Das Projekt "Effect of habitat fragmentation on reptiles in South East Asia" wird vom Umweltbundesamt gefördert und von Zoologisches Forschungsmuseum Alexander König - Leibniz-Institut für Biodiversität der Tiere durchgeführt. Fragmentation of the natural environment has contributed to major biodiversity loss in South East Asia. Reptiles represent a significant biomass and occupy important functions in our ecosystem. However, these organisms are highly sensitive to relatively minor changes in temperature and habitat alteration. In this study we will investigate the effects of habitat fragmentation and potentially climate change on agamids at several sites in Southeast Asia. We will identify the species richness of agamids, their habitat use, and their diet. By using morphometrics, we aim to correlate morphology and habitat use and diet to explore the ecological niches these lizards occupy. We will also test for microhabitat preferences and optima to understand the ecological impacts on these species caused by forest fragmentation. We hope to use this approach to lay the foundations for macro-ecological modelling proving insights into future distributions and the impact of habitat connectivity.
Das Projekt "Phosphorus transport along soil pathways in forested catchments" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Bodenkunde und Standortslehre durchgeführt. Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.
Das Projekt "Teilprojekt: ThermoSill - Die Effekte von lokaler Erwärmung auf die mikrobielle Aktivität in tiefen Sedimenten durch die Ausbreitung von Sills" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die kürzlich beendete IODP Exp. 385 (Guaymas Basin Tectonics and Biosphere, Sept.-Nov. 2019) bohrte acht Stellen im Guaymas Basin, einem jungen Rift Becken im Golf von Kalifornien, das sich durch aktiven Vulkanismus und hohe Ablagerungsraten von organisch reichen Sedimente auszeichnet, bedingt durch die hohe Primärproduktivität im darüber liegenden Wasser, sowie dem starken Eintrag von terrigenen Sedimenten. Die Expedition erbohrte Kerne mit organisch reichen Sedimenten die von vulkanischen Sills unterbrochen werden. Die Mikrobiologie war eines der zentralen Forschungsthemen dieser Expedition. Ein großer Probensatz zur Quantifizierung von Sulfatreduktionsraten, dem quantitativ wichtigsten Elektronenakzeptorprozess in marinen Sedimenten, wurde gesammelt und befindet sich nun am GFZ. Das vorgeschlagene ThermoSill-Projekt wird sich zunächst auf die allgemeinen Eigenschaften der mikrobiellen Sulfatreduktion in diesen Kernen sowie auf die Auswirkungen von Druck und Temperatur konzentrieren. Die Bohrkerne wiesen sehr unterschiedliche geothermische Gradienten von 200 bis über 800 Grad C / km auf, und die an Bord gemessenen geochemischen Daten weisen bereits auf eine große Vielfalt biogeochemischer Prozesse hin. In Tiefseesedimenten, insbesondere solchen, die solche in großer Sedimenttiefe und daher hoher in-situ Temperatur, sind organische Substrate wie kurzkettige organische Säuren im Allgemeinen ein begrenzender Faktor. Da die Sedimente im Guaymas-Becken hydrothermal beeinflusst werden, liefert die thermogene Aufspaltung von makromolekularen organischen Substanzen im Sediment reichlich mikrobielle Substrate. ThermoSill wird untersuchen, ob dieses große Angebot an Substraten zu einem bevorzugten Abbau bestimmter Substrate führt und damit wird damit einen Beitrag zum Verständnis der Prozesse an der oberen Temperaturgrenze des Lebens liefern. Besonderes Augenmerk wird auf die anaerobe Oxidation von Methan gelegt. Im letzten Teil des Projekts wird das Eindringen von Sills in Sedimente und der damit einhergehende Temperaturanstieg im umgebenden Sediment durch Heizexperimente simuliert. Diese Experimente werden von Pyrolyseexperimenten und kinetischen Modellen begleitet, um zu testen, ob eine solche kurzzeitige Erwärmung die mikrobielle Gemeinschaft über geologische Zeitskalen hinweg beeinflussen kann. Das vorgeschlagene Projekt ist direkt relevant für die Ziele der Expedition. Es ist auch eine Ergänzung zu einem laufenden Projekt, das die Auswirkungen von Druck und Temperatur auf die mikrobielle Sulfatreduktion in nicht hydrothermal beeinflussten Sedimenten aus dem Nankai-Trog (IODP. Exp. 370) untersucht.
Das Projekt "In-situ Messungen von eiskeimbildenden Partikeln (INP) und quantitative Bestimmung von biologischen INP" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.
Das Projekt "Teilprojekt: Änderungen der pazifischen meridionalen Umwälzzirkulation während des miozänen Klimaoptimums und der darauffolgenden Etablierung einer stabilen polaren Eiskappe" wird vom Umweltbundesamt gefördert und von Universität zu Kiel, Institut für Geowissenschaften, Arbeitsgruppe Marine Mikropaläontologie durchgeführt. Während der IODP Expedition 363 wurde erstmals eine mächtige und ungestörte Sedimentabfolge im Zentrum des Westpazifischen Warmwasserpools erbohrt (Site U1490, 05 Grad 48.95Ê1N, 142 Grad 39.27Ê1E in 2341 m Wassertiefe vor Papua New Guinea). Diese karbonat- und tonreiche Abfolge stellt ein ideales Sedimentarchiv dar, um an einer strategischen Position Änderungen in der Struktur der pazifischen Wassermassen und meridionalen Umwälzzirkulation während unterschiedlicher Phasen der Klimaentwicklung der Erde während des Überganges von einer nahezu eisfreien zu einer Erde mit einer stabilen polaren Eiskappe zu erfassen. Unser Projekt konzentriert sich dabei auf das Zeitintervall von ca. 18 bis 9 Millionen Jahren, das durch mehrere fundamentale Klimaänderungen charakterisiert war und es damit ermöglicht, die Zusammenhänge zwischen Änderungen in der Erdbestrahlung, Variabilität der Temperaturgradienten zwischen Äquator und polaren Breiten und Verschiebungen in der atmosphärischen und Ozean-Zirkulation auf einer wärmeren Erde zu untersuchen. Daneben ist Site U1490 von ca.18 bis 9 Millionen Jahren vor heute durch eine aussergewöhnlich gut belegte Magnetostratigraphie charakterisiert, die erstmals eine direkte Korrelation einer hochauflösenden Isotopen-Zyklostratigraphie mit der Geomagnetischen Polaritäts-Zeitskala (GPTS) ermöglicht. Durch diese verifizierte und verfeinerte Chronostratigraphie werden die benthischen stabilen Isotopen- und Karbonatakkumulationsdaten in Site U1490 wesentlich zum Verständnis des zeitlichen Ablaufs der Änderungen in der pazifischen Tiefenwasser-Zirkulation und deren Wechselwirkungen mit dem Klimawandel in niedrigen und hohen Breiten beitragen. Im Detail wollen wir mit diesen neuen Daten die folgenden Hypothesen überprüfen: (1) Änderungen des Äquator-Pol Temperaturgradienten wirken sich stark auf die Bildung von tiefen und intermediären Wassermassen und die Intensität der pazifischen meridionalen Umwälzzirkulation aus; (2) die Expansion korrosiver intermediärer und tiefer Wassermassen aus dem Südozean und die Abschwächung der Tiefenventilation infolge der Ausdehnung des antarktischen Eisschildes während des mittelmiozänen Klimaübergangs trug zu erhöhter CO2-Speicherung im Tiefenwasser und zur Karbonatarmut in den Tiefsee-Sedimenten des Pazifischen und Indischen Ozeans bei; (3) der Indonesische Durchstrom spielte im mittleren Miozän noch eine Schlüsselrolle für den Austausch intermediärer und tiefer Wassermassen zwischen Pazifik und Indischem Ozean mit entprechenden Auswirkungen auf das Wärmebudget und die Wechselwirkungen zwischen Ozean und Atmosphäre im Indischen Ozean.
Das Projekt "Vom Labor ins Feld: Untersuchungen zum Immersionsgefrieren von atmosphärenrelevanten Eisnukleationskeimen" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Das hier vorgeschlagene Projekt, RP6 in INUIT-2, zielt darauf hin, fundamentales Prozessverständnis in Bezug auf heterogene Eisnukleation zu erzielen, und hier besonders auf die Rolle von biogenen Eiskeimen und von Eiskeimen die aus Mischungen von biogenem und mineralischem Material bestehen. Der Leipzig Aerosol Cloud Interaction Simulator (LACIS) wird dazu verwendet werden, das Immersionsgefrierverhalten einer Reihe von verschiedenen Eiskeimen zu untersuchen, darunter biogene (von Pilzen stammende) Eiskeime, solche die aus einer Mischung von biogenem und mineralischem Material bestehen wie Bodenstäube und Proben die innerhalb von INUIT-2 als Test-Materialen verwendet werden. Letztere werden von verschiedenen Gruppen von innerhalb und außerhalb von INUIT vermessen werden, und die Ergebnisse werden Vergleichen unterzogen werden, ähnlich denen, die bereits für einfachere Test-Materialien in INUIT-1 erfolgreich durchgeführt worden sind. Für die Eiskeime, die zur Untersuchung in RP6 vorgeschlagen werden, wird in sinnvollen und machbaren Fallen eine Oberflächenbehandlung durchgeführt werden, mit reaktiven und mit chemisch inerten Substanzen, deren Einfluss auf die Eiskeimfähigkeit dann untersucht wird. Wie bereits in früheren LACISStudien dokumentiert, sind kontrollierte Oberflächenbehandlungen ein ausgezeichnetes Instrument um zu ermitteln, was dazu führt, dass ein Partikel ein effektiver Eiskeim ist. Zusätzlich erhellen diese Untersuchungen den Effekt der Alterung auf die Eiskeime. Es ist auch geplant, die Messungen auszuweiten, hin zu Bedingungen unter denen eine Untersättigung bezüglich Wasserdampf vorliegt. Es soll untersucht werden in wie weit sich die Eiskeimbildung unter diesen Bedingungen verhält wie es im Fall von Immersionsgefrieren in konzentrierten Lösungen zu erwarten wäre. Von all den experimentell erhaltenen Daten werden verschiedene Parametrisierungen abgeleitet, sowohl zeit-abhängige als auch zeit-unabhängige, die dann der Wissenschaftsgemeinschaft für die weitere Verwendung in Modellen zur Verfügung gestellt werden. Die hier vorgeschlagenen Studien werden die bereits erfolgreich an LACIS während INUIT-1 durchgeführten Arbeiten ergänzen, da die Arbeiten in INUIT-1 stärker auf die Untersuchung reiner Mineralstäube und reiner biogener Substanzen hinzielten. Die Untersuchung von komplexeren und entsprechend mehr atmosphärenrelevanten Eiskeimen wird signifikant dazu beisteuern, atmosphärische Eiskeimbildung generell besser zu verstehen, und die entsprechenden Beiträge von mineralischen und biogenen Substanzen zu quantifizieren.
Das Projekt "Profilierende Methanmessung in der Ostsee: Cryptophan als chemischer in situ sensor" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung Warnemünde (IOW), Sektion Meereschemie durchgeführt. To overcome the limitation in spatial and temporal resolution of methane oceanic measurements, sensors are needed that can autonomously detect CH4-concentrations over longer periods of time. The proposed project is aimed at:- Designing molecular receptors for methane recognition (cryptophane-A and -111) and synthesizing new compounds allowing their introduction in polymeric structure (Task 1; LC, France); - Adapting, calibrating and validating the 2 available optical technologies, one of which serves as the reference sensor, for the in-situ detection and measurements of CH4 in the marine environments (Task 2 and 3; GET, LAAS-OSE, IOW) Boulart et al. (2008) showed that a polymeric filmchanges its bulk refractive index when methane docks on to cryptophane-A supra-molecules that are mixed in to the polymeric film. It is the occurrence of methane in solution, which changes either the refractive index measured with high resolution Surface Plasmon Resonance (SPR; Chinowsky et al., 2003; Boulart et al, 2012b) or the transmitted power measured with differential fiber-optic refractometer (Boulart et al., 2012a; Aouba et al., 2012).- Using the developed sensors for the study of the CH4 cycle in relevant oceanic environment (the GODESS station in the Baltic Sea, Task 4 and 5; IOW, GET); GODESS registers a number of parameters with high temporal and vertical resolution by conducting up to 200 vertical profiles over 3 months deployment with a profiling platform hosting the sensor suite. - Quantifying methane fluxes to the atmosphere (Task 6); clearly, the current project, which aims at developing in-situ aqueous gas sensors, provides the technological tool to achieve the implementation of ocean observatories for CH4. The aim is to bring the fiber-optic methane sensor on the TRL (Technology Readiness Level) from their current Level 3 (Analytical and laboratory studies to validate analytical predictions) - to the Levels 5 and 6 (Component and/or basic sub-system technology validation in relevant sensing environments) and compare it to the SPR methane sensor, taken as the reference sensor (current TRL 5). This would lead to potential patent applications before further tests and commercialization. This will be achieved by the ensemble competences and contributions from the proposed consortium in this project.
Das Projekt "PRemature Obsolescence Multi-Stakeholder Product Testing Program (PROMPT)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein durchgeführt.
Das Projekt "Joint Initiative for hydrogen Vehicles across Europe (JIVE)" wird vom Umweltbundesamt gefördert und von Element Energy Ltd. durchgeführt.
Das Projekt "Differentielles Absorptionsradar im G-Band mit Dopplerfähigkeit" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Unser Verständnis des atmosphärischen Wasserkreislaufs ist von grundlegender Bedeutung für die Modellierung von Wetter und Klima. Gerade Prozesse der atmosphärischen Grenzschicht und der Wolkenmikrophysik müssen besser verstanden werden, wozu es insbesondere Beobachtungen der vertikalen Wasserdampfverteilung und der Kondensatlast der Wolken bedarf. Dies ist besonders für klimasensitive Gebiete mit wenigen Beobachtungen wie der Arktis oder anderen Wüstenregionen von großer Bedeutung.Kürzlich wurde die Methode des Differential-Absorptions-Radar (DAR) vorgeschlagen, um die Lücke bei der Messung des Wasserdampfs in Wolken zu schließen. Erste bodengestützte Testmessungen als Proxy für zukünftige Weltraummissionen der NASA wurden durchgeführt. DAR nutzt die differentielle Absorption an der 183-GHz-Wasserdampflinie, dem sogenannten G-Band, das bisher nicht für die Atmosphärenforschung genutzt wurde. Theoretische Arbeiten der Antragsteller zeigen den großen Nutzen von DAR auch für boden- und flugzeuggestützte Messungen. Unser besonderes Interesse gilt der Arktis, wo Feuchtigkeitsinversionen und Mischphasenwolken besondere Herausforderungen darstellen. Die von uns geplante erstmalige Anwendung von DAR vom Flugzeug in der Arktis wird neue Erkenntnisse über die Wasserdampfverteilung, aber auch über Mischphasenwolken ermöglichen, insbesondere in Kombination mit Radarmessungen bei weiteren Frequenzen. Mehrfrequenz-Radarmessungen erlauben es verschiedene Hydrometeoreigenschaften aufzudecken, aber die Einbeziehung des G-Bandes in die übliche Kombination von X-, K- und W-Band steckt noch in den Kinderschuhen. Daher streben wir ein Instrument mit voller Dopplerfähigkeit an, das zum ersten Mal solche bodengestützten Messungen ermöglicht, um das Verständnis der mikrophysikalischen Prozesse in Wolken zu verbessern. Die Mikrowellenfernerkundung ist eine Schlüsselkompetenz der Universität zu Köln, die neue Techniken entwickelt, boden- und flugzeuggestützte Instrumente in verschiedenen Regionen betreibt und die Messungen auch in Zusammenarbeit mit internationalen Gruppen auswertet. Wir planen, das neue G-band Radar for Water vapor profiling and Arctic Clouds (GRaWAC) an Bord des Polar 5-Flugzeugs und an der AWIPEV-Forschungsstation in Ny-Ålesund, Spitzbergen, als Teil des Transregionalen Sonderforschungsbereichs TR172 'Arctic Amplification' einzusetzen. Auf diese Weise soll das Instrument eine Schlüsselkomponente für die dritte Phase des TR172 werden. Darüber hinaus planen wir, das Instrument am Jülich ObservatorY for Cloud Evolution (JOYCE) einzusetzen, das Teil der europäischen Forschungsinfrastruktur für Aerosole, Wolken und Spurengase (ACTRIS) ist, um den vollen Nutzen von Sensorsynergien an einem typischen Standort in den mittleren Breiten zu untersuchen und auf diese Weise die nächste Generation von bodengestützten Überwachungssystemen vorzubereiten.
Origin | Count |
---|---|
Bund | 106 |
Type | Count |
---|---|
Förderprogramm | 106 |
License | Count |
---|---|
offen | 106 |
Language | Count |
---|---|
Deutsch | 106 |
Englisch | 73 |
Resource type | Count |
---|---|
Keine | 65 |
Webseite | 41 |
Topic | Count |
---|---|
Boden | 89 |
Lebewesen & Lebensräume | 98 |
Luft | 66 |
Mensch & Umwelt | 106 |
Wasser | 76 |
Weitere | 106 |