API src

Found 244 results.

Related terms

Effects of canopy structure on salinity stress in cucumber (Cucumis sativus L.)

Das Projekt "Effects of canopy structure on salinity stress in cucumber (Cucumis sativus L.)" wird vom Umweltbundesamt gefördert und von Hochschule Geisenheim University, Zentrum für Wein- und Gartenbau, Institut für Gemüsebau durchgeführt. Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.

14C content of specific organic compounds in subsoils

Das Projekt "14C content of specific organic compounds in subsoils" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Organic matter (OM) composition and dynamic in subsoils is thought to be significantly different from those in surface soils. This has been suggested by increasing apparent 14C ages of bulk soil OM with depth suggesting that the amount of fresh, more easily degradable components is declining. Compositional changes have been inferred from declining ä13C values and C/N ratios indicative for stronger OM transformation. Beside these bulk OM data more specific results on OM composition and preservation mechanisms are very limited but modelling studies and results from incubation experiments suggest the presence and mineralization of younger, 'reactive carbon pool in subsoils. Less refractory OM components may be protected against degradation by interaction with soil mineral particles and within aggregates as suggested by the very limited number of more specific OM analysis e.g., identification of organic compound in soil fractions. The objective of this project is to characterize the composition, transformation, stabilization and bioavailability of OM in subsurface horizons on the molecular level: 1) major sources and compositional changes with depth will be identified by analysis of different lipid compound classes in surface and subsoil horizons, 2) the origin and stabilization of 'reactive OM will be revealed by lipid distributions and 14C values of soil fractions and of selected plant-specific lipids, and 3) organic substrates metabolized by microbial communities in subsoils are identified by distributional and 14C analysis of microbial membrane lipids. Besides detailed analyses of three soil profiles at the subsoil observatory site (Grinderwald), information on regional variability will be gained from analyses of soil profiles at sites with different parent material.

Modes of vector transmission of Cherry leaf roll virus (CLRV) - molecular basis and potential arthropod vector species

Das Projekt "Modes of vector transmission of Cherry leaf roll virus (CLRV) - molecular basis and potential arthropod vector species" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Department für Nutzpflanzen- und Tierwissenschaften, Fachgebiet Phytomedizin durchgeführt. Cherry leaf roll virus (CLRV) is a plant pathogen of economic and ecologic importance. It is globally distributed in a wide range of forest, fruit, and ornamental trees and shrubs. In several areas of cherry and walnut production CLRV causes severe losses in yield and quality. With current reference to the rapid dissemination and strong symptom expression in Finnish birches and the Germany-wide distribution of CLRV in birches and elderberry, we continuously investigate and gradually reveal CLRV transmission pathways as by pollen, seeds or water. However, modes and interactions responsible for the wide intergeneric host transmission as well as for the exceptional CLRV epidemic in Fennoscandia still remain unknown. In this project systematic studies shall investigate biological vectors as a causal agent to finally derive control mechanisms and strategies to avoid new epidemics in different hosts and geographic regions. Detailed monitoring of the invertebrate fauna of birch stands/forests and elderberry plantations in Germany and Finland shall reveal potential vectors to subsequently study them in detail by approved virus detection methods and transmission experiments. Molecular analyses of the CLRV coat protein shall prove its role as a viral determinant for a virus/vector interaction. Consequently, this project essentially will contribute important answers on the CLRV epidemiology, and this will be a key element within the first network of research on plant viral pathogens in forest trees.

Teilprojekt B 06: Verhalten und Transport von Mikroplastik in gestörten und ungestörten Böden

Das Projekt "Teilprojekt B 06: Verhalten und Transport von Mikroplastik in gestörten und ungestörten Böden" wird vom Umweltbundesamt gefördert und von Universität Köln, Geographisches Institut, Arbeitsgruppe Ökosystemforschung durchgeführt. Die Kontamination von Ökosystemen durch Mikroplastik (MP) wurde bislang vor allem für aquatische Systeme beschrieben. Inzwischen ist allerdings bekannt, dass auch Böden davon betroffen sind. Das Ziel dieses Teilprojekts ist es, ein grundlegendes mechanistisches Verständnis von Verhalten und Transport von MP-Partikeln in Böden in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe zu erlangen. In dieser Phase des SFBs konzentrieren wir uns auf die Modellsysteme 'Durchflusszelle', 'Bodensäule' und 'Bodenkasten' und untersuchen die Teilaspekte (I) Transport von MP in porösen Medien und Böden, (II) Transport, Erosion und Deposition von MP an Bodenoberflächen und (III) Detektion, Quantifizierung und Visualisierung von MP in Böden. In (I) und (III) berücksichtigen wir zudem die Rolle von Bodenorganismen für Transport und Verteilung von MP-Partikeln in Böden. Das in diesem Teilprojekt gewonnene mechanistische Verständnis zum Verhalten und Transport von MP-Partikeln ist für eine wissenschaftlich fundierte Bewertung der Umweltrisiken von MP existierender Massenkunststoffe im Ökosystem Boden unerlässlich.

Adaptations and counter-adaptations in the coevolutionary arms race of a baculovirus and its insect host

Das Projekt "Adaptations and counter-adaptations in the coevolutionary arms race of a baculovirus and its insect host" wird vom Umweltbundesamt gefördert und von Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Biologischen Pflanzenschutz durchgeführt. Cydia pomonella granulovirus (CpGV, Baculoviridae) is one of the most important agents for the control of codling moth (CM, Cydia pomonella, L.) in both biological and integrated pest management. The rapid emergence of resistance against CpGV-M, which was observed in about 40 European CM field populations from 2003 on, could be traced back to a single, dominant, sex-linked gene. Since then, resistance management has been based on mixtures of new CpGV isolates (CpGV-I12, -S), which are able to overcome this resistance. Recently, resistance even to these novel isolates was observed in CM field populations. This resistance does not follow the described dominant, sex-linked inheritance trait. At the same time, another isolate CpGV-V15 was identified showing high virulence against these resistant populations. To elucidate this novel resistance mechanism and to identify the resistance gene(s) involved, we propose a comprehensive analysis of this resistance on the cellular and genomic level of codling moth. Because of the lack of previous knowledge of the molecular mechanisms of virus resistance in insects, several different and complementary approaches will be pursued. This study will not only give an in-depth insight into the genetic possibilities for development of baculovirus resistance in CM field populations and how the virus overcomes it, but can also serve as an important model for other baculovirus-host interaction systems.

Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)

Das Projekt "Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)" wird vom Umweltbundesamt gefördert und von Universität Bochum, Geographisches Institut, Arbeitsgruppe Bodenkunde und Bodenökologie durchgeführt. We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.

Forest-Climate Projects KWAMP and PAPSTA (Rwanda)

Das Projekt "Forest-Climate Projects KWAMP and PAPSTA (Rwanda)" wird vom Umweltbundesamt gefördert und von GFA Envest GmbH durchgeführt. Aim of the assignment was to undertake a feasibility study within the Kirehe 'Community Based Watershed Management Project' (KWAMP) and the 'Project for the Strategic Plan for the Transformation of Agriculture' (PAPSTA) do qualify as CDM projects according to the regulations of the Kyoto protocol. Services provided: Clarification of the additionality for both projects; Determination whether the projects can be implemented as Programme of Activities (PoA); Revision and improvement of technical mechanisms for monitoring, for continued support to the establishment of agroforestry systems, and for sharing monetary incentives with participating farmers; Assessment of the carbon finance opportunities for the planned small-scale biogas fermenters; Development of the Carbon Finance Documents for both projects based on the standard of the BioCarbon Fund of the World Bank.

Teilprojekt Z 03: Zentrales Verwaltungsprojekt

Das Projekt "Teilprojekt Z 03: Zentrales Verwaltungsprojekt" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Tierökologie I durchgeführt.

Drivers and mechanisms of 13C discrimination in Cleistogenes squarrosa (C4) - reducing uncertainties on bundle sheath leakiness

Das Projekt "Drivers and mechanisms of 13C discrimination in Cleistogenes squarrosa (C4) - reducing uncertainties on bundle sheath leakiness" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Grünlandlehre durchgeführt. The energetic efficiency of C4 photosynthesis is strongly affected by bundle sheath leakiness, which is commonly assessed with the 'linear version' of the Farquhar model of 13C discrimination, and leaf gas exchange and 13C composition data. But, the linear Farquhar model is a simplification of the full mechanistic theory of ? in C4 plants, potentially generating errors in the estimation of leakiness. In particular, post-photosynthetic C isotope fractionation could cause large errors, but has not been studied in any detail. The present project aims to improve the understanding of the ecological and developmental/physiological factors controlling discrimination and leakiness of the perennial grass Cleistogenes squarrosa. C. squarrosa is the most important member of the C4 community which has spread significantly in the Mongolia grasslands in the last decades. It has an unusually high and variable discrimination, which suggests very high (and potentially highly variable) leakiness. Specifically, we will conduct the first systematic study of respiratory 13C fractionation in light and dark at leaf- and stand-scale in this C4 species, and assess its effect on discrimination and estimates of leakiness. These experiments are conducted in specialized 13CO2/12CO2 gas exchange mesocosms using ecologically relevant scenarios, testing specific hypotheses on effects of environmental drivers and plant and leaf developmental stage on discrimination and leakiness.

AHK-4D - High-resolution and high-frequency monitoring of the rock glacier Äußeres Hochebenkar (AHK) in Austria

Das Projekt "AHK-4D - High-resolution and high-frequency monitoring of the rock glacier Äußeres Hochebenkar (AHK) in Austria" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Geographisches Institut, Abteilung Geoinformatik durchgeführt. The aim of this project is to develop a methodology to quantify the magnitudes and frequencies of individual surface change processes of a rock glacier over several years. We do this by analyzing three dimensional (3D) surface change based on high-resolution, high-frequency and multisource LiDAR data. The derived information will enable us to develop methods to automatically characterize and disaggregate multiple processes and mechanisms that contribute to surface change signals derived from less frequent monitoring (e.g. yearly). Such methods can enhance our general understanding of the spatial and temporal variability of rock glacier deformation and the interaction of rock glaciers with connected environmental systems.

1 2 3 4 523 24 25