen in Deutschland Die Ländermessnetze führen seit dem Jahr 2000 flächendeckende Messungen von Feinstaub der Partikelgröße ⁠ PM10 ⁠ (Partikel mit einem aerodynamischen Durchmesser von 10 Mikrometer oder kleiner) und seit 2008 auch der Partikelgröße ⁠ PM2,5 ⁠ durch. Besonders hoch ist die Messnetzdichte in Ballungsräumen. Die hohe Zahl und Dichte an Emittenten – beispielsweise Hausfeuerungsanlagen, Gewerbebetriebe, industrielle Anlagen und der Straßenverkehr – führen zu einer erhöhten Feinstaubkonzentration in Ballungsräumen gegenüber dem Umland. Besonders hohe Feinstaubkonzentrationen werden unter anderem wegen der starken verkehrsbedingten Emissionen wie (Diesel-)Ruß, Reifenabrieb sowie aufgewirbeltem Staub an verkehrsnahen Messstationen registriert. Während zu Beginn der 1990er Jahre im Jahresmittel großräumig Werte um 50 Mikrogramm pro Kubikmeter (µg/m³) gemessen wurden, treten heute PM10-Jahresmittelwerte zwischen 15 und 20 µg/m³ auf. Die im ländlichen Raum gelegenen Stationen des ⁠ UBA ⁠-Messnetzes verzeichnen geringere Werte. Die Feinstaub-Immissionsbelastung wird nicht nur durch direkte Emissionen von Feinstaub verursacht, sondern zu erheblichen Teilen auch durch die ⁠ Emission ⁠ von gasförmigen Schadstoffen wie Ammoniak, Schwefeldioxid und Stickstoffoxiden. Diese reagieren in der Luft miteinander und bilden sogenannten „sekundären“ Feinstaub. Einhergehend mit einer starken Abnahme der Schwefeldioxid (SO 2 )-Emissionen und dem Rückgang der primären PM10-Emissionen im Zeitraum von 1995 bis 2000 sanken im gleichen Zeitraum auch die PM10-Konzentrationen deutlich (siehe Abb. „Trend der PM10-Jahresmittelwerte“). Der Trend der Konzentrationsabnahme setzt sich seitdem fort. Die zeitliche Entwicklung der PM10-Konzentrationen wird von witterungsbedingten Schwankungen zwischen den einzelnen Jahren – besonders deutlich in den Jahren 2003 und 2006 erkennbar – überlagert. Erhöhte Jahresmittelwerte wurden auch 2018 gemessen, die auf die besonders langanhaltende, zehnmonatige Trockenheit von Februar bis November zurückzuführen sind. Überschreitungssituation Lokal und ausschließlich an vom Verkehr beeinflussten Stationen in Ballungsräumen traten in der Vergangenheit gelegentlich Überschreitungen des für das Kalenderjahr festgelegten Grenzwerts von 40 µg/m³ auf. Seit 2012 wurden keine Überschreitungen dieses Grenzwertes mehr festgestellt. Seit 2005 darf auch eine ⁠ PM10 ⁠-Konzentration von 50 Mikrogramm pro Kubikmeter (µg/m³) im Tagesmittel nur an höchstens 35 Tagen im Kalenderjahr überschritten werden. Überschreitungen des Tageswertes von 50 µg/m³ werden vor allem in Ballungsräumen an verkehrsnahen Stationen festgestellt. Die zulässige Zahl von 35 Überschreitungstagen im Kalenderjahr wurde hier in der Vergangenheit zum Teil deutlich überschritten (siehe Karten „Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 mg/m³“ und Abb. „Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes“). Vor allem das Jahr 2006 fiel durch erhebliche Überschreitungen der zulässigen Überschreitungstage auf, was auf lang anhaltende und intensive „Feinstaubepisoden“ zurückzuführen war. In den unmittelbar zurückliegenden Jahren traten nicht zuletzt durch umfangreiche Maßnahmen der mit Luftreinhaltung befassten Behörden keine Überschreitungen des Grenzwerts mehr auf. Auch 2023 wurde der Grenzwert somit an allen Messstationen in Deutschland eingehalten. Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2000-2008 Quelle: Umweltbundesamt Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2009-2017 Quelle: Umweltbundesamt Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2018-2023 Quelle: Umweltbundesamt Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Witterungsabhängigkeit Vor allem in trockenen Wintern, teils auch in heißen Sommern, können wiederholt hohe ⁠ PM10 ⁠-Konzentrationen in ganz Deutschland auftreten. Dann kann der Wert von 50 µg/m³ großflächig erheblich überschritten werden. Ein Beispiel für eine solche Belastungssituation zeigt die Karte „Tagesmittelwerte der Partikelkonzentration PM10“. Zum Belastungsschwerpunkt am 23. Januar 2017 wurden an etwa 56 % der in Deutschland vorhandenen PM10-Messstellen Tagesmittelwerte von über 50 µg/m³ gemessen. Die höchste festgestellte Konzentration betrug an diesem Tag 176 µg/m³ im Tagesmittel. Wie stark die PM10-Belastung während solcher Witterungsverhältnisse ansteigt, hängt entscheidend davon ab, wie schnell ein Austausch mit der Umgebungsluft erfolgen kann. Winterliche Hochdruckwetterlagen mit geringen Windgeschwindigkeiten führen – wie früher auch beim Wintersmog – dazu, dass die Schadstoffe nicht abtransportiert werden können. Sie sammeln sich in den unteren Luftschichten (bis etwa 1.000 Meter) wie unter einer Glocke. Der Wechsel zu einer Wettersituation mit stärkerem Wind führt zu einer raschen Abnahme der PM10-Belastung. Auch wenn die letzten Jahre eher gering belastet waren, können auch zukünftig meteorologische Bedingungen auftreten, die zu einer deutlich erhöhten Feinstaubbelastung führen können. Bürgerinnen und Bürger können laufend aktualisierte Feinstaubmessdaten und Informationen zu Überschreitungen der Feinstaubgrenzwerte in Deutschland im Internet und mobil über die UBA-App "Luftqualität" erhalten. Bestandteile des Feinstaubs Die Feinstaubbestandteile ⁠ PM10 ⁠ und ⁠ PM2,5 ⁠ sind Mitte der 1990er Jahre wegen neuer Erkenntnisse über ihre Wirkungen auf die menschliche Gesundheit in den Vordergrund der Luftreinhaltepolitik getreten. Mit der EU-Richtlinie 2008/50/EG (in deutsches Recht umgesetzt mit der 39. Bundes-Immissionsschutz-Verordnung (39. ⁠ BImSchV ⁠)), welche die bereits seit 2005 geltenden Grenzwerte für PM10 bestätigt und neue Luftqualitätsstandards für PM2,5 festlegt (siehe Tab. „Grenzwerte für den Schadstoff Feinstaub“), wurde dem Rechnung getragen. Als PM10 beziehungsweise PM2,5 (PM = particulate matter) wird dabei die Massenkonzentration aller Schwebstaubpartikel mit aerodynamischen Durchmessern unter 10 Mikrometer (µm) beziehungsweise 2,5 µm bezeichnet. Herkunft Feinstaub kann natürlichen Ursprungs sein oder durch menschliches Handeln erzeugt werden. Stammen die Staubpartikel direkt aus der Quelle - zum Beispiel durch einen Verbrennungsprozess - nennt man sie primäre Feinstäube. Als sekundäre Feinstäube bezeichnet man hingegen Partikel, die durch komplexe chemische Reaktionen in der ⁠ Atmosphäre ⁠ erst aus gasförmigen Substanzen, wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen, entstehen. Wichtige vom Menschen verursachte Feinstaubquellen sind Kraftfahrzeuge, Kraft- und Fernheizwerke, Abfallverbrennungsanlagen, Öfen und Heizungen in Wohnhäusern, der Schüttgutumschlag, die Tierhaltung sowie bestimmte Industrieprozesse. In Ballungsgebieten ist vor allem der Straßenverkehr eine bedeutende Feinstaubquelle. Dabei gelangt Feinstaub nicht nur aus Motoren in die Luft, sondern auch durch Bremsen- und Reifenabrieb sowie durch die Aufwirbelung des Staubes auf der Straßenoberfläche. Eine weitere wichtige Quelle ist die Landwirtschaft: Vor allem die Emissionen gasförmiger Vorläuferstoffe aus der Tierhaltung tragen zur Sekundärstaubbelastung bei. Als natürliche Quellen für Feinstaub sind Emissionen aus Vulkanen und Meeren, die Bodenerosion, Wald- und Buschfeuer sowie bestimmte biogene ⁠ Aerosole ⁠, zum Beispiel Viren, Sporen von Bakterien und Pilzen zu nennen. Während im letzten Jahrzehnt des 20. Jahrhunderts die Gesamt- und Feinstaubemissionen in Deutschland drastisch reduziert werden konnten, verlangsamte sich seither die Abnahme (siehe „Emission von Feinstaub der Partikelgröße PM10“ und „Emission von Feinstaub der Partikelgröße PM2,5“ ). Für die nächsten Jahre ist zu erwarten, dass die Staubkonzentrationen in der Luft weiterhin nur noch langsam abnehmen werden. Zur Senkung der PM-Belastung sind deshalb weitere Maßnahmen erforderlich. Gesundheitliche Wirkungen Feinstaub der Partikelgröße ⁠ PM10 ⁠ kann beim Menschen durch die Nasenhöhle in tiefere Bereiche der Bronchien eindringen. Die kleineren Partikel ⁠ PM2,5 ⁠ können bis in die Bronchiolen und Lungenbläschen vordringen und die ultrafeinen Partikel mit einem Durchmesser von weniger als 0,1 µm sogar bis in das Lungengewebe und den Blutkreislauf. Je nach Größe und Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen im Rachen, der Luftröhre und den Bronchien oder Schädigungen des Epithels der Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (zum Beispiel mit Auswirkungen auf die Herzfrequenzvariabilität). Eine langfristige Feinstaubbelastung kann zu Herz-Kreislauferkrankungen und Lungenkrebs führen, eine bestehende COPD (Chronisch Obstruktive Lungenerkrankung) verschlimmern, sowie das Sterblichkeitsrisiko erhöhen. Messdaten Mitte der 1990er Jahre wurde zunächst in einzelnen Ländermessnetzen mit der Messung von ⁠ PM10 ⁠ begonnen. Seit dem Jahr 2000 wird PM10 deutschlandweit gemessen. Für die Jahre, in denen noch nicht ausreichend Messergebnisse für die Darstellung der bundesweiten PM10-Belastung vorlagen, wurden PM10-Konzentrationen näherungsweise aus den Daten der Gesamtschwebstaubkonzentration (TSP) berechnet. Seit dem Jahr 2001 basieren alle Auswertungen ausschließlich auf gemessenen PM10-Daten. ⁠ PM2,5 ⁠ wird seit dem Jahr 2008 deutschlandweit an rund 200 Messstationen überwacht.

Kaminofen

Kaminofen: Auf Effizienz achten und Alternativen prüfen Welche Umweltaspekte Sie beim Kaminofen beachten sollten Verzichten Sie aus ⁠ Klimaschutz ⁠-, Luftreinhalte- und ökologischen Gründen auf die Nutzung von Holz zur Wärmeversorgung Ihres Hauses. Prüfen Sie den Austausch Ihres Kaminofens, wenn er älter als 15 Jahre ist. Achten Sie beim Erwerb eines Kaminofens auf einen hohen Nutzungsgrad und geringe Schadstoffemissionen. Verbrennen Sie nur trockenes und unbehandeltes Holz. Orientieren Sie sich beim Betrieb Ihres Kaminofens an der Bedienungsanleitung. Die Entsorgung der abgekühlten Asche hat über den Hausmüll (Restmülltonne) zu erfolgen. Gewusst wie Die Verbrennung von Holz, gerade von Scheitholz in kleinen Holzfeuerungsanlagen wie z.B. Kaminöfen ohne automatische Regelung, läuft nie vollständig ab und es entstehen neben gesundheitsgefährdenden Luftschadstoffen wie Feinstaub und polyzyklisch aromatischen Kohlenwasserstoffen (⁠ PAK ⁠) auch klimaschädliches Methan, Lachgas und Ruß. Holz ist ein begrenzter Rohstoff und wichtiger Kohlenstoffspeicher. Es sollte deshalb in Maßen und dann v.a. in langlebigen Holzprodukten genutzt werden. Daher sollten Sie aus gesundheitlichen, aus ⁠ Klimaschutz ⁠-, aber auch aus ökologischen Gründen auf die Nutzung von Holz zur Wärmeversorgung Ihres Hauses verzichten. Falls Holz dennoch in einem Ofen verbrannt wird, um Raumwärme bereitzustellen, sind einige Punkte zu beachten: Alte Öfen austauschen: Öfen, die älter als 15 Jahre sind, entsprechen in der Regel nicht mehr dem Stand der Technik. In den meisten Fällen lohnt es sich, einen effizienteren und emissionsarmen Ofen einzubauen. Dieser muss die 2. Stufe der Verordnung über kleine und mittlere Feuerungsanlagen (1. BImSchV) einhalten. Öfen, die zwischen dem 01. Januar 1995 und dem 21. März 2010 typgeprüft wurden, müssen bis zum 31. Dezember 2024 stillgelegt, nachgerüstet oder gegen einen neuen emissionsarmen Ofen ersetzt werden, wenn der bestehende Ofen die geltenden Grenzwerte nicht einhält. Hohe Energieeffizienzklasse wählen: Neben der Leistung sollten Sie beim Erwerb eines neuen Kaminofens auf einen hohen Nutzungsgrad und geringe Emissionen achten. Eventuelle Mehrkosten können in der Regel durch einen geringeren Brennstoffbedarf wieder eingespart werden. Die sparsamsten Kaminöfen erreichen Energieeffizienzklasse A+. Achten Sie auf eine möglichst hohe Energieeffizienz-Kennzahl von etwa 120 %. EU-Energielabel für wasserführendes Einzelraumheizgerät mit indirekter Heizfunktion Quelle: EU-Kommission EU-Energielabel für Kaminöfen Quelle: EU-Kommission Emissionsarme Anlagentechnik nutzen: Die Feuerungswärmeleistung eines Ofens muss an die örtlichen Gegebenheiten des Aufstellraums angepasst sein. Nur dann lässt sich dieser optimal und emissionsarm betreiben. Hierzu sollten Sie sich von Ihrem Schornsteinfeger oder Ihrer Schornsteinfegerin beraten lassen. Wählen Sie einen Ofen mit einer dicken Feuerraumauskleidung (z.B. Schamotte) und einer gut isolierten Sichtscheibe (2-fach Verglasung oder spezielle Reflexionsbeschichtung). Damit können hohe Temperaturen in der Brennkammer besser gehalten werden und die äußere Oberfläche des Ofens wird nicht zu heiß. Bei der Geometrie empfiehlt es sich, dass der Ofen höher als breit ist. Das verbessert die Flammenausbreitung und ist für einen emissionsarmen Betrieb vorteilhaft. Darüber hinaus sollten Sie darauf achten, dass der ausgewählte Ofen robust ist, keine wackligen Teile enthält und der Schließmechanismus für die Tür fest sitzt. Bei raumluftunabhängig betreibbaren Kaminöfen und Feuerstätten kommt die Verbrennungsluft nicht aus dem Umgebungsraum, sondern über eine separate Luftzufuhr. Dadurch lassen sich Wärmeverluste über den Schornstein größtenteils vermeiden. Wegen strengerer Normanforderungen haben solche raumluftunabhängigen Feuerstätten eine höhere Dichtheit und eine selbsttätig dicht schließende Tür. Ist Ihr Gebäude besonders gut gedämmt oder verfügt es über eine zentrale Belüftung, ist eine separate Luftzufuhr für den Kaminofen unbedingt erforderlich. Für eine möglichst bequeme Handhabung der Anlage achten Sie bei der Auswahl auf eine moderne Steuerung und Regelung. Sie sorgt dafür, dass Sie nur wenig tun müssen. Eine Abgassensorik mit Steuerung und Regelung überwacht die Verbrennung, sorgt für eine optimale Luftzufuhr in den Brennraum und reduziert die Emissionen. Einige Kaminöfen verfügen auch über nachgeschaltete Katalysatoren, um die Emissionen unverbrannter gasförmiger Luftschadstoffe zu reduzieren. Darüber hinaus gibt es auch Öfen, die über integrierte oder nachgeschaltete Staubabscheider verfügen, um niedrige Staubemissionen zu gewährleisten. Der Blaue Engel für Kaminöfen für Holz gibt Orientierung beim Kauf eines Kaminofens. Er zeichnet Geräte aus, die niedrige Staub- und Schadstoffemission aufweisen und die bedienerfreundlich sind. Fragen Sie beim Kauf, ob der ausgewählte Kaminofen die Kriterien des Blauen Engels einhalten kann. Trockenes Holz verwenden: Verbrennen Sie nur unbehandeltes, trockenes Holz, das richtig gelagert wurde. Bei optimaler Trocknung sinkt der Wasseranteil im Holz auf 15 bis 20 Prozent. Dies dauert – je nach Holzart – etwa ein bis zwei Jahre. Erst dann ist das Holz zum Heizen geeignet. Damit das Brennholz richtig durchtrocknen kann, sollten Sie es an einem sonnigen und luftigen Platz vor Regen und Schnee geschützt aufstapeln. Zudem sollte das Brennholz keinen Kontakt zum Erdreich haben, da es sonst aus dem Boden Feuchtigkeit ziehen kann. Dies kann mit einem durchlüfteten Unterbau, beispielsweise bestehend aus zwei Querstangen, gewährleistet werden. Gespaltenes Holz trocknet besser und zeigt auch ein besseres Abbrandverhalten. Mit Holzfeuchtemessgeräten lässt sich die Brennstofffeuchte überprüfen. Staubabscheider einbauen: Durch den Einsatz von Staubabscheidern können niedrige Schadstoffemissionen bei Kaminöfen erreicht werden. Eine Übersicht über bauartzugelassene Staubabscheider finden Sie auf der Internetseite des Deutschen Institut für Bautechnik (DiBt). Für weitere Informationen empfehlen wir unsere Broschüre Heizen mit Holz . Entsorgung der Asche: Die abgekühlte Asche sollte in der Restmülltonne entsorgt werden. Für Garten und Kompost ist sie nicht geeignet, da es sonst zu einer Anreicherung von Schwermetallen (die natürlich im Holz vorhanden sind) und von Schadstoffen aus der Verbrennung (z.B. PAKs) im Boden kommt. Was Sie noch tun können: Prüfen Sie die Alternative einer Heizung mit brennstofffreien erneuerbaren Energien (Solarthermie, Wärmepumpe, Nah-/Fernwärme). Kombination mit weiteren erneuerbaren Energien: Ein wasserführender Kaminofen lässt sich sehr gut solar unterstützen. Beachten Sie hierzu unsere Tipps zu Sonnenkollektoren . Beachten Sie auch unsere Tipps zum Sparen von Heizenergie . Beachten Sie auch unsere Tipps zu Pelletöfen und Pelletkessel . Beziehen Sie das Holz aus Ihrer Region und achten Sie auf Holz aus nachhaltiger Forstwirtschaft. Hintergrund Umweltsituation: Die Verbrennung von Holz, insbesondere von Scheitholz in kleinen Holzfeuerungsanlagen wie z.B. Kaminöfen ohne automatische Regelung, läuft nie vollständig ab. Es entstehen gesundheitsgefährdende Luftschadstoffe wie Staub bzw. Feinstaub, Kohlenwasserstoffverbindungen wie polyzyklisch aromatische Kohlenwasserstoffe (⁠PAK⁠), klimaschädliches Methan, Lachgas und Ruß. Der Staub, der in die Luft gelangt, wird als Feinstaub bezeichnet, da dieser zu über 90 Prozent aus sehr kleinen Partikeln mit einer Größe unter 10 µm besteht (abgekürzt als ⁠PM10⁠). Dies ist kleiner als der Durchmesser eines menschlichen Haares. Diese sehr feinen, mit dem Auge nicht sichtbaren Partikel können beim Einatmen bis in die Lunge eindringen und so die Gesundheit beeinträchtigen. Je kleiner die Partikel sind, desto tiefer gelangen diese in den Atemtrakt. Erkrankungen der Atemwege (z. B. Asthma, Bronchitis, Lungenkrebs), des Herz-Kreislauf-Systems (z. B. Arteriosklerose, Bluthochdruck), des Stoffwechsels (z. B. Diabetes Mellitus Typ 2) oder des Nervensystems (z. B. Demenz) können die Folge sein. Besonders für Kinder, Personen mit vorgeschädigten Atemwegen und ältere Menschen stellt Feinstaub eine starke gesundheitliche Belastung dar. Der Staub, der in die Luft gelangt, wird als Feinstaub bezeichnet, da dieser zu über 90 Prozent aus sehr kleinen Partikeln mit einer Größe unter 10 µm besteht (abgekürzt als ⁠PM10⁠). Dies ist kleiner als der Durchmesser eines menschlichen Haares. Diese sehr feinen, mit dem Auge nicht sichtbaren Partikel können beim Einatmen bis in die Lunge eindringen und so die Gesundheit beeinträchtigen. Je kleiner die Partikel sind, desto tiefer gelangen diese in den Atemtrakt. Erkrankungen der Atemwege (z. B. Asthma, Bronchitis, Lungenkrebs), des Herz-Kreislauf-Systems (z. B. Arteriosklerose, Bluthochdruck), des Stoffwechsels (z. B. Diabetes Mellitus Typ 2) oder des Nervensystems (z. B. Demenz) können die Folge sein. Besonders für Kinder, Personen mit vorgeschädigten Atemwegen und ältere Menschen stellt Feinstaub eine starke gesundheitliche Belastung dar. Die meisten Kohlenwasserstoffverbindungen sind unangenehm riechende Schadstoffe, zu denen auch polyzyklisch aromatische Kohlenwasserstoffe (PAKs) gehören. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe. Die meisten Kohlenwasserstoffverbindungen sind unangenehm riechende Schadstoffe, zu denen auch polyzyklisch aromatische Kohlenwasserstoffe (PAKs) gehören. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe. Weiterhin entstehen bei der Verbrennung von Holz giftiges Kohlenmonoxid sowie die klimaschädlichen Gase Methan und Lachgas. Methan trägt 25-mal und Lachgas 298-mal stärker zur Erderwärmung bei als die gleiche Menge Kohlendioxid. Die Verbrennung von Holz setzt auch den im Holz gebundenen Kohlenstoff in Form von Kohlendioxid frei. Nur wenn im Sinne einer nachhaltigen Waldwirtschaft eine entsprechende Holzmenge zeitnah nachwächst, ist die Kohlenstoffbilanz im Wald ausgeglichen. Hinzu kommen die Emissionen durch Holzernte, Transport und Bearbeitung, die umso geringer sind, je regionaler die Holznutzung erfolgt. Zur Erreichung der klimapolitischen Ziele muss der Wald als Kohlenstoffsenke erhalten bleiben. Mehr noch: die Senkenleistung der Wälder sollte maximiert werden, um die ambitionierten Ziele im Bereich ⁠ Landnutzung ⁠, ⁠ Landnutzungsänderung ⁠ und Forst (⁠ LULUCF ⁠) zu erreichen. Dazu muss mehr Holz neu nachwachsen als aus dem Wald entnommen wird. Das klimafreundliche Potenzial zur Nutzung von Holz ist demnach begrenzt. Im Vergleich zu Holzheizungen kann außerdem mit langlebigen Holzprodukten mehr ⁠ Klimaschutz ⁠ erzielt werden (Kaskadennutzung). Von der energetischen Holznutzung ist deshalb aus Klimaschutzgründen abzuraten, insbesondere dann, wenn brennstofffreie erneuerbare Alternativen zur Raumwärmebereitstellung zur Verfügung stehen, wie z.B. Wärmepumpen oder Solarthermie. Gesetzeslage: Die Verordnung über kleine und mittlere Feuerungsanlagen (1. BImSchV) enthält Grenzwerte für die Luftschadstoffemissionen von Einzelraumfeuerungsanlagen wie Kamin- und Kachelöfen. Nach der ersten Inbetriebnahme und nach einem Betreiberwechsel ist ein Beratungsgespräch durch den Schornsteinfeger oder die Schornsteinfegerin vorgeschrieben. Des Weiteren fordert die 1. BImSchV eine Inspektion des Brennstofflagers zweimal in sieben Jahren. Die Überprüfung der Einhaltung der Grenzwerte erfolgt auf dem Prüfstand durch den Hersteller. Ausnahme sind wasserführende Einzelraumfeuerungsanlagen wie Kamin- oder Pelletöfen, die nicht nur den Aufstellraum beheizen. Diese müssen bei der wiederkehrenden Messung des Schornsteinfegerhandwerks die Grenzwerte der 2. Stufe der 1. BImSchV einhalten, sonst dürfen diese Geräte nicht weiter betrieben werden. Bei einer geplanten Neuinstallation einer Feuerungsanlage oder bei einem Neubau sollten die Abgase nach dem Stand der Technik (VDI 3781 Blatt 4) abgeleitet werden. Nur hierdurch können ein ungestörter Abtransport der Abgase und eine ausreichende Verdünnung der Abgase erreicht werden. Die Verordnung (EU) Nr. 2015/1186 macht seit 2018 die Energieverbrauchskennzeichnung für Einzelraumheizgeräte verpflichtend. Ab dem 1.1.2022 regelt die Verordnung (EU) Nr. 2015/1185 die Energieeffizienz und Luftschadstoffemissionen neuer Festbrennstoff-Einzelraumheizgeräte. Weitere Informationen finden Sie hier: Holzheizungen: Schlecht für Gesundheit und Klima (⁠ UBA ⁠-Themenseite)

1 2 3 4 519 20 21